
/. Austral. Math. Soc. (Series A) 61 (1996), 267-288

A NEW EMBEDDING SCHEME FOR GROUPS
AND SOME APPLICATIONS

VIATCHESLAV N. OBRAZTSOV

(Received 23 April 1994; revised 24 March 1995)

Communicated by R. Howlett

Abstract

In this paper a scheme of an 'economical' embedding of an arbitrary set of groups without involutions
in an infinite group with a proper simple normal subgroup is presented. This scheme is then applied to
construction of groups with new properties.

1991 Mathematics subject classification (Amer. Math. Soc): 20F05, 20F06.

1. Main result and its corollaries

Many properties of a group are closely connected with the structure of its subgroups.
In [7] was proved a theorem on embeddability of every at most countable group A
without involutions in a simple 2-generator group in which every proper subgroup is
either a cyclic group or contained in a subgroup conjugate to A, and an embedding
scheme of an arbitrary set of groups without involutions in a simple group G with
'well-described' lattice of subgroups was established in [8]. But for the solution
of some group-theoretical problems, we need a generalization of these embedding
schemes giving a group G with a proper normal subgroup.

Let {G,-},-e/, | / | > 1, be an arbitrary set of non-trivial groups without involutions.
We denote by Ql the free amalgam of the groups G,, i e /, that is, the set (J,6/ G, with
G, n Gj• = 1 whenever / ^ j . We say that the mapping g : Ql —>• G is an embedding
of Ql into G if it is injective and its restriction to every G, is a homomorphism.

Let n = £2' \ {1} = [Oj, j e J}. Then as in [8], a mapping / : 2n \ {0} -* 2" is
called generating on the set £2 if the following conditions hold:

(1) if C c G, for some / e / then / (C) = gp{C} \ {1};
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268 Viatcheslav N. Obraztsov [2]

(2) if C is a finite subset of Q and C <£ G, for each i e I, then f(C) = B, where
B is an arbitrary finite or countable subset of Q. such that C c B and if D is a
finite subset of B, then f(D) c B;

(3) if C is an infinite subset of Q and C 2 Gi f° r e a c n * e A t n e n / ( O =
U,4<=r / ( A ) , where T is the set of all finite subsets of C.

For example, a generating mapping / on £2 can be defined in the following way:
if C € 2 n \ {0} and C = (J,.6/ C,, where C, = C n G,, i e / , then f(C) =

We denote by G(l) the free product of groups G,, / e / . A group G having the
presentation

(1.1) G = (G(l)\ R = l;Re D)

is called (diagrammatically) aspherical ((diagrammatically) atoroidal) if every dia-
gram on the sphere (torus) over (1.1) is either non-reduced or consists entirely of
0-cells. (All necessary information about diagrams can be found in [10].)

Let G = gp{£2}, / an arbitrary generating mapping on Q. We say that X is a
minimal word of a group G if it is follows from X = Y in G that | X \ < \Y\, where | Z |
denotes the length of the word Z. Let W be the set of all non-empty words over the
alphabet Q written in the normal form, that is, every element X in W is written in the
form^j ...Xk, where eachX,, 1 < / < k, is a non-trivial element of G^/,, fj,(l) e /,
and n(l) ^ n(l + I) for / = 1, . . . , k - 1. Then a mapping F : 2W \ {0} - • 2" is
defined in the following way: i f C c W and C ^ 0 then let V be the set of all letters
occuring in the expressions of words of C. Then we set F(C) = f(V).

The main result of this paper is the following embedding scheme:

THEOREM A. Let m be a sufficiently large odd number orm = oo, g, : G, —> H a
set of arbitrary homomorphisms of groups with kernels Nt, i € / , such that a system
of subgroups {gi(Gj)}izi generates H, let {Nj}j&^, I\ c / , be the set of nontrivial
groups of the set {Nt },£/, Q\ the free amalgam of the groups Nj, j e / , , and let f be
an arbitrary generating mapping on Q such that f(C) D J2} j^0ifC % Gtfor each
i e I. If |/i | > 1 then the free amalgam S21 of the groups G, can be embedded in an
aspherical atoroidal group G = gp{Q} with the following properties:

(1) the free amalgam Q\ is embedded in a normal simple infinite subgroup L of G
such that G/L = H;

(2) ifX e L and X is not conjugate in G to an element of one of the groups G,, / e I,
then either X is equal to a power of an element Y, where Y is of infinite order
and whose homomorphic image in H has even order, or X is of order dividing
m (of infinite order in the case m = oo);

(3) AutL = G (and so OutL = H) and if g e G, \Q\, i e I, then the mapping
g : L —*• g~x Lg is a regular automorphism of L (that is, g(a) = a if and only if
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a — 1) if and only if there is no c e G, D Q.\, where Q.x = Q\ \ {1}, such that
[g,c] = l;

(4) every subgroup M of G is either a cyclic group or M D L = 1 and the homo-
morphic image of M in H = G/L has an element of infinite order, or M is
conjugate in G to an extension GC,H' °fa group H' by a normal subgroup Lc

(thatis,Gc,H'lLc = H'), where H' < H and if every element of Lc is a minimal
word of G, then C = F(LC \ {1}) or C = 0 in the case Lc = {1};

(5) Lc < RcCiL, where Rc = gp{C}, C €2n\{0}orRc = {1} in the case C = 0,
and ifC £ G, for each i e I, then Lc = Re ^ L and Gc,w < Re'

(6) ifC g G, for each i e /, then for each a € f(C) D Qu Lc = gp{bab~l, b €
f(C)} (in particular, L — gp[bab~\ b e Q}, where a is an arbitrary element of

(7) if X is a minimal non-trivial word of the group G, then X e Rc if and only if
F({X}) c f(C);

(8) if {Gj}j€j, J c /, is a set of all groups having non-trivial intersections with a
subgroup Rc ofG and X e Z~lRcZ, where \Z\ is the minimal among all words
in RCZ and GjZ for each j e J, then F({Z}) c F({X});

(9) if C <£ G, for each i e I, M is a subgroup of G in which every element is a
minimal word of G, then gp{Lc, M}(~)L = LC|, where Cx = F(C U (M \ {1}));

(10) if H = Gsfor some s e / and the homomorphism gj : Gj —> H is trivial for
each j e I \ [s], then G is the semidirect product of H and L.

