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MORE ON COMPACT HAUSDORFF SPACES AND 
FINITARY DUALITY 

B. BANASCHEWSKI 

It is an old conjecture by P. Bankston that the category CompHaus of 
compact Hausdorff spaces and their continuous maps is not dually 
equivalent to any elementary P-class of finitary algebras (taken as a 
category with all homomorphisms between its members as maps), where 
elementary means defined by first order axioms, and a P-class is one closed 
under arbitrary (cartesian) products. One motivation for this conjecture is 
the fact that such a dual equivalence would make ultracopowers of 
compact Hausdorff spaces correspond to ultrapowers of finitary algebras, 
and one might expect this to have contradictory consequences. 

As a possible step towards proving his conjecture, Bankston [2] showed 
that no elementary SP-class of finitary algebras can be dually equivalent 
to CompHaus. However, it was subsequently proved in [1] that the same 
holds for any SP-class of finitary algebras, using an argument indepen­
dent of ultrapowers. 

The present note, at last, provides a proof of the original conjecture. In 
actual fact, we show here, somewhat more generally, that CompHaus has 
no full subcategory strictly larger than the category BooS of Boolean 
spaces which is dually equivalent to an elementary P-class of finitary 
algebras. Given that BooS itself has such a dual equivalence, namely 
classical Stone Duality, this may be considered an interesting comment on 
Boolean spaces besides settling the conjecture. 

To put our result in the proper perspective, one should take note of the 
following additional facts concerning the category CompHaus. On the one 
hand, this is indeed dually equivalent to a P-class of finitary algebras, as is 
implicit in the lattice-theoretical duality of CompHaus recently given by 
Banaschewski [2], and on the other hand, it is actually dually equivalent to 
an equationally defined class, albeit of infinitary algebras ( [5] ), which can 
be described by four finitary and a single co-ary operation ( [6] ). This 
shows how narrowly Bankston's conjecture misses to be false. 

In the following, C is any full subcategory of CompHaus containing 
BooS, K any elementary P-class of finitary algebras, and T:C —» K a dual 
equivalence. Further, P = 71 is the algebra in K corresponding to the 
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one-point space 1 in C. P and its powers, which belong to K by hypothesis, 
play a crucial role in our arguments. 

The first result we need is due to Bankston [2]. 

LEMMA 1. P is finite. 

Proof. Because BooS Q C, the usual copowers of 1 in CompHaus belong 
to C: for any set S, the S-fold copower of 1 in CompHaus is the 
Stone-Cech compactification /IS of S taken as a discrete space, and ft S is 
Boolean. Now, if U is any ultrafilter on a set / then the ultracopower of 1 
relative to 11 in CompHaus, i.e., the projective limit lim /3S(S G il), is 

just the intersection of the fiS, S e U, viewed as subspaces of /} / . Since 
this is the one-point space {11}, the ultracopower is again 1 ( [2] ), and 
hence the same holds in C. From this and the fact that K is a P-class it 
follows for the algebra P that the map 

P -> lim PS(S €= U) 

induced by the diagonal maps P —> Ps is an isomorphism. Moreover, since 
K is elementary the colimit lim PS(S G It) in K is actually the usual 

ultrapower of P relative to U. Hence the natural map of P into any of its 
ultrapowers is an isomorphism, and this shows P is finite ( [4] ). 

Lemma 1 has the important consequence that P is compact as a discrete 
space and hence, for any power P1 of P, each element s G. P1 has a unique 
continuous extension s:fil —» P. Next we describe the effect of 
homomorphisms between powers of P based on this observation. 

LEMMA 2. For any continuous map <f>:/£/ —> fll with discrete I and J, the 
homomorphism Tfy'.P1 —> PJ is the map s ~> s<j>\J. 

