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A NOTE ON FRAGMENTABLE TOPOLOGICAL SPACES

TOSHIHIRO NAGAMIZU

We extend the results of N.K. Ribarska and A.V. Arhangel'skiT to the class of
strongly countably complete spaces. And we show another characterisation of
Eberlein and Radon-Nikodym compact spaces.

1. INTRODUCTION

All spaces considered in this paper are taken to be completely regular spaces. Jayne
and Rogers in [5] and Ribarska in [10, 11] introduced the following notation.

DEFINITION 1.1: Let (X, T ) be a space with topology T and let p be a metric on
X. (The metric topology induced by p need not be related to T in any way.) For each
positive e, (X,r) is said to be e-fragmented by p if, for each non-empty subset A of
X, there exists a T-open subset U of X such that {/ fl A ^ 0 and p-diam(U f\ A) ^ e.

We say that the space (X, T) is fragmented by p (or p-fragmented) if {X, T ) is
e-fragmented by p for each positive e.

The space X is said to be fragmentable if there exists a metric on X which frag-
ments X.

In [10], Ribarska gave a necessary and sufficient condition for a space to be a
fragmentable one (Theorem 2.8), and proved that a fragmentable compact Hausdorff
space is fragmented by some complete metric.

A compact Hausdorff space is said to be Eberlein compact (for short EC) if it is
homeomorphic to a weakly compact subset of a Banach space. A compact Hausdorrff
space is said to be Radon-Nikodym compact (for short RNC) if it is homeomorphic to a
weak* compact subset of a dual Banach space with the Radon-Nikodym property. We
know some properties and characterisations of EC and RNC [7, 8].

Arhangel'skii proved that a functionally complete compact Hausdorff space is an
Eberlein compact space [2]. All Eberlein compact spaces are fragmented by a lower
semi-continuous metric [8].

This paper consists of four sections and the introduction. In section 2 and 3, we
extend the results of Arhangel'skii and Ribarska to the class of the strongly count-
ably complete spaces (Theorem 2.9 and Corollary 3.10). And we give a necessary and
sufficient condition for a space to be a Namioka space (Theorem 3.5).
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In section 4 and 5, we show an another characterisation of EC and RNC.

In this paper, we use the following notations. R denotes the space of real numbers
with the usual topology and N = {1, 2, • • • }. Let X be a space, then CP(X) denotes
the space of all real valued continuous functions on X with the pointwise convergent
topology. If X is a compact HausdorfF space, then C(X) (respectively, C(X)* ) denotes
the space of all real valued continuous functions on X (resptively, dual Banach space
of C(X) ) with the norm topology. In particular for any subset V of C(X)*, (V,w*)

denotes a subspace of C{X)* with the weak* topology.

2. COMPLETE METRIC CASE

In this section, we use the definitions and the notations in [3] and [10] .

DEFINITION 2.1: A well-ordered family U = {U( | 0 ^ £ < &>} of subsets of the
space X is said to be a relatively open partitioning of X, if

(1) U0 = <f>;

(2) U( is contained in X\ ( \J Uv) and is relatively open in it for every

£, 0 <£<&,;
(3) X= U U(.

DEFINITION 2.2: Let W = {W( | 0 < £ ^ £0} be a well-ordered family of open
subsets of X. We say that W increases regularly, if the following conditions hold:

(1) W1=$;
(2) W( C Wv whenever £ < n;
(3) W( - |J Wv for every limit ordinal £;

(4) W(0=X.

Let U = { l / ( | O < £ < £ o } be a relatively open partitioning of X. Let us set
W( = |J V,, for every ordinal number £, 0 < £ < & • Then W(U) = {W( | 0 < £ < 6 }

is a regularly increasing family of open subsets of X.

DEFINITION 2.3: Let X be a space and U and V two relatively open partitionings
of X. We say that V is a refinement of U if the regularly increasing family W(U)
corresponding to U is contained in the regularly increasing family W(V) corresponding
to V .

We say that V is a strong refinement of U if V is a refinement of U and for
every element V of V there exists an element U of U with V C U.

