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In this paper we shall give a definition of an analogue for Jordan algebras

of the classical notion of a Cartan subalgebra of a Lie algebra. This is based

on a notion of associator nilpotency of a Jordan algebra. A Jordan algebra 3

is called associator nilpotent if there exists a positive (odd) integer M such

that every associator of order M formed of elements of 3 is 0 (§2). If a, Z>e

-3 then we set Ra,b = RaRb~ Ra-b where Ra is the mapping x-*x a (product of

x and a) in 3 An element a is called associator nilpotent in -3 if all the

operators of the form Rai,a-j are nilpotent. We prove an analogue of EngeΓs

theorem on Lie algebras to the effect that a finite dimensional Jordan algebra

3 (with 1) over an infinite field is associator nilpotent if and only if every

element of 3 is associator nilpotent (Theorem 4). If $ is an associator nilpotent

subalgebra of the finite dimensional Jordan algebra 3 then the Lie algebra 2%(8)

of linear transformations in 3 generated by the linear transformations in 3 of

the form Rb.c, b, CG ® is nilpotent. We define a Cartan subalgebra of 3 to be

an associator nilpotent subalgebra $ of 3 such that the Fitting null component

3o of 3 relative to the nilpotent Lie algebra of linear transformations &$($)

coincides with ® (§5).

If βG 3 and dim 3 = n then we set 8a = U^ 3U (#«•<, α Λn = 0, ij= 0, 1,2,. . .}.

The element Λ G 3 is called associator regular in 3 if dim Sa is minimal. If

the base field is infinite then Sa is a Cartan subalgebra for any associator

regular element a (Theorem 6). If the base field is algebraically closed of

characteristic 0 then any two Cartan subalgebras are conjugate in a strong

sense (Theorem 7).

As applications of our results we obtain a formula for the generic trace
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and we give a proof of the trace criterion for separability of a finite dimensional

Jordan algebra, which is independent of the determination of the finite di-

mensional simple Jordan algebras over an algebraically closed field (§7). In

§ 1 we collect the results on Jordan algebras which are needed in the remainder

of the paper.

1. Preliminaries. In this paper all algebras are algebras over fields of

characteristic not two, all associative algebras are assumed to have identity

elements, and the usual conventions for such algebras will be adopted:

subalgebras will be assumed to contain 1, homomorphisms to map 1 into 1, etc.

Beginning with § 2 we shall adopt these conventions also for Jordan algebras.

However, we do not do this in the present section. We denote the product in

a Jordan algebra by a.b> so, the defining identities are a.b - b.a, (a'2.b).a = a'2.(b.a)

where az = a.a. These have the following consequences:

(x.a).(b.c) + (x.b).(a.c) + (x.c).(a.b)

= (x.{b.c)).a+(x.(a.c)).b+(x.{a.b)).c

((x.a).b).c + ((x.c).b
(2)

= (x.a). {b.c) + (x.b). {a.c) + (x.c) .(a.b).2)

If we denote the linear mapping x-*x.a by Ra then ίRa,Ra-J = 0 where

D4, Bl = AB-BA, and (l) and (2) are equivalent to

(10 LRa, Rb.cl + iRb, Ra.d + [i?c, Ra.bl = 0

(20 Ra Rb Re + Re RbRa + R(ax).b = Ra Rb.e + RbRa.c + RcRa.b.

Jordan algebras are power associative, that is, if we define ak by a1 = a, ak =

a'k~\a, k = 2, 3, . . . , then ak.aι = ak+ι. We recall also that if 3 is a Jordan

algebra over a field Φ and Π is an extension field of Φ then the extension algebra

Sn= Π(S)ΦS is Jordan.

Let 3 be a Jordan algebra with an identity element 1 and suppose 1 =
n

"Σβt where the a are orthogonal idempotent elements (#2 = 0/, 0/.£/ = O if ι#y).
1

Let 3, /= {xii\xn.ei = Xii} and 3/y= \xij\xij.ei = -g-*//= #/y.*;, if i*j= 1, . - - , n.

Then

2 ) The results stated in this section without proof or reference can be found in Albert
[2].
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(3) 3 = Σ®3«.

We call the 3/y = 3y/ the Peirce spaces of 3 relative to the orthogonal idem-

potents a and (3) the Peirce decomposition of 3 relative to these idempotents.

We have the following multiplication table for the Peirce spaces:

3 ,;<=3//, 3ι/.3// = o if i*j

(4) 3y. 3,7c 3y, a j c 3 l 7 + 3 - if /*y

3o . 3y*£3/*, $Ί. <SJk = 0, 3/y 3*/ = 0 if ί, i, *, / are unequal.

We shall call a Jordan (or associative) algebra 3 over a field 0 almost nil

if 3 has an identity 1 and 3 = 01 + ϊΐ where 5ΐ is a nil ideal. If 3 is a Jordan

algebra with 1 such that every element of 3 has the form acl + z where a e Φ

and 2 is nilpotent, then 3 is almost nil (Albert [3] p. 514, Jacobson [4],

McCrimmon [1]). This implies that if 3 is finite dimensional with 1 over an

algebraically closed field and 1 = Σ^/ where the eι are orthogonal idempotents
1

=* 0 and are primitive in the sense that we cannot write a = e\ + e" where

e'i^O, e'/^O and e'j e'i'-O, then the Peirce spaces 3// are almost nil Jordan

algebras: %Ί= Φei + %', % a nil ideal in 3« If 3 is finite dimensional then

the following three conditions on 3 are equivalent: (l) 3 is solvable (2) 3 is

a nil algebra (3) 3 is nilpotent, in the sense that there exists an integer iV"

such that every product of N elements (in any association) of 3 is 0. A finite

dimensional Jordan algebra contains a maximal solvable ideal ® called the

radical of 3. If 3 is finite dimensional and $ is a non-zero solvable ideal then

S contains an ideal fi" * 8 of 3 such that ί? 2cff' (Penico [1], p. 408).

