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Abstract

Objective: Automated surveillance of healthcare-associated infections reduces workload and improves standardization, but it has not yet been
adopted widely. In this study, we assessed the performance and feasibility of an easy implementable framework to develop algorithms for
semiautomated surveillance of deep incisional and organ-space surgical site infections (SSIs) after orthopedic, cardiac, and colon surgeries.

Design: Retrospective cohort study in multiple countries.

Methods: European hospitals were recruited and selected based on the availability of manual SSI surveillance data from 2012 onward
(reference standard) and on the ability to extract relevant data from electronic health records. A questionnaire on local manual surveillance
and clinical practices was administered to participating hospitals, and the information collected was used to pre-emptively design semiauto-
mated surveillance algorithms standardized formultiple hospitals and for center-specific application. Algorithm sensitivity, positive predictive
value, and reduction of manual charts requiring review were calculated. Reasons for misclassification were explored using discrepancy
analyses.

Results: The study included 3 hospitals, in theNetherlands, France, and Spain. Classification algorithms were developed to indicate procedures
with a high probability of SSI. Components concernedmicrobiology, prolonged length of stay or readmission, and reinterventions. Antibiotics
and radiology ordering were optional. In total, 4,770 orthopedic procedures, 5,047 cardiac procedures, and 3,906 colon procedures were
analyzed. Across hospitals, standardized algorithm sensitivity ranged between 82% and 100% for orthopedic surgery, between 67% and
100% for cardiac surgery, and between 84% and 100% for colon surgery, with 72%–98% workload reduction. Center-specific algorithms
had lower sensitivity.

Conclusions: Using this framework, algorithms for semiautomated surveillance of SSI can be successfully developed. The high performance
of standardized algorithms holds promise for large-scale standardization.

(Received 16 August 2019; accepted 25 October 2019; electronically published 30 December 2019)

The burden of healthcare-associated infections (HAIs) is consider-
able. In European hospitals, ~6% of patients hospitalized are affected
by an HAI, and surgical site infections (SSIs) are among the most

common complications.1,2 Feedback of infection rates from surveil-
lance data to clinicians and other stakeholders is a cornerstone of
HAI prevention programs, and participation in surveillance pro-
grams contributes to the reduction of HAI incidence.3–5

Conventional retrospective surveillance relies on manual chart
review to identify HAIs; however, this process is error prone and
time-consuming.6,7 With the large-scale adoption of electronic
health records (EHRs), automation of the surveillance process is
increasingly feasible. Semiautomated surveillance is commonly
used: routine care data stored in the EHR serve as input for an algo-
rithm that indicates a high or a low probability that the targeted
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HAI occurred. Only procedures classified as high probability
undergo manual chart review to confirm the presence of an
HAI. This automated preselection increases standardization and
reduces the number of charts requiring manual review by >75%
while retaining the possibility of interpreting data on clinical signs
and symptoms.8 In the past decade, multiple publications have
described automated surveillance with good performance,9–12

but the automation of surveillance has not yet been adopted
widely.13 Extension to other hospitals may have been hampered
by previous efforts being restricted to single hospitals with
differences in information technology (IT) systems, data availability,
and local diagnostic and treatment practices, or by relying on data-
driven algorithm development. Absence of guidance on how to
develop, implement, and maintain such systems limits their wide-
spread adoption. A framework to develop algorithms for semiauto-
mated surveillance, applicable to routine care data and not requiring
complex data-driven modeling, may facilitate the development of
reliable algorithms implementable on a larger scale.

In this observational, international multicenter cohort study,
we assessed the performance and feasibility of such a framework
for pre-emptive algorithm development for semiautomated
surveillance (Fig. 1) applied to the surveillance of deep incisional
and organ-space SSIs after hip and knee arthroplasty (THA
and TKA), cardiac surgery, and colon surgery. In addition, we
evaluated the generalizability of algorithms between hospitals.

Methods

In this retrospective cohort study, we assessed the performance of a
framework for the development of semiautomated surveillance by
comparing the developed algorithms to routinely performed tradi-
tional manual surveillance for the detection of deep incisional
and/or organ-space SSI (reference standard), according to locally
applied definitions. We focused on SSIs after THA and TKA,
cardiac surgery, and colon surgery because these are high-volume
procedures commonly targeted by surveillance programs.