PROPOSITION 2 . 4 . Let X be a space and U = {U( I 0 < £ < £o} a reiativeiy

open partitioning of X. If A is an open covering of X, then there exists a relatively
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open partitioning V of X such thai V is a strong refinement of TJ and for each V 6 V,
there is A G A such that V C A.

PROOF: Let us fix ( < (0. For each x £ U( there is Ax G A such that x G Az.

Then there exists an open set Vx such that x G Fx and T£ C ( U tf,) ("1 i4z .

Let us well-order the set U( — {xv | 0 < rj < t ^ } . Then U* = {U(v | 0 < rj < t](}
where

is a relatively open partitioning of U(, for which

and U^CX\(\JU().
«(

Hence F ^ is contained in U( ("1 AXtl. Let V = {U(v | 0 < ( < (0, 0 ^ V < V(}-

Then V is a relatively open partitioning of X which is as required. D

DEFINITION 2.5: A family U of subsets of the space X is said to be a a-relatively
oo

open partitioning of X if U = \J U n where U™, n G N, are relatively open partition-
n=l

ings of X.

U is said to separate the points of X if whenever x and y are two different points
of X there exists n such that x and y belong to different elements of the partitioning
U n .

In this case we say that X admits a separating a-relatively open partitioning.
oo

PROPOSITION 2 . 6 . Let X be a space and U = |J U n a separating tr-
n=l

relatively open partitioning of X.
If {An I n G N} is a sequence of open coverings of X, then there exists a separating

oo

a-relatively open partitioning V = \J V n such that V n + 1 is a strong refinement of
n=l

V n for each n G N and, moreover for each n G N and for each V G V n there exists
AeK such that VcA.

PROOF: By Proposition 2.4, for U 1 and Ai there exists a relatively open parti-

tioning V 1 of X such that V 1 is a strong refinement of U 1 and for each V G V1

there is A G Ax such that V C A. Suppose V n = {V£ \ 0 < £ < £„}, n ̂  1, is already

constructed. Then W n « = {V? D U%+1 | U%+1 G U n + 1 , 0 < r\ < r}n+1} is a relatively

open partitioning of V£. By Proposition 1.8 in [10], W n + 1 = {V£ n U%+1 | 0 ^ ( <
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£mO ^ r\ < 77n+i} is a relatively open partitioning of X and W n + 1 is a refinement
of V™. Then for W n + 1 and A^+i, by Proposition 2.4, there exists a relatively open
partitioning V n + 1 of X such that Vn + 1 is a strong refinement of V™ and, moreover,
for each V € VTl+1 there is A £ A«+i such that V C A. Since U is separating,

V = U v " is so- D
n=l

DEFINITION 2.7: Let {An \ n e N} be a sequence of open families in the space
X. The sequence {A« | n £ N} is said to be strongly countably complete if a decreasing
sequence {Fn | n £ N} of closed subsets of X has a nonempty intersection provided
that each Fn is contained in some An € An.

A space X is said to be strongly countably complete if there exists a strongly
countably complete sequence of open coverings of X.

Ribarska [10] proved the following theorem.

THEOREM 2 . 8 . The space X admits a separating a-relatively open partitioning
if and only if there exists a metric which fragments X.

In [10], Ribarska also proved that the compact fragmentable space X is fragmented
by some complete metric p and the topology generated by p is stronger than the original
topology on X.

Now we extend this result to the class of the strongly countably complete spaces.

THEOREM 2 . 9 . Let X be a strongly countably complete space. If X is frag-
mentable, then there exists a complete metric p on X such that X is p-fragmented
and the topology generated by p is stronger than the original topology on X.

PROOF: By Theorem 2.8, X admits a separating ©--relatively open partitioning of
X. Since X is a strongly countably complete space, there exists a strongly countably
complete sequence {A,, | n € N} of open coverings of X.

By Proposition 2.6, there exists a separating ^-relatively open partitioning U =
oo
(J U n of X such that U n + 1 is a strong refinement of U n for n 6 N, and moreover,

n=l

for each n € N and each U € U n there is A e A« such that F C A.
Then the metric p defined in the proof of Corollary 1.9 in [10] is a complete one.

