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Approximation by Meromorphic Functions
With Mittag-Leffler Type Constraints
P. M. Gauthier and M. R. Pouryayevali

Abstract. Functions defined on closed sets are simultaneously approximated and interpolated by
meromorphic functions with prescribed poles and zeros outside the set of approximation.

1 Introduction

Given a discrete set Z in the complex plane C, the Mittag-Leffler theorem asserts the
existence of a meromorphic function with prescribed singularities at the points of Z.
For holomorphic functions, an analogous result allows one to prescribe the values
of an entire function along with finitely many of its derivatives at the points of Z.
By prescribing the “left tail” of the Laurent series at points of Z, it is possible [3] to
combine these two classical results.

In the present paper, we further combine this process with simultaneous approxi-
mation on a closed set disjoint from the discrete set Z. As a consequence, we obtain a
generalization of the main result in the recent paper of A. Sauer [9] on approximation
by functions with prescribed zeros, poles and asymptotic behaviour.

2 Definitions and Basic Results

For F ⊂ C, we denote by H(F) and M(F), the set of all holomorphic functions and
meromorphic functions on F, respectively; we also denote the set of all functions
continuous on F and holomorphic on F◦ by A(F), where F◦ is the interior of F. The
Riemann sphere will be denoted by C∞.

Definition 1 Let F be a closed subset of C. A speed on F is a positive, continuous
function on F. If ε is a speed on F, then F is called a set of ε-approximation, provided
that for each f ∈ A(F) and each constant λ > 0, there is a function g ∈ H(C) such
that for z ∈ F,

| f (z)− g(z)| < λε(z).

Definition 2 A closed subset F of C is called a set of uniform approximation if F is a
set of ε-approximation for some (hence for each) positive constant ε.
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Note that, if F is a set of ε-approximation and the speed ε is bounded then F is,
a fortiori, a set of uniform approximation. The following characterization of sets of
uniform approximation is due to Arakelian [1].

Theorem 1 A set F is a set of uniform approximation if and only if C∞ \ F is connected
and locally connected at∞.

Let us state another Theorem of Arakelian which will be useful in this paper (see
[2, p. 39]).

Theorem 2 Let ε : [0,∞)→ (0,∞) be continuous and decreasing such that

∫ ∞
1

t−3/2 log ε(t) dt > −∞.(1)

Then, for every set of uniform approximation F and for every function f ∈ A(F), there
exists an entire function g such that

| f (z)− g(z)| < ε(|z|),

for all z ∈ F.

We may extend any continuous function ε : [0,∞) → (0,∞) to a function con-
tinuous on all of C by setting ε(z) = ε(|z|). Let us call such a function ε satisfying
the conditions in Theorem 2 a canonical speed. As an example, we can consider
ε : [0,∞)→ (0,∞) defined by

ε(t) := exp(−t1/3).

Then ε is a canonical speed satisfying ε ≤ 1.
In the next example we will show that the decreasing condition in Theorem 2 can

not be waived.

Example 1 Consider the set of uniform approximation

F = {z ∈ C : 
z ≥ 0}.

We will construct ε : [0,∞) → (0, 1] continuous satisfying (1), with limt→∞ ε(t) =
0, in such a way that F is not a set of ε-approximation.

For each n ∈ N1 := N \ {1}, set Fn = {z ∈ C : |z| ≤ n,
z ≥ 0} and αn =
{z ∈ C : |z| = n,
z > 0}, by the Two Constants Theorem (see [5]) there exists a
decreasing sequence {εn : 0 < εn < 1, n ∈ N}, such that if f ∈ A(Fn), | f | ≤ 1 and
| f | ≤ εn on αn. Then

max
z∈K
| f (z)| <

1

n
,

https://doi.org/10.4153/CMB-2001-042-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-042-5


422 P. M. Gauthier and M. R. Pouryayevali

where K = {z ∈ C : |z − 1| ≤ 1
3}. Therefore if f ∈ A(F), | f | ≤ εn on αn and

| f | ≤ 1, then f (z) = 0 for every z ∈ K, so f ≡ 0. Hence if ε : [0,∞)→ (0, 1] is any
continuous function such that for n ∈ N1, ε(n) ≤ εn, then f ∈ A(F) and | f | ≤ ε
implies f ≡ 0. This shows that F is not a set of ε-approximation. Indeed, consider
f (z) := 1/(z + 1), f ∈ A(F) \H(C) and suppose there exists g ∈ H(C) such that on
F

| f − g| < ε.