Hospital and patient inclusion

European hospitals participating in the CLIN-NET network14 were
recruited for this study. We considered only hospitals with long-
term experience with manual SSI surveillance after THA and
TKA and cardiac surgery, and (optionally) other surgical proce-
dures, from 2012 onward. In each hospital, the feasibility of data
extraction from the EHR for the same period was assessed.
Dates of (re)admission and discharge, surgical records, microbiol-
ogy results, and in-hospital mortality were the minimum require-
ments for participation. Optional data included demographics,
antibiotic prescriptions, outpatient clinic visits, temperature, other
vital signs, radiology ordering, clinical chemistry, and administra-
tive data. Data collection was performed retrospectively between
July 2017 and May 2019. The targeted number of SSIs during
the surveillance period had to be 60–80 per center to estimate
performance with sufficient precision. All procedures included
in the participating hospitals’ targeted surveillance were included
nonselectively in the study. From all centers, local approval and
waivers of informed consent were obtained.

Automated surveillance framework

The framework was applied to each hospital by the coordinating
center (University Medical Center Utrecht, The Netherlands)
and consisted of the following steps:

Step 1: Inventory of local surveillance and clinical procedures and
availability of electronic routine care data. Centers completed a
questionnaire for each targeted procedure collecting information
on (1) local surveillance procedures (ie, SSI definitions, selection
of the surveillance population), (2) clinical procedures regarding
standard of care and diagnostic and therapeutic practice in case
of SSI suspicion, and (3) the availability of relevant electronically
routine care data (see the supplementary material online:
Questionnaire SSI SurveillanceMethods). If needed, hospitals were
contacted for a follow-up discussion.

Fig. 1. A framework for pre-emptive algorithm
development in semiautomated surveillance of
healthcare-associated infections.
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Step 2: Algorithm design. Algorithms were pre-emptively
designed based on the information collected in the inventory
(step 1). Algorithms classified surgical procedures as having a high
probability of SSI if they met the criteria of different components
representing different possible indicators of HAI, adapted to
targeted procedures. With data selection and defining component
criteria, the following considerations were taken into account:
(1) the relevance of data to serve as an HAI indicator for hospitals;
(2) data availability across hospitals; (3) robustness to small
changes in clinical practice or documentation; (4) ease of applica-
tion irrespective of local IT systems and epidemiological support;
and (5) a primary focus on optimizing sensitivity (ie, a high
detection rate) followed by positive predictive value (PPV) because
the framework is set up for semiautomated surveillance. For
each targeted procedure, both a standardized algorithm based
on common clinical practices across all hospitals and a center-
specific algorithm adapted to specific local clinical procedures were
developed. If available, previously developed algorithms were used
as the standardized algorithm and were validated.

Step 3: Classification high or low probability of SSI. Algorithms
were applied to the data extracted from each center to classify
procedures as high or low probability of an SSI.

Steps 4 and 5: Assessing and refining algorithm performance.
Results of the semiautomated algorithms were compared to tradi-
tional surveillance to determine accuracy and efficiency of SSI
detection. Subsequently, based on group-level analysis of results
per algorithm component (without evaluating individual

procedures), and discussion with each hospital, structurally miss-
ing data or miscoding were corrected. Second, a detailed case-
by-case discrepancy analysis was performed to obtain insight into
reasons for misclassification. All false-negative cases, and a selec-
tion of false-positive and concordant cases, were reassessed by each
center, blinded for algorithm outcome. If needed, additional cor-
rections in algorithm application were made. Errors inmanual sur-
veillance potentially discovered after reassessment were not
reclassified.

Analyses

The primary end point of this study was the determination of the
accuracy and efficiency of SSI detection by the semiautomated
algorithms, as measured by sensitivity, PPV, and workload reduc-
tion as proportion of charts requiring manual review, compared
to traditional manual surveillance. Analyses were performed at
the procedural level. In addition, discrepancy analyses explored
reasons for misclassification. Finally, the results of this study
provide an indication of the feasibility of broad adoption of this
semiautomated surveillance framework.