The first corollary of Theorem A is devoted to the groups of outer automorphisms
of simple infinite groups. Matumoto [5] proved that every group is isomorphic to the
outer automorphism group of some group, and a scheme of an 'economical' embedding
of an arbitrary set of groups without involutions in a simple complete group (that is,
a group with trivial centre and no outer automorphisms) was established in [9]. Now
we have

THEOREM B. Le/{G,},€/, | / | > 1, be an arbitrary set ofnon-trivial groups without
involutions, H an arbitrary {in particular, trivial) group without involutions, Q1 the
free amalgam of the groups H and G,, i e /, and let f be an arbitrary generating
mapping on Q. = £l[ \ {1}, ma sufficiently large odd number or m = oo. Then the
free amalgam £2' can be embedded in an aspherical atoroidal group G = gp{£2} with
the following properties:

(1) the free amalgam of the groups G, is embedded in a simple normal infinite
subgroup L of G and G/L = H;

(2) Out L = H and for each g e H \ {1}, g is a regular automorphism ofL;
(3) every non-trivial subgroup of L is a cyclic group of order dividing m (an infinite

cyclic group in the case m = oo) or contained in a subgroup conjugate in
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G to some G,, or conjugate in G to a subgroup Lc = Rc H L, where C €
2 n \ 2 w , Rc = gp{C},andLc = gp{bab~\ b e f (C)} for each a e f(C)\H.

PROOF. Let gt : G,• —> H be the trivial homomorphism for each / e / , gH :
/ / — > / / the natural isomorphism. Then a system {Af,},e/ of non-trivial kernels of the
homomorphisms gH and gt, i e / , is the same as the set of the groups G,, / e / , and
hence Theorem A applies to Ql, f and m and yields the required G.

If the condition 'a group H has no involutions' is omitted, then the situation is
more complicated.

THEOREM C. Le?{G,},e/, | / | > 1, be an arbitrary set ofnon-trivial groups without
involutions, H = gp{hj}j€j an arbitrary (in particular, trivial) group, nt the order
of hj in H, j e / , let {S, = gp{57}}yey be a set of infinite cyclic groups, £2' the free
amalgam of the groups {G,},e/ and [Sj}jej, Q\ the free amalgam of the groups {G,},e/

and {gp{sj' }}j€j, where gp{s"'} = {1} ifnj = oo, and let f be an arbitrary generating
mapping on Q = Q1 \ {1} such that f(C)r\Q\^0ifC<£ Sj for each j e J. Then
the free amalgam £2' can be embedded in an aspherical atoroidal group G = gp{£2}
with the following properties:

(1) the free amalgam £2j is embedded in a simple normal infinite subgroup L of G
andG/L = H;

(2) Out L = H;
(3) every non-trivial subgroup of L is an infinite cyclic or contained in a subgroup

conjugate in G to some G,, or conjugate in G to a subgroup Lc = Rc H L,
where C e 2a \ {0}, flc = gp{C), and Lc = gp{bab~l, b e f(C)}for each
a e/(C)nn|.

PROOF. Letg, : G, —>• H be the trivial homomorphism for each i e /, and for each
j € / , we define a homomorphism gj : Sj —> H by setting gj(s') = hj, t > 1. Then
Theorem A applies to Ql, f and m = oo and yields the required G.

For countable groups, we have the following important corollary:

THEOREM D. Le;{G,},6 / , | / | > 1, be an at most countable set ofnon-trivial finite
or countable groups without involutions, H an arbitrary at most countable group, m
a sufficiently large odd number or m = oo. Then the free amalgam of the groups G,
can be embedded in a simple infinite group L with the following properties:

(1) Out L = H, and if H has no involutions then for each g e H \ {1}, g is a regular
automorphism of L;
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(2) every proper subgroup of L is either an infinite cyclic group {a cyclic group of
order dividing mif H has no involutions and m < oo) or contained in a subgroup
i}r{Gj)for some iff e Aut L and i e I.

PROOF. If H has no involutions, then let Q} be the free amalgam of the groups H
and G,, / € /. If H = gp{hj}j€j has involutions, then let £2' be the free amalgam
of the groups G,, / e /, and of infinite cyclic groups Sj = gp{sj}, j 6 / . In any
case, we define a generating mapping / on Q = Ql \ {1} in the following way: if
C c ft, C g G, for each / e / and C £ H (and C £ Sj for each j e J in the
second case), then f{C) = ft. Then Theorem B or Theorem C applies to ft1, m and
this mapping / and yields the group G with the required normal subgroup L.

COROLLARY. Let H be an arbitrary at most countable group. Then for any suffi-
ciently large prime number p or p = oo, there exists a simple infinite group L all
of whose proper subgroups are infinite cyclic {cyclic groups of order p if H has no
involutions and p < oo) such that Out L = H, and if H has no involutions then for
each g € H \{l}, g is a reqular automorphism of L.

PROOF. It is sufficient to take G i and G2 to be cyclic groups of order p and L as
the group in Theorem D for the set [Gx, G2} and m = p.

A group G is called a K-group if its subgroup lattice is complemented, that is,
for each A < G there exists B < G such that A D B = 1 and gp{A, B) = G.
The following obvious remark will be used for proving results about ^-groups: if
A, B < G, A n B = 1 and gp{A, B} = G, then the groups Z~lAZ, Z^BZ satisfy
these conditions for each Z e G.

It is easy to see that a subgroup of a A"-group is not, in general, a ^-group, as the
following example shows: S4 is a K-group with cyclic subgroups of order 4 which
are not A"-groups. Further information on subgroups of A"-groups is contained in

THEOREM E. Let m be a sufficiently large odd number orm = oo, {G,},e/, | / | > 1,
an arbitrary set of non-trivial groups without involutions, G$ a cyclic group of order
m. Then the free amalgam £2' of the groups Go and G,, i e I, can be embedded in
a simple infinite K-group G — gp{£2}, where Q. = Ql \ {1}, such that every proper
subgroup of G is either a cyclic group of order dividing m {an infinite cyclic group in
the case m = oo) or conjugate to a subgroup Rc = gp{C}for some C e 2Q \ {0},
where if C n Go ^ 1 and C % Go, then Go <= C, and b e Rc n G,, / 6 / U {0}, if
and only ifbeCf\G,.

PROOF. We set H = {1} and define a generating mapping / on £2 in the following
way: if C c ft, C % Go and C = LL/u(o) c<> w h e r e C,- = C n G;, / e / U {0}, then

= (G;u(J,.e /gp{C,})\{l},
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where G'o = Go in the case Co ^ 0, for otherwise G'o = {1}. It remains to prove that
the group G taken as the group in Theorem A for {G,},£/u{0}, m and the mapping / is
a A*-group.