Indeed, let {xn}SLi be a p-Cauchy sequence in X. Then for each m £ N there exists
a positive integer 71(771) with p(xic,xi) ^ 1/(TTI + 1) whenever k ^ n(m) and / ^ 71(771).
Then the set {xn \ n ^ n(m)} is contained in an element Um of U m . Since U m + 1

is a strong refinement of U m and Um+1 D Um ^ 0, we have Um+1 C Um. And by
the construction of U m , there exists an element Am of An, such that Um C Am.
Since {An | n 6 N} is a strongly countably complete sequence, there exists a point

00

x0 G 0 Um. It is easy to see that {xn}%Li is convergent to z0. U
m=l
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CLAIM. Let i £ X and A" be a closed subset of X which does not contain x. Then
there exists n e N a n d P e U " such that x G U, KD U = 0.

PROOF OF THE CLAIM:

If we assume that for every n the element Um of U n , which contains x, intersects
K, then {K D U£n | n E N} is a decreasing sequence of nonempty closed subsets of
X. Now for every n, there exists An G An such that K D £/£, C U?n C An. Since
{An I n £ N} is a strongly countably complete sequence, therefore there exists a point

OO j v

y G n (K D U?n 1. But x $• K and so x ^ y. Hence there exists a positive integer m

with y £ UQ which contradicts y G U^i C U^ .

BACK TO THE PROOF:

By the claim, it is easy to see that every open subset of X is />-open. Hence the
topology generated by p is stronger than the original topology on X. D

3. LOWER SEMICONTINUOUS METRIC CASE

Let X, Y and Z be spaces. A function / : X X Y —> Z is said to be separately
continuous if fx is continuous for each x £ X and fy is continuous for each y G Y,
where fx (respectively, /*) is a function on Y (respectively, on X) given by fx(y) =
f(x,y) (respectively, fy(x) = f(x,y)).

DEFINITION 3.1: A space X is said to be a Namioka space if the following condition
is satisfied for any compact space Y:

(*) for any separately continuous function / : X x Y —• R, there exists a dense Gs
subset A of X such that / is jointly continuous at each point of A x Y.

DEFINITION 3.2: Let X be a space and H a subset of C(X). H is said to be
equicontinuous at a point XQ of X if, for each e > 0, there exists a neighbourhood U
of x0 such that |/(zo) - f(x)\ < e for all / G H and all x G U.

If H is equicontinuous at each point of X, then H is said to be equicontinuous.

The following lemma is very important.

LEMMA 3 . 3 . [6] Let X be a space, x0 G X and let Y a compact space. Suppose
that the function f : X x Y —» R is jointly continuous at each point of {zo} X Y. Then
for each e > 0, there exists a neighbourhood U of XQ such that \f(x,y) — f(xo,y)\ ^ e
for all x GU and all y G Y.

This lemma means that if Y is a compact space and / : X X Y —* R is jointly
continuous at each point of {x} X Y, then the function F : X —» C(Y) defined by
F(x)(y) = f(x,y) for all x G X and all y G y , is continuous at x, and then, by
definition 3.2, {/" | y G Y} is equicontinuous at x.
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Let X be a space and Y a compact subset of CP(X). The function / : X x Y —> R
given by f(x,y) = y{x) is separately continuous. Hence by Lemma 3.3, if a function /
is jointly continuous at each point of {x0} X Y, then Y is equicontinuous at Xo •

Namioka [6] proved the following theorem.

THEOREM 3 . 4 . Let X be a strongly countably complete regular space. If H is
a compact subset of CP(X), then H is equicontinuous at each point of a dense Gg set
in X.

Now we prove that the above condition is a necessary and sufficient condition for
a space to be a Namioka space.

THEOREM 3 . 5 . Let X be a space. X is a Namioka space if and only if for any
compact subset Y of CP(X) there exists a dense Gs subset A(Y) of X such that Y
is equicontinuous at each point of A(Y).

PROOF: Let X be a Namioka space and Y a compact subset of CP(X). The
function f:X x Y —> R given by f(x,y) = y(x) is obviously separately continuous.
Then there exists a dense Gs subset A(Y) of X such that / is jointly continuous at
each point of A(Y) x Y. By Lemma 3.3 and by the definition of equicontinuity, Y is
equicontinuous at each point of A(Y).