Results

Inclusion of hospitals and surveillance characteristics

Initially, 4 hospitals were recruited. However, the required EHR data
extraction for 1 hospital was not possible, and this hospital was

Table 1. Overview of Surveillance Population (Reference Data)

Surgical
Procedure in
Surveillance Hospital Surgery Selection

Applied
Definitions

Follow-up
Period in

Surveillance,d Study Period

No. of Procedures in
Surveillance, No.
(No. SSIs, % SSIs)

No. of Procedures in Surveillance
and in Extracted Routine Care

Data (Reference Data),
No. (No. SSIs, % SSIs)a

Hip/knee
arthroplasty

A Specified selection of
proceduresb

National 90 2015–2016 1,525 (8, 0.5) 1,509 (8, 0.5)

B Elective primary
TKA/ THA

CDC 365 2016c

2015–2016
334 (6, 1.8)
707 (11, 1.6)

326 (6, 1.8)
686 (11, 1.6)

C Specified selection of
procedures,b no prior
procedure <6 months

National 365 2012–2016 2,575 (19, 0.7) 2,575 (19, 0.7)

Cardiac surgery A Specified selection of
procedures,b

National 90 2015–2016 2,645 (34, 1.3) 2,333 (33, 1.4)

B CABG and valve
replacement

CDC 30/365d 2016c

2015–2016
512 (11, 2.1)
850 (18, 2.1)

440 (9, 2.0)
725 (15, 2.1)

C Specified selection of
procedures,b no prior
procedure 6 mo

National 30/365d 2012–2016 1,989 (46, 2.3) 1,989 (46, 2.3)

Colon surgery A Specified selection of
procedures,b no prior
procedure <30 d

National 30 2013–2016 1,325 (100, 7.5) 1,293 (89, 6.9)

B Elective colon/rectal
surgeries

CDC 30 2016c

2015–2016
208 (7.7)
396 (43, 10.6)

200 (16, 8.0)
386 (43, 11.4)

C Specified selection of
procedures,b no prior
procedure <6 mo

National 30 2012–2016 2,227 (98, 4.4) 2,227 (98, 4.4)

Note. SSI, deep incisional or organ-space surgical site infection; TKA, total knee arthroplasty; THA, total hip arthroplasty; CDC, Centers for Disease Control and Prevention24; CABG, coronary
artery bypass grafting.
aProcedures included in surveillance that could be matched to routine care data extracted from electronic health records; this served as a reference population for comparison of the algorithm
performance.
bThe selection of surgeries (related to hip and knee prosthesis, cardiac surgery, or colon surgery) consists of a large number of procedure codes, not further specified in this table.
cSeparate analyses were performed for hospital B for surveillance of 2016 and 2015–2016, because of data availability of data on antibiotics starting 2016.
dFollow-up period 30 days for procedures without foreign material, for procedures with foreign material 365 days.
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therefore excluded from further analyses. The included hospitals
were Amphia hospital (Breda, Netherlands), Dupuytren University
Hospital (Limoges, France), the Bellvitge University Hospital
(Barcelona, Spain), referred to as hospital A-C (random order).

Table 1 provides an overview of the surveillance population,
definitions used in manual surveillance, and the number of
procedures that could be linked to EHR data and, hence, to serve
as reference data to evaluate algorithm performance. In total, 4,770
THA and TKA procedures, 5,047 cardiac surgeries, and 3,906
colon surgeries, with 38 SSIs for THA and TKA, 94 SSIs for cardiac
surgeries, and 230 SSIs for colon surgeries. An overview of available
EHR data is presented in Table 2. Because data for antibiotics from
hospital B were only available for 2016, the framework was applied
to data without antibiotics and additionally to a subset of data
including antibiotics.

Algorithm development

All pre-emptively developed classification algorithms included
components reflecting microbiological culture results, admissions
(prolonged length of stay or readmission), and reinterventions,
with criteria adapted to the algorithm (standardized or center
specific) and targeted procedure. Additionally, algorithms includ-
ing antibiotic prescriptions or radiology ordering components
were defined to accommodate the differences between centers in
data availability. Procedures were classified as high probability
of SSI if a patient scored positive on a combination of components,
including a mandatory component for some algorithms. For THA
and TKA, the algorithm developed by Sips et al15 was applied in
hospitals when data on antibiotics were available. A schematic
overview of the algorithms for THA and TKA is provided in
Figure 2 as an example. Detailed algorithm descriptions and a
flowchart of framework application are provided in the supple-
mentary material online.

Algorithm performance

Table 3 presents the performance of all algorithms prior to case-by-
case discrepancy analyses, and the results are presented in Table 4.
Overall, the performance of the standardized algorithms was high
in terms of sensitivity and workload reduction. Center-specific
algorithms often achieved higher workload reduction, but at the
cost of sensitivity.

