CARTAN SUBALGEBRAS OF JORDAN ALGEBRAS
N. JACOBSONY
Dedicated to the memory of Tapasi Nakavama

In this paper we shall give a definition of an analogue for Jordan algebras
of the classical notion of a Cartan subalgebra of a Lie algebra. This is based
on a notion of associator nilpotency of a Jordan algebra. A Jordan algebra &
is called associator nilpotent if there exists a positive (odd) integer M such
that every associator of order M formed of elements of § is 0 (§2). Ifa, be
S then we set R, 5= R,Ry— Rap where R, is the mapping x—x+a (product of
z and @) in 3. An element a is called associator nilpotent in & if all the
operators of the form R, 4 are nilpotent. We prove an analogue of Engel’s
theorem on Lie algebras to the effect that a finite dimensional Jordan algebra
& (with 1) over an infinite field is associator nilpotent if and only if every
element of & is associator nilpotent (Theorem 4). If & is an associator nilpotent
subalgebra of the finite dimensional Jordan algebra 3 then the Lie algebra 23(&)
of linear transformations in & generated by the linear transformations in & of
the form Rs,c, b, ce & is nilpotent. We define a Cartan subalgebra of § to be
an associator nilpotent subalgebra & of 3 such that the Fitting null component
3o of § relative to the nilpotent Lie algebra of linear transformations £3(®)
coincides with & (§5).

If ae 3 and dim 3 = » then we set 3, = {z€ 3|2(Rs4,44)"=0,4,7=0,1,2,. . . }.
The element ae & is called associator regular in § if dim 3, is minimal. If
the base field is infinite then 3, is a Cartan subalgebra for any associator
regular element a (Theorem 6). If the base field is algebraically closed of
characteristic 0 then any two Cartan subalgebras are conjugate in a strong
sense (Theorem 7).

As applications of our results we obtain a formula for the generic trace
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and we give a proof of the trace criterion for separability of a finite dimensional
Jordan algebra, which is independent of the determination of the finite di-
mensional simple Jordan algebras over an algebraically closed field (§7). In
§1 we collect the results on Jordan algebras which are needed in the remainder
of the paper.

1. Preliminaries. In this paper all algebras are algebras over fields of
characteristic not two, all associative algebras are assumed to have identity
elements, and the usual conventions for such algebras will be adopted:
subalgebras will be assumed to contain 1, homomorphisms to map 1 into 1, etc.
Beginning with §2 we shall adopt these conventions also for Jordan algebras.
However, we do not do this in the present section. We denote the product in
a Jordan algebra by a.b, so, the defining identities are a.b = b.a, (a2.b).a=a”.(b.a)

where a®=a.a. These have the following consequences:

(x.@).(b.¢c) + (x.0).(a.c) + (x.c).(a.b)
=(x.(b.c)).a+ (x.(a.c)).b+ (x.(a.b)).c
((x.a).0).c+ ((x.¢).b).a+x.((a.c).b)
= (x.a).(b.c) + (x.0).(a.c) + (x.0).(a.b).”)

(1)
(2)

If we denote the linear mapping x—x.a by R, then [R, R,:1=0 where
[A, Bl= AB—- BA, and (1) and (2) are equivalent to

(1') [Ra, Ro.cl1+ [Rb, Racl+ [Re, Rap]=0
(2’) Ra RsR: + R: Ry Ra + R(a.C).b = RaRp.c + RbRa.c + ReRysb.

Jordan algebras are power associative, that is, if we define a* by a’=a, at=
k! We recall also that if & is a Jordan
algebra over a field @ and T is an extension field of @ then the extension algebra
Bn=1I®.% is Jordan.

Let 3 be a Jordan algebra with an identity element 1 and suppose 1=

a*la k=2,3,...,then a*a'l=a

;‘.e,- where the ¢; are orthogonal idempotent elements (e’ = e;, ¢i.¢; =0 if i ).

Let 3ii= {xii|xii.ei= 2} and Sy5= {x;jlx;j.e,: % xij=xij.ej} ifixj=1,...,n.
Then

?) The results stated in this section without proof or reference can be found in Albert

[2].
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(3) J=2>20 3.

=)

We call the 3= 3j; the Peirce spaces of & relative to the orthogonal idem-
potents ¢; and (3) the Peirce decomposition of & relative to these idempotents.

We have the following multiplication table for the Peirce spaces:

i, 3. Jy=0if ixj
4 Sij- 3 S Sij, 7S B+ g if ixj

Jis. 3C Jik, Jii. Fje =0, 4.3 =0 if 4, j, k, [ are unequal.

We shall call a Jordan (or associative) algebra 3 over a field @ almost nil
if & has an identity 1 and § =01 + Nt where N is a nil ideal. If & is a Jordan
algebra with 1 such that every element of & has the form al+z where as @
and z is nilpotent, then & is almost nil (Albert [3] p.514, Jacobson [4],
McCrimmon [1]). This implies that if § is finite dimensional with 1 over an
algebraically closed field and 1= z:}e,- where the ¢; are orthogonal idempotents
%0 and are primitive in the sense that we cannot write ¢ = ¢} +e¢/' where
etx0, ¢ %0 and ¢+’ =0, then the Peirce spaces 3;; are almost nil Jordan
algebras: Gi;i= ®e¢; + Wi, W a nil ideal in 3. If § is finite dimensional then
the following three conditions on & are equivalent: (1) & is solvable (2) 3 is
a nil algebra (3) § is nilpotent, in the sense that there exists an integer N
such that every product of N elements (in any association) of $is 0. A finite
dimensional Jordan algebra contains a maximal solvable ideal & called the
radical of Q. If § is finite dimensional and f is a non-zero solvable ideal then
! contains an ideal & % & of & such that ®°c &’ (Penico [1], p. 408).