A finite dimensional Jordan algebra is called semi simple if the radical

® = 0. The algebra 3/3 is semi-simple. If 3 is semi-simple then 3 has an

identity element and is a direct sum of simple ideals (Albert [3]). If 3 is a

finite dimensional simple Jordan algebra over an algebraically closed field Φ

then either 3 = 01 or 3 contains r> 1 primitive orthogonal idempotent elements

£/#0. Moreover, the Peirce spaces 3/y, i*h determined by these elements are

non-zero (Albert [3], Jacobson [4]).

Let 3 be an arbitrary Jordan algebra and let £(3) = ΦΘ 3 θ ( 3 Θ 3 ) θ (3

® 3 ® 3 ) θ ' " * be the tensor algebra based on the vector space 3, 9ϊ the

ideal in £(3) generated by all elements of the form
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a® a'2 - a'2® a

a'\ b + 2a<g>b®a-b®a'2-

where a, έ e 3 . The associative algebra U(3) = £(3)/3i will be called the

universal multiplication envelope of the Jordan algebra 3 3) If β e 3 we set

ar = tf + 9? in 11(3). 11(3) and the mapping a->ar have the following universal

mapping property: Let a -* a? be a linear mapping of 3 into an associative

algebra 3ί such that IV, β 2 p] = 0 and (β 2 i ) p + 2 β W = έV 2 p -f2β p (βi) p then

there exists a unique homomorphism of 11(3) into % such that </-></. It

follows from this that if $ is an ideal in 3 and $ is the ideal in 11(3) generated

by S then we have an isomorphism of &($/&) onto U(3)/$ mapping (a + fi)r,

« G 3 , into ar + 55 (cf. Jacobson, Lie Algebras, Th. 5.1 (4), p. 153). It is known

that 11(3) is finite dimensional if 3 is finite dimensional (Jacobson DO, p, 519),

Let 3 be a subalgebra of the Jordan algebra 3 ' and let Ra, β e 3 , be the

multiplication x->x.a in 3 ' Then a->Ra is a linear mapping of 3 into HomΦ(3',

30 and we have ZRa, Ra.H = 0 and 2 RaRbRa + /?«.».& = 2 i?c.#a.& + RbRa*- Hence

we have a homomorphism of 11(3) onto the subalgebra © of HomΦ(3/, 30

generated by the Ra, a e 3 Let 3 be finite dimensional and let if be a solvable

ideal in 3 Then we wish to show that the elements Rb, έ e ^ (acting in 30,

generate a nilpotent ideal in (£.4) In view of the homomorphism we have just

noted this will follow from the following

THEOREM 1. Let 3 be a finite dimensional Jordan algebra, ff a solvable ideal

in 3 Then the image JΓ of ® in 11(3) generates a nilpotent ideal in 11(3).

We shall prove this result by induction on the dimensionality dim ff and

we may assume $ # 0 . Let if' be an ideal of 3 properly contained in S such

that $'2<Ξ$'. Then Wr generates a nilpotent ideal 58 in 11(3?) and we have the

isomorphism noted above of 11(3/^0 onto U(3)/95. In view of this it suffices

to show that the image of ίf/ff' in 11(3/^0 generates a nilpotent ideal. Ac-

cordingly, it is enough to prove the theorem for the case $*2 = 0. In this case

we base the proof on the following two lemmas.

3 ) This is a slightly different definition from that of the universal associative algebra
of representations of £> given in Jacobson [2] and [3]. The modification has been made
to take care of the characteristic three case. The results of Jacobson [2] and [.3] carry
over without change to the present situation.

*) For characteristic 0 this is proved in Jacobson [2], p. 522.

https://doi.org/10.1017/S0027763000026416 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026416


CARTAN SUBALGEBRAS OF JORDAN ALGEBRAS 595

LEMMA 1. Let 3 be a finite dimensional Jordan algebra such that S'2 = 0.

Then the image 3 r ofQ in U(3) generates a nilpotent ideal.

Proof. Since any subspace of 3 is an ideal the inductive argument we have

just used gives a reduction to the case in which dim 3 = 1 . Then 3 = Φe

The general relation

(6) (a'\bY + 2 aΎar = br{aΎ + 2 ar(a.bY

in universal multiplication envelopes gives the relation (erY — 0 in 11(3). Since

3 r generates 11(3), er generates 11(3) in the present case. Hence it is clear

that 3 r = (dte)r generates a nilpotent ideal in 11(3).

LEMMA 2. Let 3 be a finite dimensional Jordan algebra, ff a non-zero ideal

in 3 such that ®'2 — 0. Let {eu e2y . . . , en) be a basis for 3 such that {eι, e2,

. . . , βm) is a basis for ®, k a positive integer. Then any monomial in 11(3) of

the form erj/j2 ejt in which k + m of the j's are in the range I = { 1 , 2 , . . . , m)

is a linear combination of monomials of the form e^e^t

m £;fc where zΊ, . . . ,

ik e /.

Proof. This is clear if l—k + m\ hence we may use induction on the

formal degree / of the monomial. Now suppose the first h subscripts j in the

given monomial M=ej1ej2 -e^ are in / but the A + 1-st subscript is not.