Let M be a proper subgroup of G, £2] = £2 \ Go and Go = gp{a}- We consider the
following cases:

(1) if M = Rc and Slx c C, then G o n C = 0 (since for otherwise M - G) and by
Theorem A, 7?c n c T 1 / ? ^ = 1 and gp[Rc, a~l Rnja} = G;

(2) if M = Rc and there is b e Qt \ C, then it follows from Theorem A that
Rcnb-'a-1Rniab= 1 andgp{/?c, b^a^R^ab} = G;

(3) if M = gp{ X} is a cyclic group, then it is obvious that there is Y 6 G such that a e
F({F-'XF}),andby Theorem A, MnYRn,Y~l = 1 andgp{M, y/Jn.y1} = G.

The proof of Theorem E is complete.

The following result is devoted to construction of A'-groups having proper normal
subgroups.

THEOREM F. If in the statement of Theorem A the map g, : G,• —> H is an iso-
morphism for some i e I, the homomorphism gj : G; —>• H is trivial for each
j e / \ {/}, H is a K-group and a generating mapping f on Q is defined in such a
way that F(H U {a}) = Qfor each a e £l\, then G is a K-group.

PROOF. It follows from the statement of Theorem F that G is the semidirect product
of H and L. Let M be a proper subgroup of G. Then the following cases are
possible.

(1) If M n L = 1 and M\ is the homomorphic image of M in H, then there is a
subgroup M2 of H such that Mx n M2 = 1 and gp{M,, M2} = H. Hence by
Theorem A , M n M2L = 1 and gp{M, M2L\ = G.

(2) If M n L ^ 1 and M n H = Mu then there is a subgroup M2 of / / such that
Mi fl Af2 = 1 and gp{Mj, M2} = / / . Then it follows from Theorem A that
M n M2 = 1 and gp{M, M2} 2 gp{//, M D L] = G, as required.

By Theorem E, every group without involutions is a subgroup of some simple
A'-group. The situation with normal subgroups of A'-groups is less clear. Emaldi
asked in [4, problem 11.128] whether normal subgroups of A'-groups are A'-groups.

COROLLARY. There exists a K-group G containing a normal simple infinite sub-
group L such that if A, B < L and gp{/4, B] = L, then either A = L or B — L.

PROOF. Let m be a sufficiently large odd number or m = oo, {G,• — gp{fl,-}},>i
a set of cyclic groups of order m (of infinite cyclic groups in the case m = oo), J2}
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the free amalgam of the groups {Gy};>3. Then Theorem E applies to the set {G;};>3

and m and yields the K-group H = gp{£2j}, where Q^ = Q\ \ {1}, in which every
proper subgroup is either a cyclic group of order dividing m or conjugate to a subgroup
Rc = gp{C} for some C e 2 a ' \ {0}, where if C D G3 ^ 1 and C £ G3, then G3 c C,
and a € Rc n Gj, j > 3, if and only if a e C f) G;.

Let fi1 be the free amalgam of the groups H, G\ and G2. A generating mapping /
on Q = £2' \ {1} is denned in the following way: if C is a finite subset of Q, C $2 H
and C ^ G , , i = 1,2, then k is the maximal index of letters of £2' = {a, },>! occurring
in the expressions of words of C (over the alphabet Q'), then / (C) = ([Js <k Gs) \ {1}.
Finally, if C is an infinite subset of Q, C £ H and C g G,, / = 1,2, then
/ ( C ) = U/4er / (^)> where T is the set of all finite subsets of C. Then Theorem F
applies to the set {//, G\, G2} (with trivial homomorphisms g, : G, —> / / , / = 1, 2)
and the mapping / and yields the K -group G with the simple infinite normal subgroup
L.

Let for each k > 2, Ql
k be the free amalgam of the groups {G,}i<,-<*. Then by

Theorem A, every proper subgroup of L is either a cyclic group of order dividing m
or conjugate to a subgroup S* consisting of all minimal words T of L with F({T}) c

nj, * > 2.
Let A and B be proper subgroups of L. For each minimal word D of L, we

denote by M(D) the maximal index of letters occurring in the expression of D
(over the alphabet Q'). Assume first that A = gp{X] and B = gpji'}, where X
and Y are minimal words in L. Then it follows from Theorem A that gp{^4, B} <
Sk, where k — max(M(X), M(Y), 2). We now consider the second case when
A = Z~lSkZ, B = gp{X}, where Z, X are minimal words in L. Then it follows
from Theorem A that gp{A, B) < S,, where t = max(£, M(Z), M(X)). The case
when /I = gp{X}, B = Z~lSkZ can be considered in a similar way. Finally if
A = Zf 1SkZl, B = Zj][SiZ2 and Zu Z2 are minimal words in L, then by Theorem
A, gp{A, B] < S,, where t = max(&, /, M(Z\), M{Z2)). This completes the proof of
the corollary.

A group G is called normally factorized if for each normal subgroup A of G there
is B < G such that AC\ B = \ and AB = G. It is obvious that every K -group is
normally factorized. Moreover, these conditions coincide in some classes of groups,
in particular, in the class of all soluble groups (Napolitani [6]), and in [3] it was noted
that there were no examples to show that these conditions were distinct.

COROLLARY 2. The group L in Corollary 1 provides an example of a simple (and
hence normally factorized) group which is not a K-group.

The following result is connected with a question about Frattini subgroups. The
Frattini subgroup <t>(G) of a group G is the intersection of all the maximal subgroups
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of G (<t>(G) = G when G has no maximal subgroups). In [2] and [7] were constructed
countable simple groups without maximal subgroups. Of course, for each such group
G, O(G) is a simple group. In his report at the Conference on Group Theory (Trento,
Italy, 1993) J. Wiegold asked about the existence of a finitely generated group G with
non-trivial simple Frattini subgroup

THEOREM G. Let H be an arbitrary periodic or abelian group with d(H) = k, k >
2, where d{H) is the minimal number of generators of H, and let s be a sufficiently
large odd number or s = oo. Then there exists a k-generator group G such that

(1) G has a normal simple infinite subgroup L such that all proper subgroups of L
are infinite cyclic (cyclic groups of order dividing s if H has no involutions and
s < oo) and G/L = H;

(2) every non-cyclic subgroup ofG contains L;
(3) 4>(G) is isomorphic to an extension of the group <t>(H) by L (that is, 4>(G)/L =

); in particular, if^(H) = 1 then O(G) = L.

PROOF. Let{&,}1<,<,tbeanarbitrarysetofgeneratorsof//,G, = gp{a,}, 1 < i < k,
an infinite cyclic group (a cyclic group of order sn, if H has no involutions and s < oo),
where n, is the order of 6, in // , £2' the free amalgam of the groups G,. Then for each
»', 1 <i < k, we define a homomorphism g,• : G,•• —> H by setting gi(a'i) — b\, t > 1.
A generating mapping / on Q. = Q} \ {1} is defined in the following way: if C c Q
and C g G, for each i, 1 < i < k, then f(C) = Q. Hence Theorem A applies to
Q\ m = oo (or m = s if H has no involutions) and the mapping / and yields the
^-generator group G satisfying assertion (1) of the theorem.