A finite dimensional Jordan algebra is called semi-simple if the radical
S=0. The algebra 3/< is semi-simple. If & is semi-simple then & has an
identity element and is a direct sum of simple ideals (Albert [3]). If $is a
finite dimensional simple Jordan algebra over an algebraically closed field @
then either §= @1 or J contains > 1 primitive orthogonal idempotent elements
¢i=0. Moreover, the Peirce spaces Jij, ¢ % j, determined by these elements are
non-zero (Albert [3], Jacobson [41).

Let 3 be an arbitrary Jordan algebra and let T =0D FJ (IR D (F
Q3@ 3P - - - be the tensor algebra based on the vector space J, N the

ideal in T(¥) generated by all elements of the form

https://doi.org/10.1017/50027763000026416 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026416

594 N. JACOBSON

aQa’—a’Qa

(5) 3 2
a’b+2abRa-bQa*—2aRab,

where ¢, b= §. The associative algebra U(J) = (/N will be called the
universal multiplication envelope of the Jordan algebra 3.° If ac= § we set
d=a+N in W(F). U(J) and the mapping a4 have the following universal
mapping property: Let a—a” be a linear mapping of & into an associative
algebra U such that [@®, ¢**1=0 and (a®b)" +2a’b°a" = b°a’** + 2 a°(a.b)® then
there exists a unique homomorphism of U(3) into U such that " —a°. It
follows from this that if & is an ideal in § and B is the ideal in U(3) generated
by & then we have an isomorphism of 1(3/f) onto U(3)/B mapping (a+ &),
ac G, into "+ B (cf. Jacobson, Lie Algebras, Th. 5.1 (4), p. 153). It is known
that 11(3) is finite dimensional if & is finite dimensional (Jacobson [2], p. 519).

Let § be a subalgebra of the Jordan algebra 3’ and let R,, a€ 3, be the
multiplication x—»x.a in §'. Then a— R, is a linear mapping of & into Home(S’,
') and we have [R;, Rs:1=0 and 2 RoRsRs+ Rarv=2 RzRab+ RyRs:. Hence
we have a homomorphism of U(J) onto the subalgebra € of Home(S!, 3')
generated by the R;, a= & Let & be finite dimensional and let ® be a solvable
ideal in 8. Then we wish to show that the elements Ry, be & (acting in &),
generate a nilpotent ideal in €.* In view of the homomorphism we have just

noted this will follow from the following

TueoreM 1. Let § be a finite dimensional Jordan algebra, & a solvable ideal

in 3. Then the image & of & in W(S) generates a nilpotent ideal in N(S).

We shall prove this result by induction on the dimensionality dim & and
we may assume £=x0. Let & be an ideal of § properly contained in & such
that £°c®. Then & generates a nilpotent ideal B in U(S) and we have the
isomorphism noted above of U(3/&’) onto U(3)/BV. In view of this it suffices
to show that the image of /& in U(3/8®') generates a nilpotent ideal. Ac-
cordingly, it is enough to prove the theorem for the case ®2=0. In this case
we base the proof on the following two lemmas.

3) This is a slightly different definition from that of the universal associative algebra
of representations of J given in Jacobson [2] and [3]. The modification has been made
to take care of the characteristic three case. The results of Jacobson [2] and (3] carry
over without change to the present situation.

Y) For characteristic 0 this is proved in Jacobson [2], p. 522.
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LemMa 1. Let 3 be a finite dimensional Jordan algebra such that J°=0.
Then the image ¥ of & in UW(S) generates a nilpotent ideal.

Proof. Since any subspace of § is an ideal the inductive argument we have
" just used gives a reduction to the case in which dim §=1. Then J=0e.
The general relation

(6) (@®0) +2a0d =b"(a®)"+2d (a.b)

in universal multiplication envelopes gives the relation ()%= 0 in U($). Since
8" generates U(3), ¢ generates U(3) in the present case. Hence it is clear
that §” = (®e)” generates a nilpotent ideal in U($).

LemMmA 2. Let 3§ be a finite dimensional Jordan algebra, & a non-zero ideal
in X such that &°=0. Let (e, e, ... ,es) be a basis for & such that (e, e,

.. «,em) 15 a basis for 8, k a positive integer. Then any monomial in W(S) of

the form €}, - + €}, in which k + m of the j's avein the vange I={1,2, . .. , m}
is a linear combination of monomials of the form e} e, - ~ef,* + + where iy, . . .,
el

Proof. This is clear if /=%k+m; hence we may use induction on the
formal degree / of the monomial. Now suppose the first / subscripts j in the
given monomial M = ej.e},- - +¢}, are in I but the %+ 1-st subscript is not.
Then the assertion holds if 42>k, so for a given / we may use a downward

induction on the integer % and we may assume 2 <k. Then M has the form
(7) N Ry A

where ¢ is one of the ¢, =1, and the first displayed ¢” in (7) occurs after
the % + 1-st place. Let ¥ denote the space of linear combinations of monomials
of the form e}, el,* + -ej.- -+ where &, &, ..., ikl Suppose first that there
is just one ¢; between the indicated ¢” in (7). Then (6) for a=e¢, b=¢; gives
the relation e'¢je” =¢"(e.¢))". Since ¢.¢;= & and e.¢; =0 if ¢;j = { substitution
of the relation just given in (7) and the induction hypothesis on / implies that
Me®. Next assume that the indicated ¢” in (7) are consecutive. We have
the following relation in universal multiplication envelopes which is a conse-
quence of (6):
abcd=—-cba —{a.c).b) +d(b.c)