Then the assertion holds if h>k, so for a given / we may use a downward

induction on the integer h and we may assume h < k. Then M has the form

(7) •/• •/•

where e is one of the e, , z'e/, and the first displayed er in (7) occurs after

the h + 1-st place. Let 33 denote the space of linear combinations of monomials

of the form e^e^ £/fc where iu i2, . . . , ΰ e / . Suppose first that there

is just one erj between the indicated er in (7). Then (6) for α-e, b = βj gives

the relation ere)er - er(e.ejY. Since e.ej&® and e.ej = 0 if ej^ft substitution

of the relation just given in (7) and the induction hypothesis on / implies that

M e $ . Next assume that the indicated / in (7) are consecutive. We have

the following relation in universal multiplication envelopes which is a conse-

quence of (6) :

αΎcr= -crbrαr-((α.c).b)r + αr(b.c)r

(8)
b r { ) r r ( b ) r
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Setting b-c-e and a = ej where e) precedes the first er in (7) we obtain

e1

J-(er)2 = - {erferj + 2er(ej.e)r. A succession of replacements of this type shows

that MΞΞ ±M' (mod®) where Mf has formal degree /, has k + rn factors of

the form e\, i^I, and has h-\-2 such factors at the beginning of M'. The

induction on h can be invoked to conclude that M1 e 35. Hence M s E Finally,

suppose we have at least two erj between the displayed er in (7). Then we

can use (8) with c=e to show that M= -Mf (mod 35) where M' is obtained

from M by moving the second er two places to the left. A succession of

moves of this type shows that M= ±N (mod 58) where N is obtained from

M by moving the second er either next to the first one or to the position two

places after the first one. Then A ί e 8 by the first two cases. Hence M e s.β

in all cases.

We can now complete the proof of Theorem 1 for the case fi'2 = 0. By

Lemma 1 and the universal mapping property of IU$) there exists a positive

integer N such that the product of any N elements of the form er, e& $ is 0.

By Lemma 2 it follows that the product of any elements ar

t β e 3 , which

includes N+m (m - dim S) elements of $ is 0. This implies that if 33 is the

ideal in U(3) generated by $ r then 3J^m = 0.

2. Associator nil potent Jordan algebras. From now on we assume that

all the Jordan algebras under consideration are finite dimensional and contain 1.

The usual conventions for algebras with 1 are adopted. In particular, subalgebras

necessarily contain 1.

Let 3 be a Jordan algebra over the field Φ (finite dimensional with 1). If

a, by CG 3 we write [α, b, c] for the associator (a.b) .c- a.(b.c). This defines

a trilinear composition in 3 which can be iterated to define z-linear composi-

tions for any positive odd integer n. Let n be a positive odd integer, (alf α2,

. . . , an) an ordered set of elements a% e 3. Then we define an associator of

order n An{aι, . . . , an) inductively by Aiiai) = ai,

An(aιy . . . , an) = LAn^βi, > ^nx)t An2(anι+u . . > anL+n2\

Attiiam + nz + ly > ̂ «! + wa+«3^J

where n = niΛ niΛ-nz, m a positive odd integer and Anι( * •) is an associator

of order m. We shall call 3 associator nilpotent if there exists a positive odd

integer M such that every associator of order M formed of elements of 3 is 0.
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The minimum M with this property is called the index of associator nilpotency

of 3 It is clear that subalgebras, homomorphic images and direct sums of

associator nilpotent Jordan algebras are associator nilpotent. Also since the

higher associator compositions are multilinear it is clear that 3 is associator

nilpotent if and only if 3n = Π<8> Φ3 is associator nilpotent for any extension

field 77/ Φ. This remark will permit us to reduce considerations on associator

nilpotency to the case of an algebraically closed field. For these we have the

following important criterion.

THEOREM 2. A Jordan algebra over an algebraically closed field is associator

nilpotent if and only if it is a direct sum of ideals which are almost nil algebras.

Proof To prove the sufficiency it is enough to show than any almost nil

algebra is associator nilpotent. Assume 3 is almost nil: 3 = 01 -h 91 where 91

is a nil subalgebra. Since the higher associator compositions are multilinear

and since any higher associator involving 1 is 0, to prove associator nilpotency

it is enough to show that there is an odd integer M such that every associator

of order M of elements Zi e 91 is 0. This is clear since 51 nil implies that 9ΐ

is nilpotent. Conversely, assume 3 is associator nilpotent and let 3=Σ3/j7

be a Peirce decomposition of 3 relative to a set of orthogonal primitive

idempotent elements e/^0, i = 1, 2, . . . , r, such that Σ # = l Then every 3//

is an almost nil algebra with identity element £/. Let β/ G^/y, i*j. Then

\_a\j, βi, e[\ = (aij.ej) .ej - aij.(ei.ej) = j β y . Iteration of this gives

(10) C Πfl/y, β, , βj\ eu 0/3, - , eu ejl

Since 3 is associator nilpotent, k can be chosen so that the left-hand side is 0.

Hence an = 0 and so 3<7 = 0 if z' # j . Since 3» 3// = 0 for z' = j it is now clear

that the <J« are ideals and 3 = 3π ® 322 θ θ 3rr is a direct sum of almost

nil ideals.

We prove next the following necessary (but not sufficient) condition for

associator nilpotency.

THEOREM 3. // 3 is associator nilpotent then 3/3 is associative for @ the

radical of 3

Proof. Since $/5 is associator nilpotent it is enough to show that if 3
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is associator nilpotent and semi-simple then 3 is associative. Since a semi-

simple Jordan algebra is a direct sum of simple ideals we may assume 3*

simple. Then the center Γ of 3 is a field and -3 over Γ is central simple. Also

it is clear that 3 over Γ is associator nilpotent. Hence we may assume 3 is

central simple. Then 3Ω is simple for Ω the algebraic closure of the base

field. We have noted in § 1 that if dim 3 Ω > 1 , then 3Ω contains r>\ primitive

orthogonal idempotent £, #0 such that Σ Φ = 1. Also the Peirce spaces 3tf>

j , determined by the a are 3=0. Then [ \_aij, e ly ejl, e;, eβ e, , e/l =
/ 1 v *

VT/ aiJ*® ^ o r a'v"* 0 in 3ij. This contradicts the associator nilpotency of 3

Hence dim 3Ω = 1 so 3Ω is associative. Hence 3 is associative.