By the statement of the theorem, H is a periodic or abelian group. Then it follows
from Theorem A and [10, Theorem 33.7] that every non-cyclic subgroup of G has a
non-trivial intersection with L.

Let M be a non-cyclic subgroup of G. Then Mflf, / 1 and it follows from
Theorem A and the definition of the mapping / that L < M.

It remains to prove that the Frattini subgroup of the group G is isomorphic to
an extension of the group <&(//) by L. It is sufficient to show that every maximal
subgroup M of G is an extension of a maximal subgroup of H by the group L. But M
is not cyclic, for otherwise, G is an extension of a cyclic group by L, which contradicts
the hypothesis of the theorem. Then by assertion (2) of the theorem, L < M. The
homomorphic image M\ of M in H is a maximal subgroup of H, since M is a maximal
subgroup of G; hence M is an extension of M\ by L. This completes the proof of the
theorem.

Another application of Theorem G was noted by H. Smith and J. Wiegold. It is
devoted to the solution of the following problem of J. C. Lennox. Let n be an arbitrary
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set of prime numbers, G a finitely generated group such that if M < G and G/MG is
a finite n-group, where MG is the normal closure of M in G, then \G : M\ is a finite
7r-number. Lennox asked in [4, problem 8.32] whether the group G is nilpotent and
noted that it is true for finitely generated soluble groups. A negative answer to this
question follows immediately from

COROLLARY. There is a 2-generator group G having a normal simple infinite
subgroup L such that all proper subgroups of L are infinite cyclic, G/L is isomorphic
to the free abelian group of rank 2 and if G/MG is a finite group for some subgroup
M of G, then M is a normal subgroup of G.

PROOF. It is sufficient to take H to be the free abelian group of rank 2 and G as
the group in Theorem G for H and s = oo. Then if M < G is such that G/MG is a
finite group, it is easy to see that M is not cyclic, and by assertion (2) of Theorem G,
L < M. Now it is follows from the commutativity of G/L = H that M = MG'.

A subgroup L of a group G is said to be dual-standard if for any subgroups X, Y
of G, gp{X, Y} fl L = gp{X n L, Y fl L}. Dual-standard subgroups of finite groups
were studied by Zappa [12], those of torsion-free locally soluble groups by Ivanov [1],
and Stonehewer and Zacher [11] gave a characterization of dual-standard subgroups
of non-periodic locally soluble groups. One more type of dual-standard subgroups is
given by the following theorem.

THEOREM H. Let H be an arbitrary non-trivial, at most countable, periodic group,
s a sufficiently large odd number or s = oo. Then there exists a group G having
a normal dual-standard infinite subgroup L such that H = G/L and all proper
subgroups of L are infinite cyclic (cyclic groups of order dividing s if H has no
involutions and s < oo).

PROOF. Let {6,-},-6/ be an arbitrary set of generators of H. We define groups G,,
homomorphisms g,, i e / , a set Q and a generating mapping / on Q as in the proof
of Theorem G (if we consider the set / instead of { 1 , . . . , k}). Then Theorem A
applies to {G,•},-£/, m = oo (or m — s if H has no involutions) and the mapping /
and yields the group G with the normal infinite subgroup L such that H = G/L and
all proper subgroups of L are infinite cyclic (cyclic groups of order dividing s if H
has no involutions).

By the assumption of the theorem, H is a periodic group; it then follows from
Theorem A that every proper subgroup of G has a non-trivial intersection with L. Let
A, B be arbitrary proper subgroups of G. We consider the following cases.

(1) If gp{A, B} is cyclic then it is not hard to show that gp{/4, B} n L = gp[A n
L,BHL}.
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(2) If gp{A, B) is not cyclic then gp{A, B] n L ^ 1 and it follows from Theorem
A and the definition of the mapping / that L < gp{A, B). On the other hand,
it follows from Theorem A that gp{A n L, B n L) is not cyclic, and hence
L = gp{A n L, B n L}, as required.

In this paper we use the results from [9] and the geometric method of graded
diagrams developed by Ol'shanskii (see [10]). Unless otherwise stated, all definitions
and notation may be found in [10].

2. Construction of the group G

As in [10], we introduce the positive parameters a, fi, y, S, s, £, /j, i, where all
the parameters are arranged according to 'height': that is, the small positive value /? is
chosen after a, y after fi, and so on. Our proofs are based on a system of inequalities
involving these parameters. The value of the parameters can be chosen in such a way
that all the inequalities hold. We then use the following notation:

a ' = 1/2 + a , 0 ' = l - p , y ' = l - y , h=S~l, d = n~\n=r\

We also use the notation introduced at the beginning of Section 1 and fix a suffi-
ciently large odd integer n0 such that n = [(h + l)-1Mo], where [k] denotes the integer
part of k. We set m = n0 in the case m < oo.

On the set W we introduce a total order such that \X\ < \Y\ implies X < Y.
We may assume that I\ is a well-ordered set, ?i and t2 are the minimal and the

maximal elements of / ] , respectively (if such a t2 exists), and £2i = Q2 U fij' ' s t n e

union of two subsets £22 and £2̂ "' such that £22 H fij1 = 0 and fi^1 = {a~\a e £22}-
We also may assume that £22 is a well-ordered set such that if a e Nt and b e Nh

where / < j , then a < b.

By the statement of Theorem A, there is a homomorphism of the free product G (1)
of groups Gj, i e / , onto H such that its restriction to every group G, is equal to gh

Suppose that the kernel of this homomorphism is N.

Let Di — 0, and suppose, by induction, that we have defined the set of relators
A - i ^N, i > 2, and set G(i - 1) = (G(l) | R = 1; R e D,-_,>.

A word X is called free in rank / — 1 if X is not conjugate in rank i — 1 to an
element of Ql, that is, to an image in G (i — 1) of an element of one of the free factors
Gj. A non-empty word Y is said to be simple in rank f — 1 if it is free in rank i — 1,
not conjugate in rank / — 1 (that is, in G(i — 1)) to a power of a shorter word and not
conjugate in rank / — 1 to a power of a period of rank k < i.