Table 2. Data Collection

Data Category Hospital A Hospital B Hospital C

Demographics Available Available Available

Hospital mortality Available Available Available

(Re-)admission &
discharge

Available Available Available

Operating records Available Availablea Available

Microbiology data Available Available >2014a Available

Antibiotic use in ICU Available Not available Not available

Antibiotic use in
general ward

Available Available >2015 Not available

Outpatient clinic
visits

Available Available, not
collected

Not available

Temperature & vital
signs

Available Available, not
collected

Not available

Clinical chemistry
results

Available Available, not
collected

Available, not
collected

Radiology ordering Available
>2012

Available Available, not
collected

Note. For bolded rows, variables are consideredminimally required; only hospitals with these
variables available were included in the study for testing the framework.
aAppeared not fully complete during analyses, but could no longer be extracted due to
change of systems.

(a)

(b)

Fig. 2. Schematic overview of developed algorithm (example hip and knee replace-
ment, standardized algorithm). Example schematic overview of algorithms developed
for semi-automated surveillance after hip and knee arthroplasty, with components
standardized for all centers (standardized algorithm). Only high SSI probability cases
underwent manual chart review. Cultures were restricted to relevant body sites and
excluded cultures taken prior to day 1. Readmissions were restricted to admission by
the operating specialty. All reinterventions performed by initial specialty were included.
Antibiotics included all prescriptions with ATC code J01. In the algorithms designed
specifically for each center, the microbiology component was defined as a positive
culture; length of stay, reinterventions, and antibiotics were specified according to each
hospital’s clinical procedures. Details of standardized and center-specific algorithms for
all interventions are reported in the supplementary material online.
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Standardized algorithms for surveillance of SSIs after THA and
TKA had a sensitivity ranging from 81% to 100% across hospitals.
Upon reconsideration, all missed SSIs were deemed “no SSI” in the
discrepancy analyses; thus, 100% of cases could be detected. A work-
load reduction of >95% was achieved in all centers. The center-
specific algorithms yielded a sensitivity ranging from 50% to 100%
and a workload reduction ranging from 87% to 98% across hospitals.

For cardiac surgery, the sensitivity of the standardized
algorithms appeared nearly perfect, with a 73%–96% workload
reduction, except for the algorithm including antibiotics in hospi-
tal B. Of 9 SSIs, 3 were missed; 1 SSI was reconsidered by the center
as “no SSI” in the discrepancy analyses. The sensitivity of the
center-specific algorithms across centers ranged from 44% to
95%, with a 90%–97% workload reduction.

The standardized algorithm for SSI detection after colon surgery
showed >90% sensitivity in all centers, but it was lower for the
algorithm without antibiotics in hospital B. All centers achieved
a workload reduction between 72% and 82%. Sensitivity of the
center-specific algorithms ranged from 49% to 82% across centers.

No formal comparisons were performed, but standardized
algorithms with and without an antibiotics component showed
comparable overall sensitivity. The PPV and workload reduction
were better in algorithms including an antibiotic component for
cardiac surgery only. To further assess generalizability of this
finding, the performance of standardized algorithms without an
antibiotics component was evaluated for hospital A as a sensitivity
analysis (see the supplementary material on line: Detailed
Algorithm Description, flowchart A). This analysis yielded the fol-
lowing results: for THA and TKA, sensitivity of 100%, a PPV 19%,
and a workload reduction of 97%; for cardiac procedures, sensitiv-
ity of 94%, a PPV of 18%, and a workload reduction of 93%; for
colon surgery, sensitivity of 93%, PPV of 33%, and a workload
reduction of 80%.

For all targeted procedures, most SSIs missed by the standard-
ized algorithms (ie, false negatives) were reassessed as “no SSI” in
the discrepancy analyses; hence, they were correctly classified by
the algorithm. For colon surgery, reasons for missed SSIs included
not fulfilling the mandatory microbiology component (algorithms
without antibiotics) and incomplete extraction of microbiology
data (hospital B) and procedures (ie, drainage or debridement;
all hospitals). The SSIs missed by the center-specific algorithms
could be explained by the component criteria being too specific
(eg, antibiotics after THA/TKA and cardiac surgery in hospital
B and microbiology after colon surgery in hospital C). The main
reasons for falsely identified high-probability cases were errors
in the reference data (SSI after reconsideration in the discrepancy
analyses), superficial SSIs or other complications, and patients
with pre-existing infection being included in the surveillance
population.