Thus f = g on F, so f = g on C \ {−1} which is a contradiction.
Among all continuous functions ε : [0,∞) → (0, 1] with ε(n) ≤ εn, n ∈ N1, we

construct one which satisfies (1) and limt→∞ ε(t) = 0.
Let ε̃ : [0,∞) → (0, 1] be a continuous decreasing function satisfying (1). For

n > 1, choose εn as above, and decreasing so rapidly that εn < ε̃(n + 1), and choose
0 < ηn < 1/2 such that

∫ n+ηn

n−ηn

t−3/2 log εn dt > −
1

2n
.

Now, we define a continuous function ε as follows: on [n, n + ηn], it is the segment
from the point (n, εn) to the point

(
n + ηn, ε̃(n + ηn)

)
, on [n + ηn, n + 1 − ηn+1],

it is equal to ε̃(t) and on [n + 1 − ηn+1, n + 1], it is the segment from the point(
n + 1 − ηn+1, ε̃(n + 1 − ηn+1)

)
to the point (n + 1, εn+1), for each n ≥ 1. We may

define ε on [0, 1] by ε(t) = ε1. Thus, considering In := [n− ηn, n + ηn], we deduce

∫ ∞
1

t−3/2 log ε(t) dt =

∫
[1,∞)\

⋃∞
n=1 In

t−3/2 log ε(t) dt

+

∫
⋃∞

n=1 In

t−3/2 log ε(t) dt

≥

∫ ∞
1

t−3/2 log ε̃(t) dt +
∞∑

n=1

∫
In

t−3/2 log εn dt,

> −∞,

as required.

To prove the next theorem we need two lemmas.

Lemma 1 Let F be a set of uniform approximation and U an open neighbourhood of F.
Then, there exists a simply connected open neighbourhood Us of F such that F ⊂ Us ⊂
U .

Proof Let W := {W j : j ∈ J} be the class of all bounded components of C \ U .
Using triangulation we may assume that ∂U is a locally polygonal neighbourhood of
F, so W is locally finite.
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For each j ∈ J, let W̃ j be the component of C \ F containing W j . Each W̃ j is
unbounded because C∞ \ F is connected.

By Theorem 1, C∞ \ F is locally connected at∞, so by a characterization of the
local connectedness of C∞ \ F at∞, for every neighbourhood G1 of∞ there exists a
neighbourhood G2 ⊂ G1 of∞ with the property that each point z ∈ G2 \ F, z �=∞
can be connected to∞ in C by a continuous curve γ ⊂ G1 \ F. This means that the
continuous function γ : [0, 1]→ G1 \ F with γ(0) = z has the property that for any
given compact set K ⊂ C there is a tK such that, for each t > tK , γ(t) /∈ K. Therefore
there is a basis {V j : j ∈ J} of open neighbourhoods of ∞ such that, for each j,
V j+1 ⊂ V j and each w ∈ V j+1 can be connected to∞ by a curve in V j \ F.

Hence for each j ∈ J, there exists a curve σ j in C \ F from a point w j ∈ W j to
∞ and we may assume that the family {σ j : j ∈ J} is locally finite. Let B j be a
connected polygonal neighbourhood of σ j which does not intersect F. We may also
assume that {B̄ j : j ∈ J} is a locally finite family of closed sets. Hence

⋃
J∈ J B̄ j is

closed. Set Us = U \
⋃

j∈ J B̄ j , thus F ⊂ Us. Then, C∞ \U =
⋃

j∈ J W j ∪W∞, where
W∞ is the component of C∞ \U which contains∞, so

C∞ \Us =
(⋃

j∈ J

W j ∪ B j

)
∪ {∞} ∪W∞,

which is connected, therefore Us is simply connected.

Lemma 2 Let F be a set of uniform approximation and f ∈ A(F) without zeros on F.
Then there exists a branch of ln f in A(F).

Proof Considering a continuous extension of f on C and applying the previous
lemma, we can suppose the existence of a continuous nonvanishing extension of f
on a simply connected neighbourhood Us of F. Thus there exists fs : Us → C∗ con-
tinuous such that fs ◦ i = f where C∗ := C \ {0} and i : F → Us is the identity
map. Let C̃∗ = C be the universal covering of C∗ and f̃ : Us → C̃∗ be the lift of fs, so
exp ◦ f̃ = fs and exp ◦ f̃ ◦ i = f .

We shall prove that f̃ is holomorphic on F◦. Let z0 ∈ F◦, p0 = f̃ (z0) and Ũ0

a neighbourhood of p0 such that exp(Ũ0) is biholomorphic to U0 ⊂ C∗. Suppose
V0 is a neighbourhood of z0, V0 ⊂ F◦ small enough such that f̃ (V0) ⊂ Ũ0 and
f (V0) ⊂ U0. Hence exp ◦ f̃ |V0 = f |V0 and f̃ |V0 = exp |−1

U0
◦ f |V0 . Therefore f̃ is

holomorphic on F◦.

