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Elementary Considerations relating to the Absolute.

By DUNCAN M. Y. SOMMERVILLE, M.A., D.Sc.

(Received SOth March 1910).

Non-Euclidean geometry in the narrowest sense is that system
of geometry which is usually associated with the names of
Lobachevskij1 and Bolyai2, and which arose from the substitution
for Euclid's parallel-postulate of a postulate admitting an infinity
of lines through a fixed point not intersecting a given line, the two
limits between the intersectors and the non-intersectors being
called the parallels to the given line through the fixed point. In a
wider sense, any system of geometry which denies one or more of
the fundamental assumptions upon which Euclid's system is based
is a non-euclidean geometry. Of special interest are, however,
those which touch only the question of parallel lines ; and there
exists, in addition to Lobachevskij's geometry, another, commonly
associated with the name of Riemann3, in which the parallels to
any line through a fixed point are imaginary. The three geometries,
Lobachevskij's, Euclid's, and Riemann's, thus form a trio
characterised by the existence of real, coincident, or imaginary
pairs of parallels through a given point to a given line. With
reference to this criterion, a consistent nomenclature was introduced
by Klein, who called these three geometries respectively Hyper-
bolic, Parabolic, and Elliptic.

Various concrete representations of these systems have been
given within the domain of ordinary geometry. I t is proposed to
explain briefly that one which was devised by Cayley6 and
elaborated by Klein", and which deals primarily with the analytic
expression for the distance between two elements, points or lines,
and the representation of the infinitely distant elements.

In ordinary plane geometry9 the metrical properties of figures
are referred to a special line, the line infinity, w, and two special
(imaginary) points on this line, the circular points at infinity, w, a>'.

The line infinity appears in point-coordinates as an equation of
the first degree, u — 0, while every finite point satisfies the identity
u = const. In trilinear coordinates, for example, if a, b, c are the
sides of the triangle of reference, A, w = ax + by + cz = 2 A.
6 Vol. 28

https://doi.org/10.1017/S0013091500034829 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034829


66

The circular points appear in line-coordinates as an equation of the
second degree, W = 0, while every ordinary line satisfies the identity
o>o/ == const. In trilinear coordinates

(ow' = £» + if + C - 27jfcosA - 2{£cosB - 2

In rectangular cartesian coordinates, made homogeneous by the
introduction of a third variable z, the equation of the line infinity
is z = 0, while for finite points z = l . The line-coordinates of the
line lx + my + nz = 0 are I, TO, n, and in general I- + m? = const., = 1,
when the equation is in the "perpendicular" form. But for the
line infinity I = 0 and m = 0 so that P + to* = 0, and this is true also
for any line y= ±ix + b, i.e. for any line passing through one or
other of the points of intersection of the line z = 0 with the locus

Now an equation of the second degree in point-coordinates or in
line-coordinates represents a conic. But the equation P + m? = 0
represents a degenerate conic consisting of two (imaginary) pencils
of lines, since P + m? decomposes into linear factors. Similarly
z = 0 as a point-equation, when written za = 0, represents a
degenerate conic consisting of two coincident straight lines. These
conies are just one conic considered from the two different points of
view of a locus and of an envelop, for the reciprocal of the
equation P + m1 = en2 is c(«2 + y2) = z". When c = 0 the point-
equation represents a circle of infinite radius z2 = 0, and the line-
equation represents the two pencils of lines passing through the two
points through which all circles pass. This degenerate conic is
called the Absolute.

If we now replace the degenerate conic by a proper conic, we
get a more general form of geometry which includes ordinary
Euclidean geometry as a special case. I t also includes as special
cases the geometries of Lobachevskij and Biemann, the former
when the. conic is real, the latter when it is imaginary. There are
obviously other cases—for example, when the conic degenerates to
two distinct lines—and there will be corresponding systems of
geometry. Most of these geometries are very bizarre. In one, for
example, the perimeter of any triangle is constant. The only
ones which at all resemble the geometry of experience are the
three just mentioned.
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We have now to obtain the expressions for the distance between
two points and the angle between two straight lines. As the
absolute in ordinary geometry is less degenerate as an envelop than
as a locus (the equation in line-coordinates being of the second
degree) it will be simpler to take first the angle between two lines.