Now let Pi denote a set of words of length / which are simple in rank / — 1 with
the property that A, B e Pi and A ^ B implies that A is not conjugate in rank i — 1
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to B or B~x. The words in F, are called periods of rank i. We may assume (see [9,
Lemma 3.1]) that if a, b e N, n £22, c e N, n Q2, d e N5 n Q2, where / < y (if
such a y exists), 5 ^ / and a < b, then the words ac, A! = adbd, [a, c], A2 =
a[a ,c] ' , A 3 = a [ a , c ] - ' , i44 = c [a ,c ] - ' , A5 = c~l[a, c ]" ' , A6 = [(ac)*, c], A7 =
(ac)*Ag, A8 = (ac)k A^' are periods of some ranks for each k, t, where lOO^"1 <
it < 105?-2, £no/3OO < f < «0/2.

For each period A e P, n N, we fix a maximal subset F^ such that:

(1) if T e YA,then 1 < \T\ < d\A\;
(2) each double coset of the pair gp{ A}, gp{A] of subgroups of G(i) contains at most

one word in YA and this word is of minimal length among the words representing
this double coset;

(3) if T € YA, then T € N and F({T}) c F{{A}).

We may assume (see [9, Lemma 3.1]) that if a period A of some rank is conjugate
to a word (BC'Y, where C is a period not equal to [a, c] or A6, \e\ = 1, £no/3OO <
r < no/2 and B e Yc, then e = 1.

For each period A 6 P, C\ N, we introduce the ordering of the set of natural
numbers (or a finite segment of it) on the set YA such that the first element of the set YA

belongs to Qx (it follows from the statement of Theorem A that YA C\ £2i ^ 0 ) and if
A — Ak, 1 < it < 8, or A = [a, c]forsomea, b e N/nQ2, c e Njn^l2, d e Nsn£22,
where a < b, s / / and / < j , then a is the first element of the set YA. We denote
this order by <A.

The set of relators S, of rank/ is constructed as follows. Firstly, if A e Pt, m < oo
and there is a minimal positive integer k such that Ak e N, then in the case that k is
an odd number, we include in 5, a word of the form Ak"° (a relator of the first type)
and call a relation

(2.1) Ak"° = 1

a defining relation of the first type of rank i.
For each period A e P,C\N, i > 3, we now construct some relations of the second

type. Let a be the minimal element of the set F([A}). If A = Aj, j e {2, 3}, for
some a e N/ H Q2, c e Ns C\ £22> where I < s, then for each k, 5 < k < 15, we
introduce the following relations:

(2.2) c"1 AYAn+*cA"+30+* • • • cA"+3O(*-2)+t = 1,

and

(2.3) a-'A"aA"+*aA"+30+* •. . aA"+ 3 0 (*-2 ) + i = 1.

If A = A;, y e {7, 8}, for some a e Nt n S22, c e ^ n S22, where / < 5, then for
each k,t, where 16 < k < 25, 100£~' < f < lO5^"2, we consider the relation

(2.4) acA" (ac) ' An+k (ac)' An+30+k • • • (ac)' A"+mh-2)+k = 1.
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Let T € YA and T ^ a, c in the case A = Aj, j € {2, 3}. If a is not contained in
gp{A} C G(i — 1), T is outside gp{A}a gp{/4}, then we introduce the relation

(2.5) aAnTAn+l0TAn+40 • • • T A"+3Oif-2)+w = 1,

and if T belongs to gp{A}a gp{A], then it follows from [10, Lemma 25.18] that T is
not contained in gp{A}a~l gp{A} in G(i — 1), and we set

(2.6) a-1 A"TA"+l0TA"+4° • • • 7̂ «+3O(>>-2Hio = L

If T e YA and T ^ (ac)', 100-r1 < t < lO5^"2, in the case A = Aj, j e {7, 8},
then we introduce the relation

(2.7) a-lAnTAn+20TAn+5Q • • • T A"+30(h-2)+2° = 1.

And if T e YA then let T\ be the minimal element of the set YA such that Tt is not
contained in neither gp{^4} C G(i — 1) nor in gp{A}a±i gp{A] and T <A T{ (if such
an element Tx exists). Then we consider the relation

(2.8) TxA
nTAn+30TA"+6° • • • TAn+Wh~X) = 1.

Relations (2.2)-(2.8) are called defining relations of the second type of rank i, and
their left-hand sides are called relators of the second type of rank i, and are included
in Si. For each / > 2, we set Dt = Z),_, U 5,-, and the group G(i) is denned by its
presentation:

(2.9) G ( 0 = ( G ( l ) | * = l;tf eD,->.

Finally, we define G = (G(l) \ R = 1; R e D = \J^ £>,-).
By a diagram of rank i, where / > 2, we mean a diagram over the presentation

(2.9). Relators of the first type (in the case m < oo) correspond, in the diagrams
under considerations, to cells of the first type whose contour (that is, boundary path)
is taken as one long cyclic section. But if a cell n corresponds to a word of the
form (2.2)-(2.8), then it is called a cell of the second type. Its contour splits into
sections according to (2.2)-(2.8). Those sections of fl with labels (An+S)±l are called
long sections while the others (with labels T±l, a±[, (ac)M and 7^') are called short
sections of the contour.

3. Auxiliary lemmas

Immediate verification shows that the above presentations of the groups G (i) satisfy
condition R (see [10, §§25, 34]). So we can apply to diagrams over the presentation
(2.9) all the results in [10, Chapter 11].
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LEMMA 1. Let X = Y in G, where Y is a minimal word of the group G. Then
c

PROOF. Let A be a reduced circular diagram of some rank with contour
where <p{p\) = X"1, <p{p2) = Y. If r(A) = 0, then we derive the conclusion of the
lemma from the definition of the mapping F.

If r(A) > 0, then by [10, Theorem 22.1], there is a y-cell n in A. We proceed
by induction on |A(2)|. It follows from [10, Lemma 21.7] that there is a contiguity
submap F of n to px such that (n, F, p\) > s, since y' — a' > e. Repeating the proof
of [10, Theorem 22.2], we obtain that there is a long section p of a D-cell FI in A and
a contiguity submap F] of p to p\ such that r(T\) = 0 and (p, T\, pi) > e. By the
definition of the relations of G, if n is a cell of the second type and t\, t2 are its short
and long sections, respectively, then F({<f>(ti)}) c F([<f>(t2)}). Therefore, excising
FI from A together with Fi, we obtain a diagram A! of an equation X{~

lY = 1
with | A,(2)| < |A(2)|, and F({X,}) c F({X}). By the induction hypothesis we can
assume the lemma is true for this equation. Hence F({Y}) c F({Xi}) c F({X}), as
required.

LEMMA 2. Let F be a contiguity submap of q\ to q'2 in a B-diagram A and
<p(q[), 4>(q'2) minimal words in G, where q[ and q'2 are sections of cells or of contours
of A. Ifd(q[, F, q'2) = p\q\Piqi, then the following conditions hold:

(1) F{{<P{Pi)}) C F ({(P(qj)}) for each ij € {1,2};
(2)

PROOF. We denote by E{ and E2 the bonds defining F. If E{ and E2 are 0-bonds,
then \p\ | = \p2\ = 0, and we derive the conclusion of the lemma from Lemma 1.