Proof. First consider the case J = 1 = ft J and let u e /} / be the element 
picked by <£. Then, we have the homomorphism h\Pl —> P such that 
h(s) = s(u), and the claim is that T§ = h. Now, by the finiteness of P, 
each s G P1 occurs in the image of some homomorphism Pn —» P1 with 
natural number n, and hence it is sufficient to show that T<j> and h have 
equal composites with any such Pn —» P1. For this, take any continuous 
map o.fil —> n and let k e n be the number picked by ocj>:\ —» n, i.e., 
k = o(u). Then, T<j>To = T(o<j>) is the kth projection Pn —» P. On the other 
hand, Ta\Pn —» P1 is the unique homomorphism making all triangles 

pn_>pl 

\ / 
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commute (pr for projection) and therefore 

To(c) = co\I for each c G Pn. 

Now, by the definition of h and the obvious fact that co = (<?a|/)A, we 
have 

h(co\I) = (co\I)A (u) = co(u) = c(k) 

and hence hTo is also the /cth projection P" —» P. Since o'.fil —» n was 
arbitrary, this proves T<j> = h. 

Now take / arbitrary and, for any j G J, let T: 1 —> /}J be the map which 
picks out 7. Then 

T(4n)(s) = s(cf>(j)) 

by the preceding discussion, and since TV is the projection PJ —> P at7 this 
implies 

T(j)(s)(j) = s<j>(7) for each 7 G 7, 

i.e., 7^(5) = î<#>|y as claimed. 

In the following, we use the relation a = b on any A G K to mean that 
each homomorphism 4̂ —> P maps « and Z? equally. Obviously, for any 
homomorphism h:A —> P7, if a = ft then ft(«) = ft(ft) for all Û, ft G A On 
the other hand, if /':^ —> P7 is a homomorphism such that / = T<f> where <p 
is an onto map then i(a) = /(ft) implies a = ft: for any ft:^ —> P, one then 
has a g:P7 —> P for which ft = g/' because 1 is obviously projective in C 
relative to onto maps and this makes P injective in K relative to the 
corresponding homomorphisms. 

An important power of P is Q = P'F' where \P\ is the underlying set of 
P. Below, e G Q will always be the identity map on P. For the motivation 
of the following result, one should bear in mind that in the case of Stone 
Duality, P is the two-element Boolean algebra and Q the Boolean algebra 
free on {e}, the point being that, in general, Q still has somewhat similar 
properties. 

LEMMA 3. For any A G K and a G A, there exists a homomorphism 
h\Q —» A such that h(e) = a. 

Proof. Any compact Hausdorff space X appears in a coequalizer 
diagramme in CompHaus of the form 

yi onto 

with discrete spaces I and J, and since fil and fiJ belong to C this is also a 
coequalizer diagramme in C if X G C. As a result, any A G K appears in 
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an equalizer diagramme 

A-> P' ~^r 

where /' = To comes from an onto map o. Then, for any a £ A, let c = i(a) 
and k:Q —> Pl be the homomorphism such that k(x) = xc, the composite 

e x A 

/ —» P —> P, i.e., A: = Pc by Lemma 3. Since z is the equalizer of Tcj) and T\p 
in K, we have T<t>(c) = T\p(c) and hence, by Lemma 2, 

Tcj)(xc) = (xc) 4>\J = xc<f>\J = xT$(c) = xT^(c) = T^(xc), 

where the important step (xc)A = xc results from the fact that xc is 
obviously a continuous extension of xc to f3I. It follows that (T<j>)k = 
(T\p)k, and therefore k factors through z by a homomorphism h.Q —> A. 
Now, for e <= £>, we then have 

/7z(e) = /c(^) = c = i(a), 

and as has already been noted this implies h(e) = a because / comes from 
an onto map. 

The homomorphisms Q —> A, for a given A G K, may not, for all one 
can tell, cover A but at least they do so up to the relation = , and this is 
sufficient for the following. 

LEMMA 4. Q is a generator in K. 