Conversely, let Y be a compact space and / : X X Y —> R a separately contin-
uous function. Since the function <p:Y —* CP(X) given by <p(y) = fy is continuous,
then Y/ is a compact subset of CP(X) (where Yj = {/" | y G Y}"). By the as-
sumption of the theorem, there exists a dense Gs subset A(Yf) of X such that Yj
is equicontinuous at each point of A(Yf). Then / is jointly continuous at each point
(*o>2/o) of A(Yf) x Y. Because, for each e > 0 there exists a neighbourhood U of
x0 such that \p(x0) - / » ( x ) | < e/2 for all x 6 U and all fv G Yf, since Y, is
equicontinuous at each point of A(Yf). Since fxo is continuous on Y, there exists a
neighbourhood V of yo such that \fXo(yo) — fxo{y)\ < e/2 for all y € V. Thus we have
that \f(xo,yo) — f(x,y)\ < e for each point (x,y) of U x V. Hence X is a Namioka
space. D

The following proposition is easy to prove.

PROPOSITION 3 . 6 . Let X be a compact space. Then an equicontinuous family
Y of CP(X) is fragmented by the metric induced by the norm on C{X).

DEFINITION 3.7: [2] Let X be a space. A subset F of C{X) is said to be a
X-aeparating if whenever x and y are two different points of X there exists f of F
such that f(x) ± f(y).

X is said to be functionally complete if there exists a compact subset F of CP(X)
which is a JT-separating.
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We introduce the next notation.

DEFINITION 3.8: Let X be a space. If every closed subspace of X is a Namioka
space, then X is said to be a closed-hereditary Namioka space.

A metric p on the space X is said to be a lower semi-continuous (l.s.c.) if for each
e > 0, {(x,y) | p(x,y) < e} is closed in X x X.

THEOREM 3 . 9 . Let X be a space. IS X is a functionally complete closed-
hereditary Namioka. space, then X is fragmented by a l.s.c. metric.

PROOF: Let X be a functionally complete closed-hereditary Namioka space. Since
X is functionally complete, there exists a compact subset F of CP(X) which is a X-
separating. Let p be the metric on X defined by p(x,y) = sup{\f(x) — f(y)\ : / G F}
for all x and y in X. Clearly, p is a l.s.c. metric.

Now for any nonempty closed subset K of X, the function <p : K x F —* R defined
by <p(x, f) = f(x) is separately continuous. Since if is a Namioka space, there exists
a dense Gs subset A of K such that tp is jointly continuous at each point of A x F.
Since F is compact, by Lemma 3.3 for every x G A and every e > 0, there exists a
neighbourhood U of x in X such that \<p(x,f) - <p(x',f)\ < e/2 for all / G F and all
x' G UD K. This implies that aup{\f(x') - f(x")\ : x',x" G UHK} < e for all / G F,
that is, p-dia.m(U D K) < e.

Hence X is p-fragmented. The proof is complete. u

A strongly countably complete space is a Namioka space [6, 9]. Since every closed
subspace of a strongly countably complete space is also strongly countably complete,
every strongly countably complete space is a closed-hereditary Namioka. Hence, by The-
orem 3.9 we have the following corollary which is extention of the result of ArhageFsku
to the class of the strongly countably complete spaces.

COROLLARY 3 . 1 0 . Every strongly countably complete, functionally complete
space is fragmented by a l.s.c. metric.

4. EBERLEIN COMPACT SPACES

DEFINITION 4 .1 : [1] A Banach space E is said to be weakly compactly generated

(W.C.G.) if there is a weakly compact subset K of E such that JpK = E.

THEOREM 4 . 2 . [1, 2, 7] Let X be a compact space. The following statements
are equivalent:

(a) X is EC;
(b) X is functionally complete;
(c) C{X) is a W.C.G. Banach space;
(d) (V,w*) is EC, where Visa unit ball of C{X)* .
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DEFINITION 4.3: We say that the space (X, T) is a-fragmented by p if, for each
£ > 0,

n=l

where each X^ is e-fragmented by p.