Let n be the principal cell of E\ and r{n) = k > 0. By definition of the bond,
there are contiguity submaps Fi, F2 of long sections t\ and t2 of n to q[ and q2 such
that (?,, F,, q!) > e, i = 1,2. We denote by p\q[p'2q2 the standard decomposition of
the contour 3F,, where F, A q. = q2, F, A t,• = q\, i — \,2. Since F! and F2 have
fewer D-cells than A, then by the induction hypothesis,

(3.1) F({cj>(qi)}) = F({4>(ql
2)}), i = 1,2,

and

(3.2) '

for each i, j e {1, 2}. It follows from the definition of the mapping F and the relations
of G that

(3.3)
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for each / e {1,2}.
The path p\ has the form p\up\, where u~l is a subpath in dn. Then by the definition

of the mapping F,

(3.4) F({<P(u)}) c

It follows from (3.1)-(3.4) that

for each / e {1, 2}. Hence F({0(p,)}) c F({</>(<7,)}), i = 1, 2.
Similarly we obtain the required assertion for F([4>(p2)}). Now it follows from

Lemma 1 that

3-,)})

for each i e {1,2}. This completes the proof of the lemma.

LEMMA 3. Let V be a minimal word in G and V = Z~lA'Z, where A is a period
of some rank, Z is a minimal word in G, or V = Z~xajZ, where as e G, for some
i e / and Z is of minimal length among the words representing a coset GiZ. Then

- F({Z, A}) (F({V}) = F({Z, aj})).

PROOF. Consider, for example, the first case (the other case of the lemma can be
considered in the same manner).

By Lemma 1, F({V}) c F({Z, A}): hence it is necessary to show the reverse
inclusion. We note that for this purpose it is sufficient to find X e G such that V =
X-lA'XandF([V}) 2 F({X, A}), since by [10, Lemma 34.9] ZX"1 €gp{A},andit
follows from Lemma 1 that F({Z}) c F({X, A}), hence F({Z, A}) c F({X, A}) c

Let V = Y~l V\ Y in the group G(l), where V\ is cyclically minimal in G(l). Then
there is a reduced annular diagram A of some rank with contours p and q, where
4>(p) = Vt and <Kq) = A-'.

Repeating the proof of Lemma 1, we obtain that for each cell n in A, F({(j) (3^)}) c
F({V,})and

(3.5) F({A}) c

Therefore, there exists a word L such that V\ = L~x A'L and

(3.6) F({L}) c F({VU A}) c
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We have that V = (LY)~l A' {LY) = X~l A' X, and by Lemma 1 and (3.5), (3.6),

F({X, A}) <z F({VUL,Y}) <z F({V}).

The proof of the lemma is complete.

A reduced diagram A of rank / on a sphere with three holes with contours q°, q\, ql
is called I-diagram if the following conditions hold:

11. sections q°x and q\ have labels Ak and A~k, respectively, where A is either a
simple word in rank i or a period of rank j < i, 100£ ~' < k (and k < no/2 if A
is a period of the first type);

12. the section q® is cyclically reduced;
13. if F is a contiguity submap of q° to q®2, where /,, i2 e {1,2} and i{ ^ i2, then

(<7°, T, qf2) < 1/100 and fa°, I \ q°) < 1/100;
14. if r is a contiguity submap of a long section p of a cell n to q°, then (/?, r , q°) <

s.

LEMMA 4. In any I-diagram A, there are contiguity submaps T{ and V2 ofq° to q°
andq° to q°, respectively, such that r ( r , ) = 0 and (<??, T,, q®) > 1/10, / = 1, 2.

PROOF. We consider the following cases.
(1) Let s b e a section of a cell it or a subpath of a section (7°, / = 1,2, and T a

contiguity submap of s to <7j. Then by condition 14, F is the 0-contiguity submap with
contour p\S\p2s2, where \pi\ = \p2\ = 0 and sus2 are subpaths of sections s and
<73°, respectively. If r(T) > 0 then by [10, Theorem 22.1], there is a y-cell Tl in T.
It follows from [10, Lemma 21.7] that for any contiguity submap r \ of n to s{, the
F[-contiguity degree of n to st is less than a'; hence there exists a contiguity submap
F2 of n to q° such that ( n , F2, q°) > s, and we arrive at a contradiction to condition
14. ThusT-(r) = 0.

(2) Let F be a contiguity submap of q° to q°. Then by condition 14 and [10, Theorem
22.1], we obtain, as in case 1, that r(F) = 0, since 2e < y'.

(3) We define the distinguished contiguity submaps in an I-diagram in the same way
as for E-maps. The £2-edges of the contiguity arcs of qf to qf,, where / e {1, 2}, /' e
{1, 2, 3}, for the distinguished submaps are called outer edges in A while all the other
edges are called inner. The construction of the estimating graphs and the weight
function is left unchanged. We obtain estimates for the sums / / ' , C", D' and G' in the
same way as in [10, Lemma 24.6].

Let K' be defined for an I-diagram in the same way as in [10, Lemma 23.8] for a
C-map. If q2 — q° then by case 1 and condition 14, \q2\ = \qt\ < e\q[\ (notation from
[10, Lemma 23.8]). Then, as in [10, Lemma 23.8], we obtain K' < 10e2/3M.
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Now L' can be defined as the sum L in [10, Lemma 23.12] (sections of the contour
of the first kind are now replaced by q®, q\ and #3). If q = q\ then by case 1,
\<Ji\ = kil < dk (notation from [10, Lemma 23.12]). As in that lemma, we have
L' < aM. Then as in [10, Lemma 24.6], immediate verification shows that

(3.7) M < orv(A).

(4) Let F be a contiguity submap of q® to q° and d(q®, F, q^) = p\S\p2s2. Then
by case 2, r(F) = 0, and it follows from condition 12 that A consists of two annular
subdiagrams A! and A2 with contours tiq{ and t2q2, respectively, where t\,t2 are
subpaths of q®, such that A] and A2 are joined in A by subpaths S\, s2 ofq°. Applying
condition 14, [10, Theorem 22.1 and Lemma 21.7] to A,, / = 1, 2, we obtain, as in
case 1, that r(A,) = 0 , which completes the proof of the lemma in this case.