The following example shows that the converse of Theorem 2 is false.

Example. Let 3 be the Jordan algebra of triangular matrices (Q n) where

or, j9, r^Φ and the multiplication is a.b = -^-(άb + bd). The radical 3? = 0tei2

and 3 / ^ ^ ^ i i © ^ 2 2 where 0,7, /, y = 1, 2 is the usual set of matrix units. Thus

3V 9ϊ is associative. On the other hand, 3 is not associator nilpotent since

U0i2, 1̂1, 2̂2] = χ£i2 This example shows also that the associator nilpotency of

an ideal $ and of 3/$ does not imply the associator nilpotency of 3

3. Analogue of EngeΓs theorem. If a, Z>e 3 we write Ra,b for RaRb — Ra.b

where Ra is the linear mapping x-^x.a in 3 We have #/?*,a = {x.a).b - xλa.b)

= ΠΛΓ, β> W. Hence if 3 is associator nilpotent then there exists an integer M

such that RaubiRaτ.bt' ' 'RaM,bM = 0 for all β, , ^ G 3 In particular, Ra,b is

nilpotent for all fl^ej We shall now call a an associator nilpotent element

relative to 3 if « G 3 and i?α.ί,α.^ is nilpotent for all /, j = 0, 1, 2, . . . . If dim

= w this will hold if and only if Raί,a-jn = 0, i,j = 0, 1, . . . . For any a we

define the subspace

(11) 8a={z<Ξj\z(Ra4.ar*)n = 0, f, J = 0, 1, 2, . . . }.

Then β is an associator nilpotent element relative to 3 if and only if ga = 3

The following result is an analogue of EngeΓs theorem on Lie algebras.

THEOREM 4. // Φ is infinite then 3 over Φ is associator nilpotent if and only

if every a e 3 is associator nilpotent relative to 3

Proof. The hypothesis amounts to assuming the identities (χRyitny^)n = 0 in
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0 where n is the dimensionality of $. We now observe that if the base field

is infinite then any polynomial identity p(xl9 x2, . . . , xr) = 0 which is valid in

a finite dimensional algebra 3 is valid also for any extension algebra $ π .

Here we let (uίf . . . , « » ) be a basis for Q, hence for Qn, and we take xj =

"ΣzjiUi where ξji are indeterminates. Thus the Xj are elements of Q^\jt) and

p(xly . . . , xr) = Σpi(ζjk) Ui. If (̂<2i, . . . , ar) = 0 for all aj e 3 then pAccjk) = 0

for all choices of the αy* in <0. It follows that pi(ξjk) = 0 and consequently

ί(βi, . . . , βr) =0 for all aj&Qn. In particular, we see that our hypothesis

on 3 carries over to $n for any extension field Π/Φ. It therefore suffices to

prove the theorem for algebraically closed Φ. Let Φ\_a~\ be the subalgebra of

3" generated by a and let 2a be the space of Φ-linear combinations of the

elements Rb,c, b, CG Φ[_a}. Since every element of Φ[_ά\ is a linear combination

of the powers a'\ it is clear from the definition of Rb.c that every Rb,c with b, c

in Φ{_ά] is a linear combination of the operators RaΛ,a.i. We recall also the

operators RΛΛ commute. Hence the operators RaJ.a.j commute and consequently

the hypothesis implies that every Rb,c is nilpotent if b, c ε Φ[_a}. Now let elt

e2, . . . , er be a set of orthogonal primitive idempotents in $ such that ej*0

and Σ^i = l and let 3 = Σ 3 i 7 be the corresponding Peirce decomposition of

$. Take β = Σα/0/ where the α, are distinct in Φ. Then the ei^Φ\_d\ so the

foregoing result shows that Rei,e3 is nilpotent. As before, let i*j and let β/; G

3/y. Then aijRei,ej = [fly, β, , ^] = -jtf/y. Since i?βtfβj, is nilpotent this implies

that α/y = 0. Hence every 3Vy = 0 for /^y and 3 = Σ θ « i s a direct sum of

almost nil ideals. Hence 31 is associator nilpotent by Theorem 2.

4. Fitting decomposition relative to an associator nilpotent subalgebra.

We recall that if S is a nilpotent Lie algebra of linear transformations

acting in an n ( < oo ) dimensional vector space 9JΪ then we have the Fitting

decomposition 2Jΐ =-9J?oθ2Jίi relative to 2 where 9J?0 = {z\zAn = 0, i ε S ) and

3J?i = Π 9Ή2*' where 2* is the ideal generated by 2 in the enveloping associative

algebra ©(2) of 2. 9Ήo and % are called respectively the Fitting null and one

component of W relative to 2 (Jacobson, Lie Algebras, p. 39). These are

invariant subspaces relative to 2 (and 2*) and 3JΪ0(2*)n = 0. We remark that

% can be characterized as any complementary subspace of ϊft, which is invariant

under 2. For, if % is such a complement then 9tt = 9Jί0θ9l and 91 has the

Fitting decomposition 9foθ9ΐi where % is the Fitting null component of 3ΐ
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relative to S Since 9J1O is the Fitting null component of 9Ή relative to 2, fto = 0

so 9ί = ί i iCf i by the definition of the 1-components. It follows from the direct

decompositions that 3t = 9Jϊi. Let 77 be an extension of the base field Φ of 9Jΐ

and 2. Then 2n is a nilpotent Lie algebra of linear transformations in ΊϊlΏ.

Since W2*) r t = 0 and every element of (2n)* is a P-linear combination of the

elements of 2* it is clear that 9??oπ is the Fitting null component of Ίfln relative

to 2n. It is clear also that *Km is the Fitting one component of ΊRΏ relative

to 2n.