(8) , ,
+b8(a.c) +c(a.b).
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Setting b=c=¢ and a=e¢; where ¢} precedes the first ¢ in (7) we obtain
eile’)’= —(e")’e;+2e"(¢j.e)”. A succession of replacements of this type shows
that M= = M' (mod B) where M' has formal degree /, has &+ m factors of
the form ¢}, i€ 1, and has 4+ 2 such factors at the beginning of M'. The
induction on % can be invoked to conclude that M'= 8. Hence M = ®. Finally,
suppose we have at least two ¢ between the displayed ¢” in (7). Then we
can use (8) with ¢=e¢ to show that M= — M' (mod B) where M' is obtained
from M by moving the second ¢” two places to the left. A succession of
moves of this type shows that M= = N (mod ) where N is obtained from
M by moving the second ¢” either next to the first one or to the position two
places after the first one. Then Ne B by the first two cases. Hence M e D
in all cases.

We can now complete the proof of Theorem 1 for the case §°=0. By
Lemma 1 and the universal mapping property of U(®) there exists a positive
integer N such that the product of any N elements of the form e¢”, e & is 0.
By Lemma 2 it follows that the product of any elements a’, a &, which
includes N+m (m =dim &) elements of & is 0. This implies that if B is the
ideal in (%) generated by & then B ™ =0.

2. Associator nilpotent Jordan algebras. From now on we assume that
all the Jordan algebras under consideration are finite dimensional and contain 1.
The usual conventions for algebras with 1 are adopted. In particular, subalgebras
necessarily contain 1.

Let & be a Jordan algebra over the field @ (finite dimensional with 1). If
a, b, ce§ we write La, b, c] for the associator (a.b).c—a.(b.c). This defines
a trilinear composition in & which can be iterated to define »-linear composi-
tions for any positive odd integer n. Let » be a positive odd integer, (a, a.,

., ax) an ordered set of elements ;= &  Then we define an associator of

order n An(ay, ..., as) inductively by A(a;) = ay,
(9) An(al, e ey dn) = [Anl(al, “ . oey anl), Anz(am+1, « o ey an1+n2)y
Ana(anﬁnﬁl, ey Auivngtmy )]

where # = n, + n. + n3, n; a positive odd integer and A,(- ) is an associator
of order n;. We shall call & associator nilpotent if there exists a positive odd

integer M such that every associator of order M formed of elements of & is 0.
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The minimum M with this property is called the index of associator nilpotency
of . It is clear that subalgebras, homomorphic images and direct sums of
associator nilpotent Jordan algebras are associator nilpotent. Also since the
higher associator compositions are multilinear it is clear that J is associator
nilpotent if and only if 3n= I ®03 is associator nilpotent for any extension
field II/®. This remark will permit us to reduce considerations on associator
nilpotency to the case of an algebraically closed field. For these we have the

following important criterion.

TurEOREM 2. A Jordan algebra over an algebraically closed field is associator

nilpotent if and only if it is a dirvect sum of ideals which are almost nil algebras.

Proof. To prove the sufficiency it is enough to show than any almost nil
algebra is associator nilpotent. Assume J is almost nil: § = 01+ N where N
is a nil subalgebra. Since the higher associator compositions are multilinear
and since any higher associator involving 1 is 0, to prove associator nilpotency
it is enough to show that there is an odd integer M such that every associator
of order M of elements z;= M is 0. This is clear since N nil implies that N
is nilpotent. Conversely, assume & is associator nilpotent and let 3 = ;3;,
be a Peirce decomposition of & relative to a set of orthogonal prim—i;ive
idempotent elements ¢;%0, i=1,2, ..., 7 such that >l¢;=1. Then every 3y
is an almost nil algebra with identity element ¢;. Let aij= Gij, i=j. Then
Laij, e, ej1=(aij.e).e; — aij.(ei.ej) = %a,-,-. Iteration of this gives

x

(10) Lo Laij, e, ¢, ei, e, ..., e, e]= (%)kaz’j-

Since & is associator nilpotent, # can be chosen so that the left-hand side is 0.
Hence ai;=0 and so $i; =0 if /=7 Since $:.8y; =0 for i =7 it is now clear
that the 3y are ideals and § = 3D 3D <« - DG, is a direct sum of almost
nil ideals.

We prove next the following necessary (but not sufficient) condition for

associator nilpotency.

TrreoreM 3. If & is associator nilpotent then /S is associative for & the
radical of .

Proof. Since 3/ is associator nilpotent it is enough to show that if &
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is associator nilpotent and semi-simple then & is associative. Since a semi-
simple Jordan algebra is a direct sum of simple ideals we may assume &
simple. Then the center I" of & is a field and & over I'is central simple. Also
it is clear that & over I' is associator nilpotent. Hence we may assume § is
central simple. Then (g is simple for 2 the algebraic closure of the base
field. We have noted in §1 that if dim $,>1, then 3q contains > 1 primitive
orthogonal idempotent ¢; %0 such that >le;=1. Also the Peirce spaces &ij,
i% 7, determined by the e¢; are 0. Then L[** :[aij, e, ¢, e, ¢j1+ -+ +e;, ej]1=
(%) ai; >0 for ai; %0 in §y;. This contradicts the associator nilpotency of &.
Hence dim §o =1 so (g is associative. Hence  is associative.