(5) It remains to consider the case when A has no contiguity submaps of q° to
q°. It follows from [10, Lemma 25.8] that there is no contiguity submap F, of qf to
qf, / = 1, 2, such that (qf, F,, qf) > 1/100. Then by (3.7) and condition 13, there
are distinguished contiguity submaps F], F2 of q®, q\ to q\, respectively, such that the
sum of the weights of the contiguity arcs Si = Tt Aq° and s2 = F2 A q° is greater than

(3.8) (1 - a - 4 /100MA) > 9v(A)/10.

But by condition II and the definition of the weight function,

(3.9) vfaj1) = v(q°) = v(A)/2.

It follows from (3.8) and (3.9) that F, exists for each / € {1,2}, and in the light of
case 1, we have the conclusion of the lemma.

LEMMA 5. Let A and C be periods of the group G, V = C \ where 100£~' < k
{and k < «o/2 if C is a period of the first type), W a word which does not commute
with V in G and whose length is minimal among all words in the double coset
gp{Ck}W gp{Ck}, and also let CkWC~kW-1 = Z~lA'Z, where Z is a minimal word
in G {and \l\ < no/2 if A is a period of the first type). Then |/| < 100£-1 and, by
a simultaneous conjugation in G, we can bring {[Ck, W], Ck) to the form (A1, B),
where B is a minimal word in G, \B\ < d\A\ and

(3.10) F{{A}) = F({C,W}), F({B})^F({A}).

PROOF. By [10, Lemma 25.21], it remains to prove only (3.10). It follows from
Lemmas 1 and 3 that F({A, Z}) c F({C, W}); hence

(3.11) F({A}) c F({C, W}).
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Now let A be a reduced annular diagram (of some rank) with contours p and q such
that <j>{q) = A~', p = pxp2p3p4, <t>(Pi) = <t>ip3

X) = Ck, (j)(p2) = (p(p^) = W.

Pasting together paths p2 and p^], we obtain a diagram A' on a sphere with three
holes whose reduced form (that is, with j -pairs removed) is denoted by Ao. The
cyclic sections P\, pi and q can be assumed smooth in Ao if we modify their labels in
accordance with [10, Lemma 13.3].

It is obvious that Ao satisfies conditions II and 12. Suppose that there is a contiguity
submap F of pt] to ph, where /i, i2 e {1, 3} and ix ^ i2, such that (p,,, F, p,2) >
1/100. We have that \C\ = ICT'I; then by [10, Lemma 25.10], px and p3 are C-
compatible in Ao, and using [10, Lemma 24.9], we arrive at a contradiction to the
choice of the word W. Thus Ao satisfies condition 13.

Now we assume that there is a long section t of a D-cell n in Ao and a contiguity
submap F of t to q such that (t, F, q) > e. Then repeating the proof of [10, Theorem
22.2], we obtain that there is a cell nx and a contiguity submap Yx of a long section
/j of nx to q such that r{Tx) = 0 and (tx, Tx,q) > s. Excising the cell nx together
with Fi from Ao, we obtain a diagram A] on a sphere with three holes with cyclic
sections px, p3 and qx such that |Ai(2)| < |A(2)|. We can assume that the section
qx is cyclically reduced, and by the definition of the relations of G, F({(p(qx)}) c
F({(p(q)}). Then, by repeating the same trick several times, we obtain an I-diagram
Ar with cyclic sections pu p3 and qr such that

(3.12) F({C}) c F({cf>(qr)}) C F({0(9)}) = F({A}).

Moreover, the initial points of px and p 3 can be joined in Ar by a path s of the form
sxs's3, where s', sx and s3 are subpafhs of qr, px and p3, respectively. Then by [10,
Lemma 24.9], a word <p(s) is contained in gp[Ck}W gp{Ck], and it follows from the
choice of the word W, Lemma 1 and (3.12) that

(3.13) F({W}) c F({A}).

It follows from (3.11)-(3.13) that F({C, W}) = F({A}), and by Lemmas 1 and 3
that F({Z, A}) c F({C, W}) = F({A}). Hence

(3.14) F({Z}) c F({A}).

But the word B is minimal in G and equal in G to the word ZCkZ~l. Then by Lemma
3, (3.12) and (3.14), F({B}) = F({Z, C}) c F({A}), which completes the proof of
the lemma.

LEMMA 6. Let R = gp{Ck, W], where C is a period, Ck e N \ {1} and W is a
minimal word in G such that W is not contained in gp{C}. Then R contains a period
C, € N such that F({CX}) = F({C,W}) andn\C\ < |C,| .
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PROOF. We can assume that C e R D N, where no/5 < t (and t < no/2 if C
is a period of the first type). By [10, Lemma 34.9], [C, W] ^ 1. It follows from
Lemma 1 that we can assume W has minimal length among all words in the double
coset gp{C"}Wgp{C"}, and by Lemma 5 and [10, Lemma 34.7], [C, W] = Z~lAfZ,
where A is a period, Z is a minimal word in G, \f | < 100£~\ \B\ < d\A\ fora word
B which is minimal in G and equal in G to the word ZC'Z~\ and condition (3.10)
holds. Moreover, it follows from the proof of [10, Lemma 25.21] that

(3.15) |A| > 10~2f2|C'| > £2«0|C|/600

and

(3.16) \Z\ 2

Raising Af to a suitable power we consider the subgroup gp{B, Ap] of the group
Ri = ZRZ~\ where no/3 < p < 2no/3. Repeating the proof of [10, Lemma 27.3],
we obtain that BAP = Z^C\ZU where |e| = 1, C\ is a period of some rank such
that C\ e N, Z{ is a minimal word in G and

(3.17) |Z , |<2 |Ci | , /i0 |A|/100<|C,|.

Now let A denote a reduced annular diagram for this conjugacy. Let zl and q be
the contours of A, where 0(z) = B, 4>(l) = Ap, 4>(q~]) = C\. Then, as in the
proof of [10, Lemma 27.3], there is a contiguity submap F of / to q in A such that
(/, T, q) > ft. Hence by Lemma 2, F({A}) c F({C,}). But it follows from Lemma
3 and (3.10) that

Thus

(3.18) F({C,}) = F({A}), F({Z,}) c

We consider the subgroup gp{C!,Z2} of the group R2 = ZXRXZ\X =
(ZiZ)/?(Z1Z)"1, where Z2 is a minimal word in G which is equal in G to the
word ZXBZ\X. It follows from the proof of [10, Lemma 27.3] that \Z2\ < 3|Ci|, and
by Lemma 1 and (3.10), (3.18),

(3.19) F({Z2})CF({Z1,fi})CF({C1}).