Now let $ be a subalgebra of the Jordan algebra $. We let 2$(ff) denote

the Lie algebra of linear transformations in Q generated by the mappings Rb,c,

b, CG ®. We have the following theorem.

THEOREM 5. Let $ be an associator nilpotent subalgebra of a Jordan algebra

$. Then the Lie algebra of linear transformations 2$ ( $) is nilpotent and if S-

So® 34 is the Fitting decomposition of $ relative to 2& ®) then So is a subalgebra

and Oo ίJi^xJi Moreover, if the base field is algebraically closed then So— Π 3b

where $>a is defined by (11).

Proof. It is clear from our remarks that it is enough to prove the result

assuming the base field Φ is algebraically closed. Then, by Theorem 2, $ = Σ © Φ

where β, = Φei + %• is an ideal in ff and et is the identity of ff, . Then

ft = Σft/ is the radical of ff. Hence i?2, z e 5ίi, is in the radical of the enveloping

associative algebra of the linear transformations Rb> 6 e $ , acting in $. It

follows that Rztb, z&% i e ^ , is in this radical. Consequently, the mappings

R2tb, zeϋί, δ ε S , are in the radical S of the enveloping associative algebra

®(2s(Λ)) of the Lie algebra 2s(ί?). Let 3 = Σ θ v be the Peirce decomposition
1=5.?

of 3 relative to the eι (1 = Σ ^ ) Then RiQ$u and every $tj is an invariant

subspace of 3 relative to the Rbf 6 e ff = Σ f t Hence to prove that 2^(^) is

a nilpotent Lie algebra of linear transformations it suffices to show that for

every /, j the restrictions Rb

J

tC of Rb.c, bt c in ff, generate a nilpotent Lie algebra

of linear transformations acting in Qij. Write b = Σ ( f o ^ + 2*), c = Σ ( Γ^Λ + K;*),
A: M

βk, Tk^Φ, Zk, Wk^Wk. Then i?δ)ί = Σ f t Λ , « i + 5 where 5 G S . We have

R%c = "ΣβkrιRek.eι + StJ where, in general, Aυ denotes the restriction of A to

3ij. One checks that Rιik,eι is a scalar. Hence R%c = juyl'7 4- S'y where ^ e Φ.

Since the 5ι> are contained in a nilpotent ideal of (SiSgίff))*'' it is clear that
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the Rli}C generate a nilpotent Lie algebra of linear transformations acting in

Qij. This proves that 2$($ ) is nilpotent. We now observe that RιJk,eί = 0 so

Rilc = SίieΞ&ii. Since S" is nilpotent it follows that φ / C ^ the Fitting null

component of 3 relative to 2a(ff). Hence Σ3V/^3o. Since Π 3b^% we have

oΏΣSή> Next choose 6 = Σfr£i so that the /3/ are distinct. Then

i7 is a decomposition of 3 into ϋg(d)ffl) invariant subspaces. Since

so that 2?β/tβ,e 2s(0M) and &/#*.«, = 3/./ if ί>Λ 33<=Σθ//. Hence

Π3&cΣ3f/i. This and the earlier inclusion imply that Π & = % = Σ3V/.

Since Σ3V/ is invariant under 2s($) and 3f = 3 o θ Σ & 7 , we see that Σ 3 , i is
ι<.7 «j «ί

the Fitting one component of $ relative to 2s(ff). Thus 3o = Σ 3 » i s a sub-

algebra and -So θ i ^ ^ i follows from the properties of the Peirce decomposition.

5. Cartan subalgebras of Jordan algebras. We have noted (§2) t h a t if Q

is an associator nilpotent Jordan algebra then there exists an integer M such

that RaiΛRa2,br ' 'RaMfbM-= 0 for «/, bi^Q. It follows that 2^(^) is nilpotent

(cf. Theorem 5) and $ coincides with the Fitting null component of $ relative

to 28(3^ This implies that if S is an associator nilpotent subalgebra of an

arbitrary Jordan algebra 3* then ^ c 3 0 the Fitting null component of 3 relative

to the Lie algebra 2s(®). We now give the following

Definitions. A Cartan subalgebra of a Jordan algebra $ is an associator

nilpotent subalgebra ® of -3 such that ff = % the Fitting null component of 3

relative to 281 $). An element a e 3 is associator regular in 3 if dimSα is minimal.

The proofs of Theorem 5 and Theorem 2 show that if the base field is

algebraically closed then 8 is a Cartan subalgebra of 3 if and only if ί? = Σ3v*

where 3 = Σ3V/ is the Peirce decomposition of $ relative to a set of non-zero

primitive orthogonal idempotents eι such that Σ<?/ = 1. Hence the existence of

Cartan subalgebras is clear in the algebraically closed case. We shall need a

stronger result on the imbedding of associator regular elements in Cartan

subalgebras.

Let («i, u2, . . . , un) be a basis for $/Φ, S= Φ(ξu ?2, . . . , ?«) the field of

rational expressions in n indeterminates £, . The element x= Σ?/^/ of QΞ is

called a generic element of ^ Let Mυ(x) denote the nxn matrix of the

linear transformation Rxj.xj
n in $ Ξ relative to the basis (uίf u2) . . . , un).

The entries of Mtj(x) are polynomials in the £'s and the same is true of the
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matrix M(x) of n columns which is obtained by writing the M1J\x) in a single

column of n x n matrices in some order. Let r be the rank of M(x) and set

l = n- r. Then / is the dimensionality of the subspace 3χ in 3 Ξ (cf. (11)) and

it is clear that />1 since 1 e 3χ> Thus r < n. If a e 3> a = Σ«ι«/, «/ e #> and

the rank r' of the matrix M{a) obtained by the specialization ξi->aι in MKx)

does not exceed r. Hence dim,3α = ̂ - r'>/. If Φ is infinite we can choose

the as so that rf = r, dim 3a = /. Hence in this case β is associator regular if

and only if dim 3a = /. Also we see that these elements form a Zariski open

subset of 3 We can now prove

THEOREM 6. If a is an associator regular element of a Jordan algebra 3 oυer

an infinite field Φ then 3a is a Cart an subalgebra of 3 containing a).