The following example shows that the converse of Theorem 2 is false.
ar
0p
a, B, r€ O and the multiplication is a.b= %(ab +ba). The radical N = Gey,

Example. Let & be the Jordan algebra of triangular matrices ( ) where

and 3/N = @ey; ® Oex, where ¢ij, i, j=1, 2 is the usual set of matrix units. Thus
/N is associative. On the other hand, & is not associator nilpotent since
Jew, e, €xl= 711—612. This example shows also that the associator nilpotency of

an ideal ® and of &/& does not imply the associator nilpotency of J.

3. Analogue of Engel’s theorem. If g, b= & we write Rs 5 for R.Rs — Rap
where R, is the linear mapping x> x.2in §. We have xRs5 = (x.a).b — x.(a.b)
=[x, a,b]. Hence if & is associator nilpotent then there exists an integer M
such that Rg, 5,Ra,.5,° * * Ray, 6, =0 for all a;, b= 3. In particular, Rass is
nilpotent for all a, 6= . We shall now call @ an associator nilpotent element
relative to & if ae & and R, g is nilpotent for all 7,7=0,1,2,.... If dim
= this will hold if and only if Rgi,.i"=0, i,7=0,1,.... For any a we
define the subspace

(11) Ba={z2eJ|2(Rgi,0)* =0, ¢,7=0,1,2, ...}

Then a is an associator nilpotent element relative to & if and only if 3, =3

The following result is an analogue of Engel’s theorem on Lie algebras.

TueoreMm 4. If O is infinite then § over O is associator nilpotent if and only

if every a< & is associator nilpotent relative to .

Proof. The hypothesis amounts to assuming the identities (xR, 7y,)"” =0 in
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& where 7 is the dimensionality of & We now observe that if the base field
is infinite then any polynomial identity p(xi, %, ..., %) =0 which is valid in
a finite dimensional algebra & is valid also for any extension algebra S$a.
Here we let (#1, ..., us) be a basis for & hence for 3n, and we take x; =
>1%jiu; where &j; are indeterminates. Thus the x; are elements of Joz,) and
Ky oo, Ky) =Z‘}pi($jk) wi. If plas, . .., ay) =0forall g, € & then pi(ajx) =0
for all choices of the ajr in @. It follows that p;(§jz) =0 and consequently
play, . ..,a)=0 for all ;€ Sn. In particular, we see that our hypothesis
on & carries over to 3n for any extension field I7/0. It therefore suffices to
prove the theorem for algebraically closed @#. Let @[a] be the subalgebra of
& generated by a and let Q; be the space of @-linear combinations of the
elements Rs.¢, b, c€ ®[al. Since every element of ®[a] is a linear combination
of the powers a”, it is clear from the definition of Rs . that every Rp,  with b, ¢
in @®[a] is a linear combination of the operators Ra.iq.i. We recall also the
operators R,: commute. Hence the operators R,.;,.., commute and consequently
the hypothesis implies that every R, is nilpotent if 5, c= 0[a]. Now let e,
e, ...,e be a set of orthogonal primitive idempotents in & such that ej=0
and >lei=1 and let &= }:_.f}f,- be the corresponding Peirce decomposition of
8. Take a= > aie Wherthhe a; are distinct in @®. Then the ¢ € @[a] so the
foregoing result shows that R.; ., is nilpotent. As before, let /% j and let a;;
Sij. Then aijRe;,e; = Laij, e, ¢j1= “}f aij. Since R, e, is nilpotent this implies
that a;;=0. Hence every ;=0 for ixj and =23 is a direct sum of

almost nil ideals. Hence & is associator nilpotent by Theorem 2.

4. Fitting decomposition relative to an associator nilpotent subalgebra.

We recall that if ¢ is a nilpotent Lie algebra of linear transformations
acting in an # ( < o )dimensional vector space Wt then we have the Fitting
decomposition M =MD M, relative to Q where Mo ={2|24"=0, A € &} and
My = NME* where ¥ is the ideal generated by Qin the enveloping associative
algebra €(Q) of & M, and M, are called respectively the Fitting null and one
component of M relative to { (Jacobson, Lie Algebras, p. 39). These are
invariant subspaces relative to € (and 8*) and My(L*)*=0. We remark that
M, can be characterized as any complementary subspace of M, which is invariant
under Q. For, if M is such a complement then M =MD N and N has the
Fitting decomposition M@ N1 where Ny is the Fitting null component of N
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relative to Q. Since M, is the Fitting null component of M relative to ¢, N =0
so N =M <M by the definition of the 1-components. It follows from the direct
decompositions that M =IM,. Let I7 be an extension of the base field @ of M
and €. Then ¢n is a nilpotent Lie algebra of linear transformations in My.
Since My(L*)” =0 and every element of (2n)* is a P-linear combination of the
elements of * it is clear that Myn is the Fitting null component of My, relative
to €n. It is clear also that M;n is the Fitting one component of Mp relative
to Ln.