THEOREM 4 . 4 . [4] Let X be a Cech-analytic space (particularly, a cr-compact

space) and p a l.s.c. metric on X. Then X is a -fragmented by p if and only if, for

each compact subset K of X, K is fragmented by p.

LEMMA 4 . 5 . If E is a W.C.G. Banach space, then (E*,w*) is functionally com-

plete.

PROOF: Let E is a W.C.G. Banach space. Then there exists a weakly compact
subset K of E such that JpK — E. The function (p : (E*,w*) -> CP(K) denned
by y?(/)(x) = f(x) is a continuous injection. Hence (E*,w*) is functionally complete
[2]. D

Now we get the following theorem.

THEOREM 4 . 6 . Let X be a compact space. Then the following statements are

equivalent:

(a) X is EC (that is, X is functionally complete).
(b) (C(X)*,10*) is functionally complete.

PROOF: By Theorem 4.2 and Lemma 4.5, (a) => (b) is clear, (b) =}> (a): As
functionally completeness is hereditary and X is regarded as a t»*-compact subset of
C(X)*, X is functionally complete. D

PROPOSITION 4 . 7 . Let X be a space. If X is functionally complete, then

there exists a l.s.c. metric p on X such that, for each compact subset K of X, K is

fragmented by p.

PROOF: Let X be functionally complete, then there exists a compact subset F of
CP(X) which is a X-separating. As in the proof of Theorem 3.9, let p be the metric
on X defined by p(x,y) = sup{\f(x) — /(y)| : / £ F} for all x and y in X. Clearly p

is a l.s.c. metric and for each compact subset Kol X, K is fragmented by p. D

Since (C(X)*,to* ) is a c-compact space, by Theorem 4.4, 4.6 and Proposition 4.7,
we have the following corollary.

COROLLARY 4 . 8 . If X is EC, then (C(X)*,w*) is a-fragmented by a l.s.c.

metric.
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5. RADON-NIKODYM COMPACT SPACES

THEOREM 5 . 1 . [7, 8] Let X be a compact space and p a l.s.c. metric on X.

Then the following statements are equivalent:

(a) X is RNC;
(b) X is fragmented by p;
(c) (V,w*) is RNC, where V is a unit ball of C(X)*.

Every EC and scattered compact space is RNC. X is a scattered compact space if

and only if (C(X)* ,w*) is <r-fragmented by the norm metric [7, 8]. We proved that if

X is EC, then (C(X)*,w*) is ^-fragmented by a l.s.c. metric (Corollary 4.8).

Conversely, if (C(X)*,w*) is (r-fragmented by a l.s.c. metric then, by Theorem

4.4, X is RNC.

Now we show the following theorem.

THEOREM 5 . 2 . Let X be a compact space. If X is RNC, then (C(X)*,w*) is
<r-fragmented by a l.s.c. metric.

PROOF: By Corollary 3.8 in [8], there is a norm bounded subset F of C(X) which

is a .^-separating and, for each countable subset A of F, X is (^-separable, where

dA(x,y) = sup{\f(x)-f(y)\:f£A}.

As in the proof of Theorem 5.6 in [8], we put * = U{»"1rn | n € N}. Then

by the Stone-Weierstrass theorem, the linear span of $ is norm-dense in C(X), and

therefore \t separates points of C(X)*. Let p be the metric on C{X)* denned by

p(u,v) = sup{\u(f) - v(f)\ : / € *} for all u,v in C(X)*. Then clearly p is a l.s.c.

metric and (V, w* ) is fragmented by p where V is a unit ball of C(X)* [8]. So (nV, ID* )

is fragmented by p for each n e N. Since C{X)* = \J{nV | n £ N}, (C(X)*,w*) is

<7-compact, hence Cech-analytic.

For each io*-compact subset K of C{X)*, there exists n G N such that K C nV,

therefore (K,w*) is p-fragmented. By Theorem 4.4, (C(X)*,w*) is ©--fragmented by

P. •
Now we get the following theorem.

THEOREM 5 . 3 . Let X be a compact Hausdorff space. The following statements

are equivalent.

(a) X is RNC (that is, X is fragmented by a l.s.c. metric).
(b) (C7(X)*,tu*) is a-fragmented by a l.s.c. metric.
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