Proof. Consider any distinct homomorphisms/, g:A —* B in K and let 
j.B —> PJ be any monomorphism in K. Then one also has jf ^ jg and 
hence jf(a) ¥= jg(a) for some a e A. Now, if h:Q —> v4 is a homomorphism 
such that /z(e) = a as provided by Lemma 3 then 

iAO) = jf(a) * jg{a) = ygAOO, 

hencey/Tz ^ y'g/z and therefore/?/ # g/i. Hence the homomorphisms Q —> ^ 
distinguish, by composition, the homomorphisms v4 -^ P for any ^4, 
P £ K, and this says Q is a generator in K. 

The last lemma supplies the decisive tool for the proof of our main 
result: 

PROPOSITION. The only full subcategory C 2 B00S o/CompHaus dually 
equivalent to an elementary P"-class K offinitary algebras is B00S. 

Proof. Since Stone Duality provides a dual equivalence of the type in 
question for B00S, we only have to show that any dual equivalence 
T.C —» K as stated implies that each X e C is Boolean. Now, by Lemma 4, 
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the space S <E C corresponding to Q by T is a cogenerator of C, and as 
1 G C this obviously implies, for any X e C, that the continuous maps 
X —> S separate the points of X. The latter, however, makes X Boolean 
because S is Boolean, being a copower of 1 since Q is a power of P. 

Remark 1. On the algebraic side, it is clear from the above arguments 
that K could also be an elementary P-class of finitary structures, allowing 
relations as well as operations. In the same vein, K need not really be a 
P-class; it is already sufficient if it contains all powers for each of its 
members. Actually, in the final analysis, K need only be a concrete 
category with concrete powers and ultrapowers, i.e., there is a faithful 
functor from K to the category of sets and K has powers and ultrapowers 
which are preserved by it. 

Remark 2. On the space side, it is obviously enough that fiS belongs to 
C for any discrete S to make all the lemmas work, and the conclusion then 
is that C c BooS. Taking Stone Duality into account, this raises the 
question which full subcategories of the category of Boolean algebras 
containing all complete atomic Boolean algebras can be category 
equivalent to an elementary P-class. It did not seem in the spirit of this 
note to pursue ramifications of this type but we observe that the 
elementary P-class of all atomic Boolean algebras is an obvious 
example. 

Remark 3. Stone Duality furnishes examples of full subcategories of 
CompHaus dually equivalent to elementary P-classes, in fact of Boolean 
algebras, which differ very much from the K appearing in the above 
consideration. A typical case is the category of all Boolean spaces without 
isolated points which is dually equivalent to the elementary P-class 
of all atomless Boolean algebras: the latter neither has an initial object 
(which is P in the above K) nor any member with only finitely many 
endomorphisms. 

Remark 4. If K satisfies the stronger condition that it is closed under 
arbitrary direct limits rather than just ultraproducts then the duality T 
becomes entirely like Stone Duality even if C is only assumed to contain 
all Stone-Cech compactifications of discrete spaces. In this case, any 
X e C is the projective limit lim X/& in C where X/& ranges over the 

finite quotient spaces of X, and hence 

TX = lim T(X/@) = lim Px/e 

in K. On the other hand, for the algebra C(X, P) of continuous P-valued 
functions on X one has, in the category of all algebras of the type of P, 
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C(X, P) = lim C(A70, P) = lim Px/® 

and the present hypothesis on K then implies that C(X, P) e K. Therefore 
TX = C(X, P) for all X e C, necessarily natural in X, so that T is 
equivalent to the functor C( —, P). This raises the obvious question: for 
which C and (finite) P is the class of all C(X, P), X e C, elementary? Note 
that, in the case where C = BooS and P is the two-element Boolean 
algebra, C( —, P) is exactly the functor of Stone Duality from Boolean 
spaces to Boolean algebras. 

Remark 5. An alternative, entirely different proof of Bankston's 
conjecture, involving rather more extensive background from model and 
category theory but which does not seem to yield the complete result of 
the present Proposition, has been given by J. Rosicky [7]. 
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