Now let & be a subalgebra of the Jordan algebra & We let Q3(&) denote
the Lie algebra of linear transformations in & generated by the mappings Rs,c,

b, ce 8. We have the following theorem.

THEOREM 5. Let & be an associator nilpotent subalgebra of a Jordan algebra
3. Then the Lie algebra of linear transformations Qx(&) is nilpotent and if &=
S$0D S is the Fitting decomposition of & relative to Q3 §) then Sy is a subalgebra
and $0.$31S 34, Moreover, if the base field is algebraically closed then 80:02@8”
where 3q is defined by (11).

Proof. 1t is clear from our remarks that it is enough to prove the result
assuming the base field @ is algebraically closed. Then, by Theorem 2, = > 1D R;
where £ =0e¢;+MN; is an ideal in & and ¢ is the identity of R;. Then
N = >N is the radical of §. Hence R;, z< N, is in the radical of the enveloping
associative algebra of the linear transformations Rs, b€ &, acting in & It
follows that Rz,», z&M, b= K, is in this radical. Consequently, the mappings

R.p, ze N, be R, are in the radical € of the enveloping associative algebra

G(Qx(R)) of the Lie algebra 3(®). Let &= 2‘3,',- be the Peirce decomposition
of & relative to the ¢ (1=>)e;). Then S?;Q'E-}i,' and every 3 is an invariant
subspace of 3 relative to the Ry, b= 8 => 8. Hence to prove that Qg(®) is
a nilpotent Lie algebra of linear transformations it suffices to show that for
every i, j the restrictions R;,’ ¢ of Rpc, b, cin &, generate a nilpotent Lie algebra
of linear transformations acting in ;. Write 6 = Ek]({?kek 4 21), ¢ = > (rrer + we),
Bk, TkE O, 2k, we € Ne.  Then Rp,c = >, Be1iRep,e, + S where Se &, ' We have
R;Z =SBk RY, o+ SY where, in general, A7 denotes the restriction of A to
Si;.  One checks that RY ,, is a scalar. Hence R;;{c = 1;;17 + S¥ where ;< 0.
Since the Sj; are contained in a nilpotent ideal of €(2g(R))” it is clear that
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the R’},’:C generate a nilpotent Lie algebra of linear transformations acting in
8. This proves that Qg(&) is nilpotent. We now observe that R .,=0 so
Ry .=S"=3" Since S" is nilpotent it follows that 3;< 3, the Fitting null

component of & relative to 23(®). Hence 213 < 3o  Since m?SbQ &, we have
beE§

bQ@SbQSOQES‘“’. Next choose &= >)B;e; so that the 3; are distinct. Then
J= ':2317 is a decomposition of & into ¢g(@Ld]) invariant subspaces. Since
= mEb] so that Re,e, € 23(0061) and 8 Rese,= Jij if i %7, 3,©>13:. Hence
bQ@ B3> %i. This and the earlier inclusion imply that b@}‘ B35 =Gy =>13i.
Since >3, is invariant under ¢g(®) and J= Jo® g‘,f};j, we see that ?T_}S] is
the Filt:i]ng one component of & relative to 2g(&). l ‘jThus So=2>13u is :1 sub-

algebra and S;.3 < Sy follows from the properties of the Peirce decomposition.

5. Cartan subalgebras of Jordan algebras. We have noted (§2) that if &
is an associator nilpotent Jordan algebra then there exists an integer M such
that Rg, 5 Ra.,b,* * * Ray, b, =0 for a;, b, 3. It follows that 23(J) is nilpotent
(cf. Theorem 5) and & coincides with the Fitting null component of & relative
to @3(&).  This implies that if & is an associator nilpotent subalgebra of an
arbitrary Jordan algebra & then <& the Fitting null component of § relative
to the Lie algebra Qx(8&). We now give the following

Definitions. A Cartan subalgebra of a Jordan algebra & is an associator
nilpotent subalgebra & of & such that & = G the Fitting null component of &
relative to €3(®). An element a = § is associator vegular in § if dim 3, is minimal.

The proofs of Theorem 5 and Theorem 2 show that if the base field is
algebraically closed then & is a Cartan subalgebra of J if and only if & = > G
where &= 253‘,-]- is the Peirce decomposition of {§ relative to a set of non-zero
primitive o;zilogonal idempotents ¢; such that >)¢;=1. Hence the existence of
Cartan subalgebras is clear in the algebraically closed case. We shall need a

stronger result on the imbedding of associator regular elements in Cartan

subalgebras.
Let (#;, #s, ..., %) be a basis for /0, E=0(¢,, &, ..., &) the field of
rational expressions in 7 indeterminates £;. The element x= > %iu; of Sg is

called a generic element of & Let M7(x) denote the »xn matrix of the
linear transformation Ry...,” in 3z relative to the basis (u, #s, . . ., un).

The entries of M%7(x) are polynomials in the #'s and the same is true of the
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matrix M(x) of n columns which is obtained by writing the M“(x) in a single
column of # x» matrices in some order. Let » be the rank of M(x) and set
I=n—7. Then [ is the dimensionality of the subspace 3 in Sz (cf. (11)) and
it is clear that [>1 since 1€ 3,. Thusr<xn. If a€ S, a= S aiu;, aic O, and
the rank 7' of the matrix M(a) obtained by the specialization £ —a; in M(x)
does not exceed ». Hence dim 3,=# —7'>[. If @ is infinite we can choose
the a’s so that 7' =7, dim 3,=/ Hence in this case a is associator regular if
and only if dim 3,=/  Also we see that these elements form a Zariski open

subset of & We can now prove

THEOREM 6. If a is an associator regular element of a Jordan algebra & over

an infinite field © then 3q is a Cartan subalgebra of & containing a).