Feasibility of framework application

Application of this semiautomated surveillance framework was
feasible in the 3 hospitals included in the study; algorithms with
good performance were developed, applied, and validated. The
questionnaire (framework step 1) provided sufficient information
for pre-emptive algorithm development, although application of
the algorithm required collecting further details regarding selec-
tion of data and technical specification from IT specialists, infec-
tion control practitioners, and clinicians. The fourth hospital had
to be excluded from this study because historical data extraction
was impossible for most data despite considerable effort. In hospi-
tal B, data on microbiology results and reinterventions could not
be completed due to changes in the IT system. Factors enhancing
the feasibility of this framework as encountered during this study
are presented in Table 5.

Table 3. Performance of Algorithms for Semiautomated Surveillance of Deep Incisional and Organ-Space Surgical Site Infections

Surgical
Procedure

Antibiotics Included
Algorithm Hospital

Standardized Algorithm, % (No./Total)a Center-Specific Algorithm, % (No./Total)a

Sensitivityb PPVc
Workload
Reductiond Sensitivityb PPVc

Workload
Reductiond

Hip/knee
prosthesis

Antibiotics A 100.0 (8/8) 17.4 (8/47) 96.9 (47/1,509) 100.0 (8/8) 20.0 (8/40) 97.3 (40/1,509)

B 83.3e (5/6) 62.5 (5/8) 97.5 (8/326) 50.0 (3/6) 37.5 (3/8) 97.5 (8/326)

No antibiotics data B 81.8e (9/11) 42.9 (9/21) 96.9 (21/686) 81.8e (9/11) 9.8 (9/92) 86.6 (92/686)

C 94.7e (18/19) 18.4 (18/98) 96.2 (98/2,575) 94.7e (18/19) 15.1 (18/119) 96.2 (119/2,575)

Cardiac
surgery

Antibiotics A 97.0 (32/33) 34.8 (32/92) 96.1 (92/2,333) 93.9 (31/33) 43.7 (31/71) 97.0 (71/2,333)

B 66.7 (6 /9) 19.4 (6/31) 93.0 (31/440) 44.4 (4/9) 33.3 (4/12) 97.3 (12/440)

No antibiotics data B 100.0 (15/15) 7.9 (15/191) 73.7 (191/725) 93.3 (14/15) 19.7 (14/71) 90.2 (71/725)

C 95.7e (44/46) 8.3 (44/531) 73.2 (531/1,989) 89.1 (41/46) 21.5 (41/191) 90.4 (191/1,989)

Colon surgery Antibiotics and
radiology ordering
included

A 93.3 (83/89) 36.1 (83/230) 82.2 (230/1,293) 86.5 (77/89) 45.3 (77/170) 86.9 (170/1,293)

B 100.0 (16/16) 30.2 (16/53) 73.6 (53/201) 56.3 (9/16) 42.9 (9/21) 89.6 (21/201)

Antibiotics and
radiology ordering not
included

B 83.7 (36/43) 33.6 (36/107) 72.3 (107/386) 48.8 (21/43) 43.8 (21/48) 87.6 (48/386)

C 93.9 (92/98) 16.6 (92/554) 75.1 (554/2,227) 76.5 (75/98) 27.9 (75/269) 87.9 (269/2,227)

Note. PPV, positive predictive value.
aA detailed description of applied algorithms is provided in the supplementary material online.
bSensitivity is defined as the number of procedures with SSI in the reference surveillance data that were classified by the algorithm as high probability of an SSI.
cThe positive predictive value is defined as the number of SSI in the reference surveillance data within all procedures that were classified as high probability by the algorithm.
dThe workload reduction is defined as the number of procedures that require manual confirmation (ie procedures that were indicated by the algorithm with a high probability of an SSI) as
compared to all procedures in traditional surveillance.
eResults discrepancy analyses: reclassification of false negative cases: 100% case detection if corrected.
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Table 4. Discrepancy Analyses: Reasons for Discrepancies Between the Algorithm Results and Results of Manual Surveillance (Reference), for false-negative (SSIs Missed by Algorithm) and False-Positive Cases

Algorithm and Hospital

Hip and Knee Replacement Cardiac Surgery Colon Surgery

Standardized Algorithm Specific Algorithm Standardized Algorithm Specific Algorithm Standardized Algorithm Specific Algorithm

A
(Incl
AB)

B
(Incl
AB)

B
(No
AB)

C
(No
AB)

A
(Incl
AB)

B
(Incl
AB)

B
(No
AB)