The expression must be such as to admit of extension to the
case of a proper conic. Now Laguerre4 has shown that the angle
between two straight lines can be expressed in terms of a cross-
ratio. Consider two lines y = xta.nd, y = xtanf?', passing through 0.
We have also through 0 the two (isotropic) lines, y — ix, y= - ix,
which pass through the circular points. The cross-ratio of the
pencil formed by these four lines is

, , ,, ta,nd-i

-
ta.nO'-i toaff + i

Hence 6' - 0 = |ilog(Mw', OHO').

We can now extend this to the general case. Through the
point of intersection L of two straight lines p, q there are two lines
belonging to the absolute considered as an envelop, viz., the two
tangents from L. Call these x, y. The angle (pq) is then defined
to be

where k is a constant depending upon the angular unit employed.
It is usual to take k = \i so that the angle between two rays which
form one straight line is £ilogl = \i. 2wwr = t»ir. This corresponds
to the circular system of angular measurement, and we see that the
angle between two rays is periodic with period 2a-. The angle
between two lines with undefined sense has, however, the period v.

An analogous definition is given for the distance between two
points. On the line I joining two points P, Q there are two points
belonging to the absolute considered as a locus, viz., the two points
of intersection with 1. Call these X, Y. The distance (PQ) is
then defined to be

Klog(PQ, XY)
where K is a constant depending upon the linear unit employed.

When the absolute is imaginary X, Y are conjugate imaginary
points, and log(PQ, XY) is a pure imaginary. In order that the
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distance may be real, K must then be a pure imaginary, and, as in
the case of angles, we see that distance is a periodic function with
period 2ir~Ki. By taking K = \i the period becomes ir, and we make
linear measurement correspond with angular. This case will be
seen to correspond to spherical geometry, but the period (the radius
of the sphere being unity) is not ir but 2TT. This is exactly
analogous to the case of two rays, or lines with defined sense. On
the sphere two antipodal points define the same pencil of great
circles, but with opposite sense of rotation. If we leave the sense of
rotation undefined, then they determine exactly the same pencil,
and must be considered identical, or together as forming a single
point; just as two rays, which make an angle IT, together form a
single line. On the sphere two lines (great circles) determine two
antipodal points or pencils of opposite rotations; two points
determine two rays of opposite directions. It is convenient thus
to consider antipodal points as identical, or we may conceive a
geometry in which this is actually the case. This is the geometry
to which the name elliptic is generally confined, the term spherical
being retained for the case in which antipodal points are distinct.*
In the Cayley-Klein representation spherical geometry is con-
veniently excluded since two lines only intersect once.

Consider next the case where the absolute is a real proper
conic. This divides the plane into two distinct regions which we
may call the interior and the exterior, and it is of no moment whether
the conic be an ellipse, a parabola, or a hyperbola. I t is convenient
to picture it as an ellipse. If the points P, Q are in different
regions, then (PQ, XY) is negative and log(PQ, XY) is a complex
number of the form a + {2n + \)iir, or simply a + iir, to take its
principal value, a is zero only when(PQ,XY) = - I. Klog(PQ,XY)
also will in general be complex whatever be the value of K. Of
course it is possible to choose K = a - wr, which would make the
distance real, but for points in the vicinity of Q the distance (PQ)
would still be complex. On the other hand, if P, Q are in the
same region, (PQ, XY) is either real, when X, Y are real, or purely

* Some writers have distinguished these two geometries as single or polar
elliptic and double or antipodal elliptic. The idea of elliptic geometry is
due to Klein, but it was worked out independently by Newcomb7 and by
Frankland8. Spherioal geometry, as an independent geometry not subsumed
in Euclidean space of three dimensions, owes its origin to Riemann*.
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imaginary, when X, Y are conjugate imaginary points. Then by
taking K either real or a pure imaginary we can make the distance
between two points in the same region real when measured along a
certain class of lines, purely imaginary when measured along
another class : these are the lines which do or do not cut the absolute.
Hence we are led to consider certain points and lines as ideal.