Proof. Let a be an associator regular element of & and consider the as-
sociative, hence associator nilpotent sub-algebra ®[a] of & It is clear that
the Fitting null component of § relative to 85(®@Lal) coincides with the subspace
Bs. Hence we have a Fitting decomposition &= 3,® 3, where 3, is the Fitting
one component of & relative to {x(@[al). Suppose the basis (u., ua, . . ., #n)
for & is chosen so that (#,, u», ..., #;) is a basis for 3, and (1, ..., #n)
is a basis for $. Since 3; is a subalgebra of & and $4.3,= 3y the matrices
M7(b), b= 3,, have the form

(N"f'(b) 0 )

(12) 0 P

where N7(b) is the matrix of the restriction of Ryi,5" to 8, and P7(d) is the
matrix of the restriction of Rss,s»" to &y relative to the indicated bases. We
have N7(a) =0 and the rank of the matrix P(a) which is a column of the
matrices P7(a) is n—1. We shall now show that every N7(4) =0, b€ 3.
Suppose this is not the case and let & be an element of 3, such that one of
the matrices N”7(5) has a non-zero entry p. Consider the elements &a + 7b in
So,m, &, » indeterminates. Choose a non-zero minor of order »—1 in P(a)
and consider the same minor for £a +%b. Its value is a polynomial fi(£, 7)
such that £1(1, 0) 0. Also the entry in the column of matrices N Y(ea+b)
which is in the same position as p is a polynomial f2(%, ) such that 7(0, 1)
=px0. Hence fi(& 9)fi(8, 7) %0 and we can choose «, € @ such that
fila, B)fila, B) 0. Then it is clear that if ¢=aa+ b then the rank of M(c)
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exceeds 7 — [, contrary to the regularity of . Hence we have proved that N “(b)=0
for every b= 3, and every 4,7=0,1,2, . ... It follows from Theorem 4 that
3. is an associator nilpotent subalgebra of & Since a = 34 it is clear that the

Fitting null component of & relative to €x!3,) which is M 3 is contained in
b3,
3a. Since the reverse inequality is general we see that 3; coincides with the

Fitting null component relative to 2g(3,). Hence 3, is a Cartan subalgebra.

6. Conjugacy of Cartan subalgebras. We recall that if @, b are in a Jordan
algebra 3 then Dgs=[R,R>] is a derivation (Jacobson [1], p. 867). Hence
the linear mappings of the form X Dg,, s are derivations. We call such deriva-
tions inner. These constitute an ideal © in the derivation algebra ©(J). We
recall also that if the base field is of characteristic zero and Q is any Lie
algebra of linear transformations in a finite dimensional vector space then the
Lie algebra § of the intersection G of all the algebraic groups of linear trans-
formations whose Lie algebras contain Q satisfies €2 (Chevalley [1] II, pp.
158-169, Hochschild [11). Evidently G is an irreducible algebraic group. In
particular, let I be the algebraic group determined in this way by the Lie
algebra ©' of inner derivations of . Since the group A of automorphisms of
& is an algebraic group whose Lie algebra is D( &) (Chevalley [1], II, p. 179)
it is clear that I A. Hence the elements of I are automorphisms. We shall
call these the inner automorphisms of the Jordan algebra & (for characteristic
0 only). We shall now prove the following analogue of classical conjugacy

theorem for Cartan subalgebras of Lie algebras.

TureoreMm 7. Let & be a finite dimensional Jovdan algebra (with 1) over an
algebraically closed field of characteristic 0. Then if & and K are Cartan subal-

gebras of X there exists an inner automorphism s of & such that £ = K.

Proof. Our proof will be patterned after Chevalley’s proof of the Lie algebra
result (Chevalley [1] III, pp. 215-219). We show first that the orbit &; of &
under I contains a Zariski open subset of & We note first that since &, and
I are irreducible, 2, is épais, that is, it is irreducible and contains a non-vacuous
open subset of its Zariski closure (Prop. 3, p. 193 of Chevalley [1], III). Hence
our assertion will follow by showing that the dimensionality of the irreducible

set 2, is n=dim 3. We shall do this by showing that there exists an open
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subset of £ such that the tangent space ¥ to £2; at any a in this set is & It
is known that the tangent space T to 2, at any a € 2; contains & + a®' where
a®' is the set of images of the element ¢ under the elements D ®’ (Chevalley
[1], 1UI Prop. 2, p. 192). Now, we have a set of orthogonal idempotents e,
e,...,e such that if § = gi};j is the corresponding Peirce decomposition,
then & =>8:. Also Sy =l(;;,~+ N; where N; is a nil ideal in .  Let 0, be
the open subset of & of elements a:%r__‘,me;+z;, a0, zie N, such that
‘H(m —a;)%0. Let a=0; and consider a[Re,Ra,] where 2=/ and aw < Su.
\;’]e have
alRe, Ra, ] = (X aiei +z)[Re, Rad
(13) = (arer + 21) [ Re, Ral + (aser + 2:) [ Re, Ray]

= i— (ak —ar) au + % (26— 21) . akt.