C
(No
AB)

A
(Incl
AB)

B
(Incl
AB)

B
(No
AB)

C
(No
AB)

A
(Incl
AB)

B
(Incl
AB)

B
(No
AB)

C
(No
AB)

A
(Incl
AB)

B
(Incl
AB)

B
(No
AB)

C
(No
AB)

A
(Incl
AB)

B
(Incl
AB)

B
(No
AB)

C
(No
AB)

Total false-negative cases, no. : : : 1 2 1 : : : 3 2 1 1 3 : : : 2 2 5 1 5 6 : : : 7 6 12 7 22 23

Reasons for false negatives: Missed SSIs (count)

Reclassification of reference data:
true negative (“no SSI”), no.

1 2 1 1 2 1 1 2 2 1 4 1 3 1 8

Field or code selection
incomplete, no.

1 5 2 2 5 3 11

Incomplete data extraction, no. 2 1 2 7 10

SSI diagnosis not based on
microbiology, no.

1 6 4 2 12 7 5

Algorithm not matching clinical
procedures, no.

2 1 1

Too specific definition algorithm
component, no.

2a,b 2a 10c

Relevant information stored as
free text, no.

1 1 1 15

Diagnostics in other hospital, no. 1

Total false-positive cases, no. 17 1 4 3 17 1 4 4 7 1 11 6 7 : : : 11 6 9 5 10 8 9 5 10 8

Reasons for false positives (count)

Reclassification of reference data:
true positive, no.

11 1 2 1 11 1 1 1 2 1 2 2 1 3 4 2 1 3 4

Superficial SSI, no. 2 3 2 3 1 3 3 1 3 3

Pre-existent SSI, no. 2 1 2 1 1 1 1 1

Other complications, no. 4 2 1 4 1 3 1 4 1 4 3 4 4 3 7 3 4 7 3 4 1

No signs of infection or
antibiotics, no.

1 3 3

Note. SSI, surgical site infection, AB, antibiotics component of algorithm. Ellipses ( : : : ) indicate no false negatives, all cases detected and no false positives included. Multiple reasons may be applicable to 1 case.
aAntibiotic component.
bReintervention component.
cMicrobiology component.
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Discussion

This retrospective study assessed a framework for the development
of semiautomated HAI surveillance in 3 different European hospi-
tals, focusing on deep incisional and organ-space SSIs after THA
and TKA, cardiac procedures, and colon surgery. This framework
achieved a high detection rate of SSI (sensitivity) as well as a
72%–98% reduction of manual chart review workload when it
was applied in hospitals that differed with respect to surveillance
population, HAI definition, and clinical procedures. Because this
method of pre-emptive algorithm development relies on a limited
number of data sources that can often be extracted from the EHR
and does not require complex modeling, calibration, or dealing
with missing data,16 we expected it to be accessible to many
hospitals.

The algorithms, developed without any prior knowledge
other than information obtained from the survey and interviews,
performed well. The ‘standardized algorithms’ developed with
the purpose of being applicable in multiple hospitals had high
sensitivity while achieving a substantial workload reduction,
given that data extraction was complete. These algorithms offer
possibilities for larger-scale standardization of semiautomated
surveillance. Although algorithms with a more specific compo-
nent definition, tailored to each center’s characteristics, often
achieved a higher positive predictive value, the gain in workload
reduction was limited and did not offset the loss in sensitivity.
Components appeared to be too specifically defined, either
because clinical procedures in case of an SSI were less standard-
ized than anticipated or because the reasoning for SSI diagnosis

was less straightforward. Furthermore, the standardized algo-
rithm components are likely more robust to changes in clinical
practice over time and are easier to implement and maintain
than specific definitions. Hence, for the purpose of semiauto-
mated surveillance, algorithms with more generally defined
components are preferable.