A divisor on C is a function D : C → Z, such that the set of points ζ ∈ C where
D(ζ) �= 0 is a discrete set. We denote a divisor D by a formal sum

D :=
∑
ζ∈C

D(ζ)ζ.

Suppose Ω ⊆ C, f ∈ M(Ω) and ζ ∈ Ω, then the order of f at ζ , positive for a
zero, negative for a pole, will be denoted by ordζ( f ). By the divisor of f ∈ M(C),
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f �= 0, we mean the divisor

D =
∑
ζ∈C

ordζ( f )ζ.

We shall call a sequence {zn} (possibly finite or empty) of distinct points in C
admissible (with respect to a set F) if {zn} has no finite accumulation point and all zn

are contained in C\F.

Theorem 3 Let F be a set of ε-approximation, ε ≤ 1, {zn} an admissible sequence and
{on} a sequence in Z∗ := Z \ {0}. Further, let ϕ ∈ A(F) without zeros. Then, there
exists f ∈M(C) such that D =

∑
n onzn is the divisor of f and for each z ∈ F,

|ϕ(z)− f (z)| < |ϕ(z)|ε(z).

Proof We remark that

|1− ew| ≤ e|w|, if |w| ≤ 1.

Consider h ∈ M(C) such that the divisor of h is D (see [6]). Since F is a set of
uniform approximation, by Lemma 2 there exists a simply connected neighbourhood
of F containing no zn and branches H and Φ of ln h and lnϕ respectively, in A(F).
By hypothesis there exists G ∈ H(C) such that on F,

|H − (G + Φ)| <
ε

e
< 1.

Set g = e−G and f = gh, so f ∈M(C), and the divisor of f is D. On F we have

|ϕ− f | = |ϕ|
∣∣∣1− gh

ϕ

∣∣∣
≤ |ϕ| |H − G− Φ|e

< |ϕ|ε.

Note that, if in addition to the hypotheses of the previous theorem, we assume the
boundedness of ϕ on F, then for z ∈ F, the desired f satisfies,

|ϕ(z)− f (z)| < ε(z).

Corollary 1 Let F, ε, {zn} be as in the previous theorem and {on} a sequence in N.
Then there exists f ∈ H(C) with exactly the zeros zn of order on and |1− f | < ε.

We wish to apply the results of approximation theory to a study of asymptotic
expansions.
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Definition 3 Let F be an unbounded set in C. A function f : F → C has an asymp-
totic expansion in F if there exists a complex sequence {an} such that for all n ∈ N

zn
(

f (z)−
n−1∑
i=0

aiz
−i
)
→ an

as z →∞ in F. We denote f (z) ∼
∑∞

i=0 aiz−i .

For n = 1, 2, . . . , we set

Rn( f , z) := f (z)−
n−1∑
i=0

aiz
−i .

Then f (z) ∼
∑∞

i=0 aiz−i is equivalent to Rn( f , z) = O(|z|−n) for all n ∈ N. Note
that the asymptotic expansion of f need not converge and is therefore a formal power
series in 1/z. As a particular case if a is a constant, we have that f ∼ a if and only if
f (z) − a = O(|z|−n), for all n ∈ N. Hence, for a �= 0, the meaning we give to the
expression f ∼ a is much stronger than the assertion “ f is asymptotic to a”, which
merely means that f (z)/a→ 1.

The next corollary is the main result of [9].

Corollary 2 Let F be a set of uniform approximation, {zn} an admissible sequence and
{on} a sequence in N. Then there exists f ∈ H(C) with exactly the zeros zn of order on

and f ∼ 1 on F.

Proof Taking the canonical speed ε(z) := e−|z|
1/3

on F and applying Corollary 1
implies f ∼ 1.

Theorem 4 Let F be a set of uniform approximation, {zn} an admissible sequence, {on}
a sequence in Z∗ and ε ≤ 1 a canonical speed. Then, there exists f ∈ M(C) such that
D :=

∑
n onzn is the divisor of f and | f | < ε on F.

Proof Since F is a set of uniform approximation and ε is a canonical speed (see [2],
p. 40), there exists a nonvanishing function ϕ ∈ H(C) such that

|ϕ(z)| <
1

2
ε(z),

for all z ∈ F.
By Theorem 3, there exists f ∈M(C) with divisor D such that for z ∈ F,

|ϕ(z)− f (z)| <
1

2
ε(z),

so

| f (z)| < ε(z),

for all z ∈ F.

https://doi.org/10.4153/CMB-2001-042-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-042-5


426 P. M. Gauthier and M. R. Pouryayevali

Corollary 3 Let F be an unbounded set of uniform approximation, {zn} an admissible
sequence and {on} a sequence in Z∗. Then there exists f ∈ M(C) such that the divisor
of f is

∑
n onzn and f ∼ 0 on F.