Hence the tangent space T to £ at a contains (ax — a)ak + 2(2k — 21).ak = GSk
where Sy is the linear operator (ar— ai)l+ Rpz-z. It is clear from the
multiplication table (4) for Peirce spaces that S. maps 3 into itself. Also
2¢— 2 is nilpotent, hence Ri,-z, is nilpotent (Albert [2], p. 550). Since as
—a;=0 it is clear that Sg has an inverse. Hence Sk maps G onto itself and
consequently ¥ contains Sx. It now follows that T = 3. Since £, is the orbit
of & it is clear that # contains a simple point of £2,. Since & is irreducible
the open subset 0, contains a simple point. Hence dim 2, =# and £, contains
a non-vacuous open subset of §. In the same manner we have that the orbit
£, of the Cartan subalgebra R, contains a non-vacuous open set. Since the set
of associator regular elements is Zariski dense we see that £;N £, contains an
associator regular element 5. Hence there exist inner automorphisms s;, s;
such that 5 &. Then 3,28 and since 35 and & are Cartan subalgebras,

Bp= 8= 8. Hence f = & where s=s;57' I.

7. Applications to generic traces. Separability criterion. As in §5, let
x= : £;u; be a generic element of & over @ where (u;, %, . . . , #s) is a basis
and the ¢’'s are indeterminates. Then one knows that the minimum polynomial
me(2) of x in Q=, E=0(%,...,%s), has the form A"— (&)™ 4 «+ o +
(= 1)"0m(&) where g;(§) =0j(&1, . . ., £x) is a homogeneous polynomial of degree
jin the &'s. If a= > ajuie § where the a; € @ then the specialization &; - a;

gives a polynomial m4(1) =™ —ai(a)A™ "+ + ++ such that ma(a)=0. The
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polynomial m,(1) is called the generic minimum polynomial of @, T(a) = si(a)
and N(a) = om(a) are the generic trace and norm respectively of a. The degree
m of my(2) is called the degree of the algebra. The mapping a— T(a) is
linear and the bilinear form T(a, )= T(a.b), which is called the generic trace
Jform, is symmetric and associative in the sense that T(a.b, ¢) = T\a, b.c¢) (Tits
[1], p. 35). The generic minimum polynomial (hence the trace and norm) are
unchanged under extension of the base field. If @ is infinite then the set of
elements ¢ such that the generic minimum polynomial m,(2) coincides with
the minimum polynomial 2.(2) of ¢ is a non-vacuous Zariski open subset of
& The same is true of the subset of associator regular elements. Hence
Theorem 6 implies that for infinite base fields there exist Cartan sub-algebras

satisfying the hypotheses of the following

TueorREM 8. Let & be a Jordan algebva over an algebraically closed field ©
and let & be a Cartan subalgebra of 3 which contains an element which is associator
regular and has generic minimum polynomial equal to its minimum polynomial.
Suppose & = 21D R; where K is an ideal in & of the form Oe;+ Ni where e; is the
identity element of R and Wi is a nil ideal in ;. Let =KD, be the Fitting
decomposition of  relative to (&), If a € § we write a = Zr;,(age; + zi) + a; where

aic®, zieN and ai= 1. Then the generic trace
(14) T(a) = Dnia;

where n; is the maximum index of nilpotency of the elements of Wi. Also the
degree of & is >\ni.

Proof. If b= & let ms g(l) be the generic minimum polynomial of & as
element of 8 Then mys, g(1) is a factor of ms(1), and since & contains elements
¢ such that mc(2) = (), it follows that ms (X)) =ms(R). If b=>\aje+ zi)
and the minimum polynomial of z; is 2™ then it is clear that (1) =L.C.M.
(2—a;)™. If we introduce a generic element for & relative to an appropriate
basis it follows easily that mp, (1) = I1(4 — ;)™ where #; is the maximum index
of nilpotency of the elements of ;. Hence the generic trace of b relative to
R, Ta'd) = X miai. Since mp, g(1) = mp(2) we have T(b) = > mia;. Next we
recall that &, = ZS‘U where = igi};j is the Peirce decomposition of & relative
to the e;. Alsc‘)\xj;ve have seen th—a]t if aije &y, i%74, then a;; is an associator.

Hence T(a;) =0 since T(a, &) = T(a.b) is an associative form. It follows that
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if ¢ =3 (wei+2) + @, @ in S, then T(a) =0. Then T(a) = T(}), b= S(aies
+z) and so T(a) = 2\ #iai.

If the base field is of characteristic 0 then the conjugacy theorem implies
that every Cartan subalgebra & of a Jordan over a field of characteristic 0
satisfies the hypothesis of Theorem 8. We conjecture that this holds also for
Jordan algebras over infinite fields of characteristic p = 0.

We recall that a Jordan algebra & is called separable if & is semi-simple
for every extension field IT of the base field ® of 3. It is known that & is
separable if and only if the generic trace bilinear form 7'(a, b) is non-degenerate
(Jacobson [6], p. 41). The proof of the sufficiency of this condition is a
general one. On the other hand, the known proof of the necessity is based
on the classification of simple Jordan algebras over an algebraically closed field
and consists of a case by case verification for these. We shall now give a
general proof of this half of the theorem based on the formula of Theorem 8
and on a notion of a reduced Jordan algebra and reduced trace which we now
define.