Suppose we consider points within the absolute as actual points.
The line joining two actual points always cuts the absolute, and we
must take K real. Then all points outside the absolute are ideal
points, for the distance between an exterior point and an interior
point is complex (or purely imaginary in the case of harmonic
conjugates). If Q lies on the absolute, while P does not,
(PQ, XY) is either zero or infinite and log(PQ, XY) is infinite.
Hence the absolute is the assemblage of points at infinity. Two
lines cutting in an actual point O make a real angle if A is a pure
imaginary, since the tangents from O are conjugate imaginaries.

This then completes the representation of Hyperbolic Geometry.
Actual points are represented by the points within a real proper
conic. The conic itself consists of all the points at infinity, while
points outside it are ideal.

If now we consider points outside the absolute as actual points
there are two cases according as K is taken to be real or imaginary.
In the first case the distance between two points will be imaginary
if the line joining them does not cut the absolute. Such a line
must therefore be considered ideal, and we get in any pencil of lines
with an actual point as vertex a class of ideal lines and a class of
actual lines, and these are separated by the two tangents to the
absolute. As these tangents are real, k must now be taken to be
real, and we get a system of angular measurement of an entirely
different nature from that with which we are familiar. The period
of the angle is now 2iirk which is imaginary, and complete rotation
about a point becomes impossible. If the line q is a tangent to the
absolute log(pq, xy) is infinite. The angle between two lines thus
tends to infinity as one line is rotated. Further, if the line PQ
touches the absolute log(PQ, XY) = 0, i.e. (PQ) = 0, or the distance
between any two points on an absolute line is zero. This curious
result can be found to hold even in ordinary geometry if we
consider imaginary points. If the line PQ passes through one of
the circular points, so that y^ — y% = i(a;, — a )̂, then
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We have now to examine if the logarithmic expression for the
distance between two points holds in ordinary geometry. In this
case the two absolute points X, Y on any line PQ coincide, and
(PQ, XY) = 1. The distance between any two points would thus
be zero if K is finite. As the distance between any two points
must, however, in general be finite, it follows that we must make
K infinite.

Let PY = PX + e where e is small.
Then

and (PQ) = K log(PQ, XY) = K ^ - ~).

Choose K infinite in such a way that Ke is finite and =X.

Then ^

Now to fix A we must choose some point E so that (PE) = 1, the
PE

unit of length. Then 1 = A..

anH ,VQ\ F X E X FQ X E . X Q / v p ™
and (PQ) = _ _ _ . _ ^ _ _ r = _ _ = (XP,EQ).
If we take P as origin = 0,

(0Q) = (X0, EQ) = (0», Ql) = ^ - 4- ^ ,

ooQ
which agrees with the ordinary expression since —7-=l-

I t will be noticed that this case differs in one marked respect
from the case of elliptic geometry. In that system there is a
natural unit of length, which may be taken as the length of the
complete straight line—the period, in fact, of linear measurement;
just as in ordinary angular measurement there is a natural unit of
angle, the complete revolution. In Euclidean geometry, however,
the unit of length has to be chosen conventionally, the natural
unit having become infinite. The same thing appears to occur in
the hyperbolic case, since the period is there imaginary, but, K
being imaginary, iK is real, and this forms a natural linear
standard.
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It still remains for us to consider the cases in which the
absolute degenerates as an envelop to two coincident points and as
a locus to two straight lines which may be real, coincident or
imaginary. In these cases k is seen to be infinite, and it appears
as in the analogous case just considered that there is now no
natural unit of angle available, as the period is infinite. A unit
must be chosen conventionally.

The geometries in the case in which k is infinite or real present
a somewhat bizarre appearance, and are generally on that account
excluded from discussion, the objection being that complete
rotation about a point is impossible, and the right angle has no real
existence. Yet, if we go outside the bounds of plane geometry,
such geometries will present themselves when we consider the
metrical relations subsisting on certain planes, ideal or at infinity.