Proof Let a be an associator regular element of 3 and consider the as-

sociative, hence associator nilpotent sub-algebra Φ\_aΛ of 3 It is clear that

the Fitting null component of 3 relative to 2^(ΦLd\) coincides with the subspace

3a. Hence we have a Fitting decomposition 3 = 3αθ3i where 3* is the Fitting

one component of 3 relative to S^(^M). Suppose the basis (uίy u2, . . . , un)

for 3 is chosen so that (uif u2, . . . , uι) is a basis for 3a and (#/n, . . . , un)

is a basis for 3i Since 3a is a subalgebra of 3 and 3i.3«^3i the matrices

Mij(b\ btΞ3a, have the form

(12) (Nh'{b) ° )

where N'J(b) is the matrix of the restriction of Rb>\b-jn to 3a and P'\b) is the

matrix of the restriction of Rb-\b j n to 3i relative to the indicated bases. We

have N'J\a) = 0 and the rank of the matrix P{a) which is a column of the

matrices Pυ\a) is n — l. We shall now show that every Nt7(b)=0, b<^3a

Suppose this is not the case and let b be an element of 3a such that one of

the matrices Nυ\b) has a non-zero entry p. Consider the elements ξa tφ in

3φ(̂ ,τn> ζ, V indeterminates. Choose a non-zero minor of order n — l in P{a)

and consider the same minor for ξa ¥φ. Its value is a polynomial /i(£, -η)

such that /i(l, 0) *F0. Also the entry in the column of matrices N'J\ξa + τib)

which is in the same position as p is a polynomial /2(£, η) such that /2(0, 1)

= p^0. Hence /i(£, τ?)/2(£, T?)A=O and we can choose a,@&Φ such that

/i(α, j9)/8(α, β) #0. Then it is clear that if c = aa + βb then the rank of M(c)
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exceeds n-ly contrary to the regularity of a. Hence we have proved that Nυ\b) = 0

for every b e 3a and every /, j - 0, 1, 2, . . .. It follows from Theorem 4 that

3a is an associator nilpotent subalgebra of $• Since βeSa it is clear that the

Fitting null component of $ relative to 2^(3α) which is Π 3b is contained in

3a- Since the reverse inequality is general we see that 3a coincides with the

Fitting null component relative to S^Sα). Hence 3a is a Cartan subalgebra.

6. Conjugacy of Cartan subalgebras. We recall that if a, b are in a Jordan

algebra $ then Da,b - LRaRJΊ is a derivation (Jacobson [1], p. 867). Hence

the linear mappings of the form Σ Daι, b{ are derivations. We call such deriva-

tions inner. These constitute an ideal ©' in the derivation algebra T O ) . We

recall also that if the base field is of characteristic zero and 2 is any Lie

algebra of linear transformations in a finite dimensional vector space then the

Lie algebra 2 of the intersection G of all the algebraic groups of linear trans-

formations whose Lie algebras contain 2 satisfies 2Ξ>2 (Chevalley [1] II, pp.

158-169, Hochschild [1]). Evidently G is an irreducible algebraic group. In

particular, let / be the algebraic group determined in this way by the Lie

algebra ©' of inner derivations of $. Since the group A of automorphisms of

$ is an algebraic group whose Lie algebra is *&{$;) (Chevalley [1], II, p. 179)

it is clear that IΩA. Hence the elements of / are automorphisms. We shall

call these the inner automorphisms of the Jordan algebra $ (f°r characteristic

0 only). We shall now prove the following analogue of classical conjugacy

theorem for Cartan subalgebras of Lie algebras.

THEOREM 7. Let ^ be a finite dimensional Jordan algebra {with l) over an

algebraically closed field of characteristic 0. Then if $i and $2 are Cartan subal-

gebras of $ there exists an inner automorphism s of $ such that @l = $2.

Proof. Our proof will be patterned after Chevalley's proof of the Lie algebra

result (Chevalley [1] III, pp. 215-219). We show first that the orbit Ωι of Si

under / contains a Zariski open subset of 3. We note first that since $1 and

/ are irreducible, Ωι is epais, that is, it is irreducible and contains a non-vacuous

open subset of its Zariski closure (Prop. 3, p. 193 of Chevalley [1], III). Hence

our assertion will follow by showing that the dimensionality of the irreducible

set Ωι is n = dim $. We shall do this by showing that there exists an open
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subset of $i such that the tangent space % to Ω\ at any a in this set is Q. It

is known that the tangent space % to Ω\ at any βGft contains $14- αΦ' where

ύ®' is the set of images of the element α under the elements D e Φ ' (Chevalley

[1], III Prop. 2, p. 192). Now, we have a set of orthogonal idempotents eu

e2, . . , er such that if 3 = Σ 3 J 7 is the corresponding Peirce decomposition,
i-3

then ffi = Σ3/Ϊ- Also $a = 0e, + 9ί, where 9fc is a nil ideal in Qa. Let 0i be
r

the open subset of fiΊ of elements fl = Σ α / ^ + 2/, ai^Φ, Zi^%, such that
1

/-Λ;) = 0̂. Let αeOi and consider #[i?^i?αfci] where &^F/and

We have

tf [i?*fc RahJ = ( Σ a/ ft + *;) Lffβfc i?βfclί

(13) = (α* ejfe + 2*) ίRek Rak3 + (α/ ft

Hence the tangent space % to Ωι at a contains (<*& - aι)aki +

where Ski is the linear operator (ak - act) 1-f-i^^-zi). It is clear from the

multiplication table (4) for Peirce spaces that Ski maps $*/ into itself. Also

Zk — zι is nilpotent, hence Ri{zk-zi) is nilpotent (Albert [2], p. 550). Since ock