We shall call a Jordan algebra & reduced if & contains a Cartan subalgebra
® which is a direct sum of almost nil ideals. Then ® = 31® & where £ is
an ideal of the form @e; + W, &’ =¢;, N; is a nil ideal in Rl;. If 3=80d% is
the Fitting decomposition of & relative to 8g(®) and a = E:](oc;e,-Jrz,-) +a,zi €

Ni, a, = 31, then we define the reduced trace t(a) = ‘;m. Clearly, a—t(a) is
a linear function on 3. We wish to show that # vanishes on all associators,
or, equivalently, f(a, b) « t(a.b) is an associative bilinear form on & As in
the algebraically closed case (proof of Theorem 5), 3 = 213, where 3 = LS,;

i<y

is the Peirce decomposition of & relative to the e;.
LemMa. If ai; € 3ij, i %, then ai’ = alei+¢)) +zi + z; where a € 0, z; € Ny

Proof. We have ajie Qi+ 35 so au—ae,+ﬁe, +zi+z, a, =0, 2zt € Ne.

Then (ail.e).aij=aj}.(ei.aij) gives
(i +2).aij= % (ae; + Bej + zi + 25) .Qij.

Hence (aei — Be;) .aij = (zj — z;) .aij 50 2(2j - i) .aij= (a — B) ai;. Since zj - z is

nilpotent, R:,-.; is nilpotent. Hence the last equation gives (a — 8)"aij = 0 for
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some positive integer #». Then a = since this holds also if @;;=0. Thus
ai} = alei+¢) + zi + 2.

We can now prove

TaeoreM 9. The reduced trace from t(a, b) =t(a.b) is associative.”’

Proof. We have to show that #([a, b, c]) =0 for allq, b, ce & It is enough
to prove this for a, b, ¢ in the Peirce spaces 3y; relative to the ¢;. Now #(aij)
=0 if a;j€ S, i ¥ j, and the product of three elements of Peirce spaces is 0
or is in a $yj, 7~ j, except in the following cases: I. the three elements are
in an ai, II. two of the elements are in a 3ij, i=j, and the third is in G,
III. one element is in &;, the second in &jx and the third in 3 where i, 7. 2
are unequal. We note also that in any commutative algebra one has the
“Jacobi identity”: [a, b, c1+ [b, ¢, al+ [c, a, b1 =0 for associators. Hence it
suffices to verify that #([a, 6, ¢)] - 0 in the following cases:

I.  #(Lau, bi, cil) =0, aii, bii, ci € Sii
1. t(Laij, bij, ¢ijD) =0 aij, bij€ Sij, cij € yj
. t(Laij, cjj, bi;1) =0, aij, bij< Jij, cij e s

I #(Laij, bjk, ceid) =0, aij € Jij, bjir € Jjk, cin € ik, 1, J, k.

The first of these is clear since [aii, bii, cil€ Ni for aii = aei + zi, bi = Bei+ zi,
ci=rei+2z!, zi, zi, 2 €Ni. For II' we note that we have the relation

(15) Laij, bij, cjjil = (e; — &) . ((aij.cjj) . bis)

which is obtained from (2) by taking x=cjj, a = aij, b = bij, c=¢;. By Lemma
1, (aij.cij).bij=alei+e¢) +zi+z, zx€Ng. Multiplication by e¢j—e gives

alej — ¢;) + zj — z;. The reduced trace of this element is 0. Hence ¢(Laij, bij, ¢j;i])

=0. For II"” we use the relation
(16) [aij, cjj, bijl.ei=0

which is obtained from (15) by multiplying by e.. By Lemma 1, [aij, ¢jj, bij]
=alei+¢)+zi+2j, 2zz€Nk. This and the last equation give « =0. Hence
t(Laij, cjj, bij1D) =0. For III we note that we have

(17) Laij, bjk, ceil = (e — ¢;) . ((@ij.cri).bjk)

5 Cf. Albert (3], p. 522.
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which is obtained by setting x = a;j, @ = cri, b=bjr, d = er in (2). By the lemma,
(@ij.cri) .bje = alej+ ex) + 2+ 2k, z1 € W. Then the result follows as for II'.

If f(a, b) is any symmetric associative bilinear form on a Jordan algebra
& then it is clear that the radical 3* of f is an ideal. In particular, this holds
if & is reduced and f=t¢ the reduced trace form. It is clear from the definition
of ¢ that > )M G* and that #(e;, &) = t(e;) =1 which shows that %0 and §*
% . Now suppose & is simple over an algebraically closed field. Let ® bea
Cartan subalgebra of & satisfying the hypotheses of Theorem 8. Then the
formula (14) for the generic trace T(a) is valid. Also & is a direct sum of
almost nil ideals so we have the reduced trace #(a) defined by the Fitting
decomposition relative to 23(®). The relation $* % & for the radical §* relative
to ¢t and the simplicity of & imply that 3*=0. Hence ¢ is non-degenerate.
Also >0 = 0 since 2 9 $*. Hence (14) becomes 7(a) = 3} a; which coincides
with the definition of #(a). Hence we see that the generic trace form T of a
simple Jordan algebra over an algebraically closed field is non-degenerate. We

can now prove

TureoreMm 10. A Jordan algebra is sepavable if and only if the generic trace

bilinear form T where T(a, b) = T(a.b) is non-degenerate.

Proof. We omit the proof of sufficiency since a general proof of this is
given in Jacobson [6], p. 41. Also, the argument given in this reference shows
that to prove the necessity it is enough to suppose & is simple over an alge-
braically closed field. Hence the proof is complete by what we have just shown.
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