Let us consider the case of hyperbolic geometry of three
dimensions. Here the absolute is a real, not ruled, quadric
surface, say an ellipsoid, and actual points are within. Actual
lines and planes are those which cut the absolute, and the geometry
upon an actual plane is hyperbolic. But an ideal plane cuts the
absolute in an imaginary conic, and the geometry upon such a plane
is elliptic. A tangent plane to the absolute cuts the surface in two
coincident points and a pair of imaginary lines-. The geometry on
such a plane is the reciprocal of Euclidean geometry, i.e. the
measurement of distances is elliptic while angular measurement is
parabolic. In this geometry the perimeter of a triangle is constant
and equal to JT, just as in Euclidean geometry the sum of the angles
is constant and equal to IT. Now if we make use of the theorem
that the angle between two planes is equal to the distance between
their poles with respect to the absolute,* we see that the geometry of
a bundle of planes passing through a point on the absolute is
Euclidean. The sum of the three dihedral angles of three planes
whose lines of intersection are parallel is therefore always equal to
ir—a result which was obtained by Lobachevskij and Bolyai.

In this brief sketch an attempt only has been made to show how
the generalised conception of measurement can be evolved from
the ordinary conception. The results are all well known. The
following list, selected from the great literature of the subject, will
form a guide to anyone seeking to probe deeper into this branch of

* See the author's paper, " Classification of Geometries with Protective
Metric," §4.
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geometry. 1-6 are fundamental memoirs, 7 and 8 are independent
accounts of elliptic geometry, 9-13 are some of the most accessible
general expositions, while 14-16 are historical and bibliographical.
1. N. I. LOBACHEVSKIJ.—Geometrische Untersuehungen zur Theorie der

Farallellinien. Berlin (1840). English trans, by Halsted, Austin,
Texas (1891).

2. J. BOLYAI. — Appendix, scientiam spatii absolute veram exhibens.
Maros-Vasarhely (1832). English trans, by Halsted, Austin, Texas
(1891).

3. B. RIEMANN.—Uber die Hypothesen welohe der Geometrie zu Grunde
liegen. Gcittingen, Abb. Oea. Wiss. 13 (1866). English trans, by
Clifford, Nature, 8 (1873), or Math. Papers (1882).

4. E. LAGUERBE.—Note sur la theorie des foyers. Nouv. Ann, Math.
Paris, 12 (1853), or (Euvres, t. 2 (1905).

5. A. CAYLEY.—A sixth memoir upon quantios. Phil. Trans. 149 (1859).
AIBO in Cayley's Papers, vol. 2.

6. F. KLEIN.—Uber die sogenannte Nicht-Euclidische Geometrie. Math.
Ann. 4 (1871), 6 (1873). French trans, in Ann. Fac. Sc, Toulouse,
11G (1897).

7. S. NEWCOMB. —Elementary theorems relating to the geometry of a space
of three dimensions and of uniform positive curvature in the fourth
dimension. J. Math. (Crelle), 83 (1877).

8. F. W. FBANKLAND.—On the simplest continuous manifoldness of two
dimensions and of finite extent. London, Proe. Math. Soc. 8 (1877).
Nature, 15 (1877).

9. C. A. SCOTT.—An introductory account of certain modern ideas and
methods in plane analytical geometry. London : Hacmillan (1894).

10. On Cayley's theory of the absolute. Bull. Amer. Math.
Soc. (2) 3 (1897).

11. R. S. BALL.—Measurement. Enoycl. Brit. 9th ed. (1883).
12. B. RUSSELL.—Geometry, Non-Euclidean. Enoycl. Brit. 10th ed. (1902).
13. J. L. COOLIDGE.—The elements of Non-Euclidean geometry. Oxford:

Clarendon Press (1909).
14. P. STACKEL and F. ENGEL.—Die Theorie der Parallellinien von Euklid

bis auf Gauss. Leipzig : Teubner (1895).
15. R. BONO-LA.—La geometria non-euclidea : esposizione storioo-critica del

suo sviluppo. Bologna : ZanichelH (1906). German trans, by Lieb-
mann, Leipzig : Teubner (1908).

16. Bibliography of Non-Euclidean geometry. In J. Bolyai :
In Memoriam. Klausenburg (1902).

[At the request of members of the Society interested in the papers of this
Session on Non-Euclidean geometry, Dr Sommerville kindly consented to write
this paper primarily to serve as an introduction to his other paper on geometries
with projective metric.—EDITOR.]
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