The algorithm previously developed for semiautomated surveil-
lance of SSI after TKA and THA15 was validated in 2 hospitals
in this study; all SSIs were detected and a similar reductions in
workload were achieved, although the number of SSIs was limited.
The algorithm without antibiotics performed similarly. This
latter observation also held true for the other types of surgery.
In previous studies, data on antibiotics were added to enhance case
findings,17–19 but this addition was not essential to this study, and
the same held true for data on radiological interventions. Although
additional information could be used to optimize algorithm per-
formance, it is feasible to develop well-performing algorithms that
rely solely onmicrobiology results, admission and discharges dates,
and procedures codes. These algorithms may be broadly adoptable
because extraction of this information in an easy-to-process format
was possible in all hospitals except one (due to impossibilities of
accessing historical data in legacy EHR), and no computation is
required (eg, deriving changes in clinical chemistry results).
These elements do not depend on interpretation bymedical coders;
therefore, they are potentially more reliable than, for example,
billing codes.12,13

In algorithms without data on antibiotic prescriptions, fulfilling
the microbiology component was mandatory to limit the number
of false-positive cases. Based on the survey (framework step 1), we
anticipated that cultures were taken whenever deep incisional or
organ-space SSI was suspected; however, the discrepancy analyses
revealed that the SSI determination was not always based on
microbiology. The appropriateness of a mandatory component
can be discussed because culture-negative infections can also
meet the definition of deep incisional or organ-space SSI.20

More flexibility could have increased the sensitivity, but there is
always a trade-off between sensitivity and PPV. Accepting missed
cases could be another alternative as long as comparability is
ensured.21

Application of this semiautomated surveillance framework was
feasible, but this study revealed several important conditions for
success. Early involvement of IT specialists was essential because
they provided an overview of available data and because the com-
plexity of data management depends on IT support or the medical
intelligence department. Equally important is knowledge of local
clinical procedures and registration practices to understand what
fields or codes should be used in analyses. Hence, data extraction
requires close collaboration between infection control practi-
tioners, clinicians, and IT specialists.

The discrepancy analyses revealed procedures misclassified
by manual surveillance, which highlights the importance of a
validated reference surveillance population when testing the
performance of models. Because the selection of cases for the
discrepancy analyses was nonrandom, the results of reclassification
could not be reliably extrapolated to the entire population and
performance estimates were not recalculated. Hence, the perfor-
mance of the algorithm was likely underestimated.

Our results have some limitations. Even though this study
included hospitals from different countries that varied in applied
HAI definitions, procedures in surveillance, and clinical and
surveillance practices, the generalizability of the results of this
framework to other centers may be limited. Only 3 hospitals were

Table 5. Factors Enhancing Successful Framework Application

Enhancing Factor Motivation

Early involvement and
collaboration between
clinicians, infection control
practitioners and IT specialists

Knowledge of different fields of
expertise need to be combined:Early
involvement of IT specialists was
important to learn what (historical)
data is feasible to extract in a
structured form, from various systems.
Clinicians and infection control
practitioners have knowledge on
relevance of data and of registration
practices, such as fields or codes
that are applied.

Access to data of historical
systems

Validation required the use of historical
data; changing electronic health
records systems can result in loss of
access to essential data.

Data management support In all hospitals multiple systems for
registration of routine care data were
running in parallel. IT, medical
intelligence specialists, and data
managers facilitated algorithm
application.

Validation of extracted data For correct application of the
algorithm, validation of data quality is
important (corrections had to be made
to correct structurally missing data).

High quality reference data for
algorithm validation

In the discrepancy analyses, cases
in the manual surveillance were
reclassified (SSI to “no SSI” and
vice versa), limiting performance
estimation of the algorithms

Note. Enhancing factors increase the feasibility of framework application, based on lessons
learned during the framework application.
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included in this study, all from Western Europe. Furthermore,
differences in the availability of high-quality data for algorithm
application (eg, microbiology results) or clinical registration prac-
tices will likely have an impact on the applicability of the presented
algorithms in new settings, although similar steps in algorithm
development could be undertaken. Performance estimation was
further limited by a lower total number of SSIs than anticipated
and by incomplete data extraction; both are consequences of
limited availability of EHR data. Also, we did not measure net
time in workload reduction; this cannot be estimated as a linear
reduction proportionate to the charts needed for review.
Because implementation of semiautomated surveillance was
outside the scope of this study, no guidance on investments in
human resources and material were developed in this study.
More detailed practical guidance could be obtained from imple-
mentation studies.

This study was a proof-of-principle investigation of a frame-
work for semiautomated HAI surveillance algorithm development
that has promise for broader implementation. Algorithms with
good performance can be developed without the need for specific
modeling by each hospital and based on limited data sources only.
Further validation could provide insight into the feasibility of
broader applications of this method, both in other hospitals
and for other targeted HAIs. With standardized, semiautomated
surveillance on a larger scale, the number of surveyed procedures
can be expanded to facilitate local quality improvement,
(inter)national comparisons, or outcome measurements in clinical
trials.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2019.321
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