By a left tail at ζ ∈ C (see [3]), we mean a series of the form

J∑
j=−∞

a j(z − ζ) j ,

for some integer J which is convergent in some deleted neighbourhood of ζ . If the
coefficients of a left tail at ζ coincide with the corresponding Laurent coefficients of
a function f holomorphic in a deleted neighbourhood of ζ , then we say that the left
tail is a left tail of f at the point ζ . For the special case where J = −1, we call it a
p-tail (p for principal part).

Lemma 3 Let F be a set of ε-approximation and Z:= {zn} an admissible sequence.
Moreover, for each n let tn be a left p-tail at zn. Then for f ∈ A(F), there exists a
function g holomorphic in C \Z such that tn is a left tail of g at zn and | f − g| < ε on F.

Proof By Theorem 4 in [3], there exists a function f∞ holomorphic on C except for
isolated (possibly artificial) singularities at the points of Z such that for each n, tn is a
left tail of f∞ at zn. Since Z is an admissible sequence, f − f∞ ∈ A(F). On the other
hand F is a set of ε-approximation so there exists g0 ∈ H(C) such that on F,

| f − f∞ − g0| < ε.

Set g := f∞ + g0. Then g is holomorphic on C except for isolated singularities at the
points of Z, such that for each n, tn is a left tail of g at zn.

Theorem 5 Let F be a set of ε-approximation, ε ≤ 1, Z = {zn} an admissible sequence,
and

tn(z) :=

jn∑
j=−∞

an j(z − zn) j ,

a left tail at zn. Then, for f ∈ A(F) there exists a function g holomorphic in C \ Z such
that, tn is a left tail of g at zn and for z ∈ F,

| f (z)− g(z)| < ε(z).(2)

Proof Corollary 1 of Theorem 3 implies that there exists an entire function f̃ with
zeros exactly at zn of order on > jn and on F,

|1− f̃ (z)| <
ε(z)

4
.
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For each n let gn be the p-tail of the function tn/ f̃ at zn so tn/ f̃ = gn + ϕn locally at
zn with ϕn holomorphic at zn.

By Lemma 3, there exists a function γ holomorphic on C \ Z such that gn is a left
tail of γ at zn and for z ∈ F,

|γ(z)| <
ε(z)

4
,

for all z in F.
Define h := γ f̃ . Since f̃ is an entire function, locally h = (gn + qn) f̃ with qn

holomorphic at zn. In a neighbourhood of zn,

h = (gn + qn) f̃ =
( tn

f̃
+ qn − ϕn

)
f̃

= tn + (qn − ϕn) f̃ .

Since (qn − ϕn) f̃ is holomorphic at zn with zero of order at least on, it follows that tn

is a left tail of h at zn.
On F we have

|h(z)| = | f̃ (z)γ(z)|

≤
(
| f̃ (z)− 1| + 1

)
|γ(z)|

<
ε(z)

4
+
ε(z)

4

<
ε(z)

2
.

By Corollary 1, there exists an entire function ω having zeros of order on at zn and
near 1 on F. Multiplying by a constant, we may assume that ω is bounded on F and
|ω| > 1. Since F is a set of ε-approximation, there is an entire function ψ such that
for z ∈ F, ∣∣∣ψ(z)−

f

ω
(z)
∣∣∣ < ε

2|ω(z)|
.

Set g̃ := ωψ. Then |g̃ − f | < ε/2 on F and g̃ has zeros of order at least on at zn. Set
g := h + g̃. Then g is a holomorphic function on C \Z such that for each n, tn is a left
tail of g at zn and for z ∈ F it satisfies (2).

Corollary 4 Let F be a set of ε-approximation, ε ≤ 1 and {zn} an admissible sequence.
Further, let an j , n ∈ N, j = 0, 1, 2, . . . , jn, be complex numbers. Then for f ∈ A(F)
there exists g ∈ H(C) such that, for each z ∈ F,

| f (z)− g(z)| < ε(z),

and for j = 0, 1, 2, . . . , jn, n ∈ N,

g( j)(zn) = an j .
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Proof By the previous theorem, for

tn = an0 + an1(z − zn) +
1

2!
an2(z − zn)2 + · · · +

1

jn!
an jn (z − zn) jn ,

we can find g ∈ H(C) which satisfies the desired properties.

Applying Theorem 2 in Lemma 3 and Theorem 5, analogous results can be de-
duced for sets of uniform approximation F and canonical speeds ε.
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Mathématiques supérieures 26, Les Presses de l’Université de Montréal, 1968.
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