- aι*0 it is clear that Ski has an inverse. Hence Ski maps Qki onto itself and

consequently SΓ contains 3 /̂ It now follows that 5£ = $• Since J2i is the orbit

of ffi it is clear that $1 contains a simple point of Ωv. Since fi\ is irreducible

the open subset 0i contains a simple point. Hence dim Ωx = n and £i contains

a non-vacuous open subset of $• In the same manner we have that the orbit

Ω2 of the Cartan subalgebra $2 contains a non-vacuous open set. Since the set

of associator regular elements is Zariski dense we see that Ωi Π Ω2 contains an

associator regular element b. Hence there exist inner automorphisms si, S2

such that &<=$?. Then SbΏ®? and since 8b and $f* are Cartan subalgebras,

gδ = if**- = $f2. Hence ^ 2 = $ί where 5 = si52"
1 e= /.

7. Applications to generic traces. Separability criterion. As in § 5, let

ΛΓ= Σ ί ί ^ i be a generic element of $ over 0 where (uif u2, . . . , &«) is a basis
1

and the ξ's are indeterminates. Then one knows that the minimum polynomial

mx(λ) of x in 3fΞ> S = Φ(?i, . . . , ξn), has the form λm - oM) I"1'1 + +

( - l)mσm{ξ) where σj(ξ) = ΰjiξi, . . . , ξn) is a homogeneous polynomial of degree

y in the f's. If fl = Σ * / ^ s 3 where the ca^Φ then the specialization ξi-^oci

gives a polynomial m^Q) = Λm- σί(ac)λm~1+ such that mΛ(β)=0.
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polynomial mjλ) is called the generic minimum polynomial of a} T(a) ==</i(α)

and N(a) ΈΞ σm(a) are the generic trace and norm respectively of α. The degree

m of mx(λ) is called the degree of the algebra. The mapping α->T(α) is

linear and the bilinear form T(α, b) = T(α.b), which is called the generic trace

form, is symmetric and associative in the sense that T(a.b, c) = T(ay b.c) (Tits

Πl], p. 35). The generic minimum polynomial (hence the trace and norm) are

unchanged under extension of the base field. If Φ is infinite then the set of

elements a such that the generic minimum polynomial ma(λ) coincides with

the minimum polynomial μa(λ) of a is a non-vacuous Zariski open subset of

S' The same is true of the subset of associator regular elements. Hence

Theorem 6 implies that for infinite base fields there exist Cartan sub-algebras

satisfying the hypotheses of the following

THEOREM 8. Let $ be a Jordan algebra over an algebraically closed field Φ

and let $ be a Cartan subalgebra ofQ which contains an element which is associator

regular and has generic minimum polynomial equal to its minimum polynomial.

Suppose ί = Σ θ ϊ ί where ft is an ideal in $ of the form Φβi + 31/ where βi is the

identity element of ft and 3ΐ/ is a nil ideal in ft. Let 3 = ̂ ® 3 i be the Fitting
r

decomposition of $ relative to £g(β). If a^^ we write a = Σ(α/£/ + Zi) 4- #i where

cti^Φ, Zi G % and a± e $i. Then the generic trace

(14)

where m is the maximum index of nilpotency of the elements of 9t, . Also the

degree of Q is Σ » ι .

Proof. If 6 e $ let m&,®(λ) be the generic minimum polynomial of b as

element of $. Then nib,&(λ) is a factor of mb(λ), and since $ contains elements

c such that mc(λ) = μc(λ)t it follows that rnb,®(λ) =mb(λ). If b = *Σ(aiβi + Zi)

and the minimum polynomial of Zi is λmi then it is clear that μb(λ) = L.C.M.

(λ — ai)mi. If we introduce a generic element for $ relative to an appropriate

basis it follows easily that nib,®(λ) = ΠU - oci)n% where m is the maximum index

of nilpotency of the elements of %. Hence the generic trace of b relative to

ίϊ, T&b) = *Σni<xi. Since mb,®(λ) =ntb(λ) we have T{b) = Σ»ιαi. Next we

recall that 3fi = Σ 3u where 3f = Σ Su is the Peirce decomposition of $ relative

to the βi. Also we have seen that if β/ G ^ , i*?j, then an is an associator.

Hence T(atj) =0 since T(a, b) = T{a.b) is an associative form. It follows that
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if a = Σ (α, ft + zϊ) 4- «i, «i in 3<i, then 7 W = 0. Then T(ά) = T(δ), 6 = Σ U ft
1

+ 2») and so T{a) =Σwία f .

If the base field is of characteristic 0 then the conjugacy theorem implies

that every Cartan subalgebra £ of a Jordan over a field of characteristic 0

satisfies the hypothesis of Theorem 8. We conjecture that this holds also for

Jordan algebras over infinite fields of characteristic p^Q.

We recall that a Jordan algebra $ is called separable if Qa is semi-simple

for every extension field 77 of the base field Φ of Q. It is known that Q is

separable if and only if the generic trace bilinear form T(a, b) is non-degenerate

(Jacobson [6], p. 41). The proof of the sufficiency of this condition is a

general one. On the other hand, the known proof of the necessity is based

on the classification of simple Jordan algebras over an algebraically closed held

and consists of a case by case verification for these. We shall now give a

general proof of this half of the theorem based on the formula of Theorem 8

and on a notion of a reduced Jordan algebra and reduced trace which we now

define.