It follows from Lemma 1, (3.10) and (3.16)-(3.19) that there are Z\ e Yc>, i e
{1,2}, and Z' e YCl such that Z, e gp{C1}Z;gp{C1}, i e {1, 2}, and Z e gp{C,}Z'

}. By the definition of the relation (2.5) for C{ and Z2, the minimal element a
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of the set YCt is contained in R2. Now using the defining relation (2.8) for Cx and a,
we obtain that ax € R2, where ax is the minimal element of the set YCl \{a}, and so
on. Thus we have that Z' and Z\ are contained in R2; hence Z, Zx e R2 and R = R2.

Finally, it follows from (3.15) and (3.17) that n\C\ < \CX\, which completes the
proof of the lemma.

4. Proof of Theorem A

Let L be the homomorphic image of the group N in G. Then L is a normal subgroup
of G, and it follows from the definition of the relations of G made in Section 2 that
G/L = F/N = H. By [10, Lemma 34.13], a group gp{^i} is infinite; hence L is
an infinite subgroup of G. It follows from [10, Lemma 25.1] that the group G is
aspherical and atoroidal.

If X e L and X is not conjugate in G to an element of any G,, i € / , then, by
[10, Lemma 34.7], X is conjugate to a power of a period Y, and it follows from the
definition of the relation (2.1) that either X is of order dividing m (of infinite order in
the case m = oo) or the homomorphic image of Y in H has even order and Y is of
infinite order.

Repeating the proof of [9, Theorem A], we obtain that every automorphism of L
is induced by an inner automorphism of G; hence Aut L S G and Out L = H. The
claim about regular automorphisms of L follows from [10, Lemmas 34.9 and 34.11].

Let M be an arbitrary non-cyclic subgroup of G. If M has no free elements, then
by the proof of [10, Theorem 35.1], M is conjugate to a subgroup Mx of a group
G,, i e / , and so M is conjugate to a subgroup GC,M;, where C — (Mx n L) \ {1}
and M[ is the homomorphic image of Mx in H.

Let M contain a free element X of G. By [10, Lemma 34.7], X is conjugate to a
power of a period A. If M f) L = 1, then it follows from the definition of the relation
(2.1) that the image A in H has infinite order. In the opposite case, the group M is
conjugate to a subgroup M\ containing Ak and W, where 100£-1 < k (and k < no/2 if
A is a period of the first type), W is a word which does not commute with Ak in G and
whose length is minimal among all words in the double coset gp{A*}W gp{Ak], and
moreover, [Ak, W~\ is contained in L. It follows from Lemma 5 that Mx is conjugate
in G to a subgroup M2 = gp{Cl, {Wj}jeJ}, where C is a period, C1 e L and for each
j e J, Wj is a minimal word in G such that Wj is not contained in gp{C}.

Of course, M2 is an extension of a group / / ' by a normal subgroup L' = M2(~) L,
where / / ' is the homomorphic image of M2 in H. Let K = F([C] U {Wj}jeJ). By
Lemma 1, M2 < RK and L' < LK = RKf) L.

Now we prove that LK < L'. Let X be an arbitrary element of LK. Then by
the definition of a generating mapping on £2, there are Wit,... ,Wit, t > 1, such
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that F({X}) c F({C, Wh,... , Wi,}). Applying Lemma 6 to the group gp{C, W,,},
we obtain that the group L' contains a period C\ such that F{{C\\) = F({C, W,,}).
Similarly, gp{C,, Wh] contains a period C2 e L' such that F({C2] = F({C, W,-,, Wh}),
and so on. As a result, we have a period C, e L' such that F({X}) c /^({C,}). If
|X| > d\C,\, then by Lemma 6, the subgroup gp{C,, C'} contains a period C,+i such
thatF({X}) c F({C,+i})and«|C,| < |C,+1|. Repeating the same trick several times,
we have that L'contains a period 5 such that F({X}) c F({B})and|X| < d\B\.We
may assume that C' e YB, and it follows from the definition of the relation (2.5) for
B and C' that a e L', where a is the minimal element of the set YB. Now using the
defining relation (2.8) for B and a, we obtain that a\ e L', where aj is the minimal
element of the set YB \ {a}, and so on. As a result, we have that X] e L', where
Xi € 7B such that X is contained in gp{B}X, gp{B}. Then X € L' and LK < U.

If C £ G, for each / g /, then by the statement of Theorem A, f(C) n £2, ^ 0.
Let a e f(C) n Qi and L'c = gy{bab~\ b e f(C)}. It is obvious that L'c < Lc.
Now we prove that Lc < L'c. We have that C % G, for each i e I; then, by
[10, Lemma 34.11] and the definition of the relations of G, there is b e / (C) and
s, |e| = 1, such that [a, bf is a period. Let X be an arbitrary element of Lc. Then
by the definition of a generating mapping on Q, there are bx, . . . , b,, t > 1, such that
F({X\) c F({[a, ft], b^ab^1,... , b,ab~1}). Repeating the previous considerations
for X and the set {[a, b], bt ab^,... , b,ab;{], we obtain that X € L^.ThenLc < L'c,
as required.

Assertion 7 of Theorem A follows from Lemma 1.
Let C ^ Gi for each i e I, M be a subgroup of G in which every element is a

minimal word of G, L'Ci = gp{Lc, M] n L and C, = f (C U (M \ {1})). It follows
from Lemma 3 that L'C| < LCl. Now we prove that LC| < L'Ci. We have that C g G,
for each i e I; then L^ contains a power A' of a perod A. Let X e LC]. Then by the
definition of a generating mapping on £2, there are Wit,... , W;, € L'Ci, t > I, such
that F({X}) c F({A', W,-,, . . . , W,,}) and for each j , 1 < s < /, Wi, is a minimal
word in G not belonging to gp{ A}. Repeating the proof of assertion 5 of Theorem A,
we obtain that X e L'c and LCl < L'C|.

Assertions 8 and 10 of Theorem A follow from Lemma 3.
It remains to prove that L is simple. Let M be an arbitrary normal subgroup of L.

If M is a proper subgroup, then we can assume that either M is a subgroup of some
group Gj, i e I, or M = gp{/4'}, where A is a period, or M = Rc, where C £ G,
for each i e I. We consider these cases.

(1) If M is a subgroup of some group G,, / e /, then there is Z e L \ G,, with
ZMZ~] = M, contradicting [10, Lemma 34.11].

(2) IfM = gp{/4'}, then there is Z e L \gp{A] such that ZMZ~[ = M contradicting
[10, Lemma 34.9].

(3) If M — Rc, where C £ G, for each / € /, then there is Z e L such that
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F{{Z}) % f(C). The group M contains an element A', where A is a period;
hence by Lemmas 3 and 1, ZA'Z~X is not contained in M, and we arrive at a
contradiction to the choice of the group M.

Thus L is simple, and the proof of Theorem A is complete.
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