We shall call a Jordan algebra 3 reduced if 3 contains a Cartan subalgebra
r

$ which is a direct sum of almost nil ideals. Then ® = Σ θ Λ, where ff, is
1

an ideal of the form 0ft + 9ίί, ef = eit %• is a nil ideal in ft. If 3 = £ © & is
Γ

the Fitting decomposition of S relative to SgCίt) and α = Σ U ft: + *1

91/, β i e ^ i , then we define the reduced trace t(a) = Σtf*. Clearly, a->t{a) is

a linear function on $. We wish to show that t vanishes on all associators,

or, equivalently, t(a, b) *. t(a.b) is an associative bilinear form on ^ As in

the algebraically closed case (proof of Theorem 5), ξ$ι = Σ 3 V where 3 =

is the Peirce decomposition of Q relative to the

LEMMA. If aij e 3to, ί =̂  i, ίA^̂  β/y = α(ft + ̂  ) + Zi + zy where a e 0, 2̂  e 9ljfe.

Proo/. We have β/j e3 !»+3yy so Λ/y = αft+β^y + ̂  + zy, α, β £ (ί, 2̂  E %.

Then («/y. ft). «/y = α^. (ft. «/y) gives

1

(aft + z) .aij = y (aft + βej 4- 2/ + zj) .aij.

Hence (aft - βej) .an = (zy - z, ) .βy so 2(zy - z, ) .β/y = (a - 0) «#. Since zy - z, is

nilpotent, 7?2j-z is nilpotent. Hence the last equation gives (α-/3)nβ/y = 0 for
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some positive integer n. Then a = β since this holds also if dij = 0. Thus

atj = oc (βi + ej) -h Zi + ZJ.

We can now prove

THEOREM 9. The reduced trace from t{a, b) = t(a.b) is associative^

Proof. We have to show that t(La, b, cl) = 0 for all a} b, CG Q. It is enough

to prove this for a, b, c in the Peirce spaces 3V/ relative to the a. Now t(aij)

= 0 if aij&Sij, i*j, and the product of three elements of Peirce spaces is 0

or is in a Qij, i*j, except in the following cases: I. the three elements are

in an an, II. two of the elements are in a Qij, i*j, and the third is in Qa,

III. one element is in 3u"> the second in $jk and the third in $/& where i, j\ k

are unequal. We note also that in any commutative algebra one has the

"Jacobi identity" : La, b, c] + Ό>, c, a\ + [c, a, b~\ = 0 for associators. Hence it

suffices to verify that t([_ay b, c)2 - 0 in the following cases:

I. /(Πfliϊ, hi, en!) =0, an, bu, Gi^Sa

IF. t(Zaij9 by, Cjjl) =0 an, bijGQij, CjjeQjj

II". tίldij, ex, bijl) = 0 , dij, bij<=Qij, cjj^Qjj

III. iH[tf,y, 6yA, Cjfe,-]) = 0,

The first of these is clear since [#/,-, bu, Gil^% for ̂ 7 = aei + Zi, bti = ββi + z'if

en = rei + z", Zi, z'i, zϊ<=yii. For IF we note that we have the relation

(15) Ldij, bijy Cjjl = {ej - ed . {(aij.Cjj) .bij)

which is obtained from (2) by taking X=CJJ, a = aij, b^bij, c-ej. By Lemma

1, (aij. CJJ) .bij = a(e\ 4- ej) + 2, -f ZJ, Zk G % . Multiplication by £/ - ^ gives

a(ej - ed -f 2y - zi. The reduced trace of this element is 0. Hence t{\jiij, bij, Cjjl)

= 0. For IF' we use the relation

(16) latj, CJJ, bijl.ei = 0

which is obtained from (15) by multiplying by eι. By Lemma 1, {.aij, CJJ, bijl

= a(ei + ej) + zi 4 ZJ, Zk e % . This and the last equation give a = 0. Hence

t(Ldij, CJJ, bijl) =0. For III we note that we have

(17) ίaij, bjk, Ckil = (ek - β/). ((aij.CM).bjk)

Cf. Albert j.3], p. 522.
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which is obtained by setting x = an, a - CM, b = bjk, d = βk in (2). By the lemma,

(aij.Cki) .bjk = cc(ej + βk) + Zj -f Zk9 z\ e %. Then the result follows as for II'.

If f(a, b) is any symmetric associative bilinear form on a Jordan algebra

S then it is clear that the radical Q1 of / is an ideal. In particular, this holds

if 3 is reduced and / = / the reduced trace form. It is clear from the definition

of t that Σ ϊ ϊ ^ ΰ 1 and that t(eif ed = t(eϊ) = 1 which shows that t*0 and Q1

* $. Now suppose 3s is simple over an algebraically closed field. Let $ be a

Cartan subalgebra of $ satisfying the hypotheses of Theorem 8. Then the

formula (14) for the generic trace T(a) is valid. Also $ is a direct sum of

almost nil ideals so we have the reduced trace t(a) defined by the Fitting

decomposition relative to 2$(ff). The relation Q1 # $ for the radical 31 relative

to t and the simplicity of 3 imply that 3 1 = 0. Hence t is non-degenerate.

Also Σ9tι = 0 since Σ S t / c ^ 1 . Hence (14) becomes T(a) = Σα» which coincides

with the definition of t(a). Hence we see that the generic trace form T of a

simple Jordan algebra over an algebraically closed field is non-degenerate. We

can now prove

THEOREM 10. A Jordan algebra is separable if and only if the generic trace

bilinear form T where T{a} b) = T(a.b) is non-degenerate.

Proof. We omit the proof of sufficiency since a general proof of this is

given in Jacobson [6], p. 41. Also, the argument given in this reference shows

that to prove the necessity it is enough to suppose Q is simple over an alge-

braically closed field. Hence the proof is complete by what we have just shown.
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