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A Note on p-Harmonic T-Forms on
Complete Manifolds

Xi Zhang

Abstract. In this paper we prove that there is no nontrivial LI-integrably p-harmonic 1-form on a
complete manifold with nonnegatively Ricci curvature (0 < g < 00).

1 Introduction

Let (M, g) be a Riemannian manifold, and let u be a real C*° function on M. Fix
p € R, p > 1 and consider a compact domain {2 C M. The p-energy of u on £, is
defined to be

(1) EP(Q,u):l/ [V ul? dv,.
P Ja

The function u is said to be p-harmonic on M if u is a critical point of E, (€2, ) for
every compact domain 2 C M. Equivalently, u satisfies the Euler-Lagrange equation.

(2) div(|VulP"2Vu) = 0.

Thus, the concept of p-harmonic function is a natural generalization of that of har-
monic function, that is, of a critical point of the 2-energy functional.

Definition 1.1 A p-harmonic 1-form is a differentiable 1-form on M satisfying the
following properties:

dvw =0
(3) da* -2 —

(lw|P~*w) =0
where d* is the codifferential operator. It is easy to see that the differential of a p-
harmonic function is a p-harmonic 1-form.

In [1], R. E. Greene and H. Wu showed that there is no nonzero L1 (1 < g <
00) harmonic 1-form on a complete noncompact manifold with nonnegative Ricci
curvature. The purpose of this paper is to prove a nonexistence theorem of L7 p-
harmonic 1-form.
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In [2], L. Saloff-Coste showed that the condition of nonnegative Ricci curvature
implies a Sobolev inequality of the form:

p=2

4) (/ f>_ < CoVuln) 7 <r2/ Vf|2)
By(r) By (r)

for any compactly supported function f € Hf, (Bx(r)), where Cy > O and p > 2
are some fixed constants, and x € M, r > 0 are arbitrary. By the Bochner formula
and running the Moser iteration argument in [3] or [4], using (4), we obtain:

Main Theorem If M is a complete noncompact manifold with nonnegative Ricci cur-
vature, then no nonzero p-harmonic 1-form isin L1(M), 0 < q < oo (p > 1).

As the application of the above theorem, we obtain a Liouville-type theorem of p-
harmonic maps which can be viewed as a generalization of the result due to Schoen
and Yau [5].

2 Proof of Main Theorem

Lemma 2.1 ([2]) Let M" be a complete noncompact manifold with nonnegative Ricci
curvature; if n > 2, then there exists Cy, depending on n, such that, for any ball B,(r),
we have:

(5) ( / f—) L <GV (rz / Vflz)
By(r) B, (r)

where f € C§°(B), u = n.
Ifn < 2, then the above inequality holds for any p > 2.

Let w be a smooth 1-form on M, and X be a vector field on M. Then we know
Vx|w|* = 2 (Vxw, w). Then, by the Schwarz inequality, we have:

Lemma 2.2 (First Kato inequality) Let w be a differentiable 1-form on M. Then
1 2
(6) lw| - [Vw| > E‘VM |

Lemma 2.3 Let w be a p-harmonic 1-form on M. Let 1) be a compactly supported
nonnegative smooth function on M, and ¢ = n - |w|97%, G > p + 5. Then

/¢2‘<Aw,w>: (P—Z)(ZE—P—‘I) / 772’|W|2q76.(<d‘w|2’w>)2
(7) M M

F(p—2)- / 0wt (P, w) - (dn, w).
M
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Proof By a straightforward computation, we have
- / (d? - |w|T71 - d*w), [w]T! - w)
M
= / (d*(T]Z . |w‘¢7—1 cw) + <d(772 . |w|q—1)’w>) . <d|w\‘7_1’”, |w|p_2 ) w)
M

= / (<d(772 . |w‘t7*1)7w> _ <d(7’2 . ‘w|qu+1)’ |w|p72w>)
M
. <d(‘w|é—p+l)’ |w|p—2w>

- / (T, w) — A (wlTP*), [w]P2w)) - (d(fl TP, [w]P~2w)
M
and
/ (dw - AP |li), |1 w)
M

= [ 0 ) (4l )+ T )
M

- / ("™, w) — (d(wlT*), [w]F~2w)) - (dlr - o], w)
M

- / (ool ) - 2wl T ], w) + ] T - (dif, )}
M

= [ TP ) (P T ) + T ()
M

where we have used d*(Jw|P~*w) = 0. By the last two inequalities, we have:

/ ¢2 ’ <vaw>
M
:/ 7 - |wlP T Aw, w)
M

N 7/ (- || dd*w, || - w)
M
N _/ (d( - w|T™" - d*w), w7 - w) +/ (d*w - dP|w|T), |w]T'w)
M M
:/ n2(<d(|w|‘7—1)7w>2 _ <d(|w|q—p+l), |w|p—2w>2)
M

+ / (el w) — {d(wfTP*), [P ~2w)) - ol T - (dip’, )
M
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_(p=2)2G3—p—4)
o 4

+(p—2)- / n-wP - (d|w]?, w) - (dn,w).
M

/ 7 - w16 - (]l w0))?
M

Theorem 2.4 If M is a complete noncompact manifold with nonnegative Ricci curva-
ture, then no nonzero p-harmonic 1-form isin L1(M), 0 < g < oo (p > 1).

Proof Let e, e,...,e, be alocal orthonormal frame on M. By a straightforward
computation, we have

%A(|w|)2 = (Aw,w) + |[Vw|* + Zw(RicM(ei)) -w(e;)
(8) i—1

> (Aw,w) + \Vw|2.

Let n be a compactly supported nonnegative smooth function on M and ¢ =
n-|wi %4> q0q =p+ ﬁ + 5. Integrating by parts, (8) yields

(©) / $(V 8, V(|w])?) + / & (Aw,w) + / #IVul <o,
M M M
(a) When P > 2, (7) implies:
(10) /¢%mww2—@—ﬁ/nﬂkamwfﬁwW”.
M M
By (6), (8), (10), we have
0> / 0t (V- Wi, (w]?)
M
(-2 / 0 ldn| - |V (w])?] - w2
M

(an + / 7 Vel - fwff2
M

> (l " q;l) / - ’v|w|2’2 JwpPa
4 2 y
=1+ [ neldnl VL] - o2
M
(b) Whenl < p < 2, (7) implies:

/¢2.<Aw,w> > (p_z)(zz_P_4) / 7| VIwP|? - i
M M

(12)
) / 0 ldn] - | V1w - w2
M
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By (6), (8), (12),and § > g9, q0 = p + ﬁ + 5; we have

0> <i+q_1+(P_2)(2q_P_2)> -/n2-|V|w|2’2~\w|2q_4
M

2 4

#(p =3 [ 0l | VIoP] -
M

1 _
> (3) 1T ot
M

#(p =3 [ 0 ldnl | VIwP] P,
M

(13)

In any event, (11) and (13) imply that we have the inequality:

0> (3) [ o1 hop o
(14) M
() / 0 ldn| - | VIwl]| - w2,
M

By Young’s inequality, we have

- 1 5 -
T I R e P G

+2(p+ 1) [dn* - [w]*.
(14) becomes:

(15) /nz-IVIw\qlz§4~q2-(p+1)2-/ |dn|* - w1,
M M

Next, we fix 0 < p < v < R,0 € M, and let n € C§°(By(7)) be the cut-off
function

w=14b x € By(p)
TP 700, xeM\B,()

n(x) € [0,1] on M, [Vn| < 2.
Letk = ﬁ, by the Sobolev inequality (5) and (15), we have:

Y i :
{/ |w2q'k} s{/ <n-w|q>2k}
B,(p) B,(R)

R? _2 i
SC(mp)ﬁz-m -V (B,(R)) -/Bm |

(16)
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for some constant C(n, p) > 0.
Define:
gi=dqo-K
Ri=p+27"-(y—p)
foreachi =10,1,2....

Observe that lim;_, R; = p. Applying (16) to § = §i, p = Ri41, and v = R;, and
iterating the inequality. We conclude that:

o
(17) sup |w|2% < Cl(fl,p) . (L) . V(Bo(R)) -1 / ‘w|2%
TP By(7)

By(p)

for some appropriate constant C!(n, p, p1).

(a) When q > 2, applying (17) to p = %, v = R, we have:

sup |w| < (2"~ C'(n, p,p)) el S, 11" "
B(5) v V(B,(R))

2

(18)

1 |w|2q &
S(Z/L-Cl(napJ”‘L)) 240-{%} '

(b) When0 < g < 2q¢. Let h; = E;:o 277 %, foreachi = 0,1,2,...; applying
(17) to p = hy, v = hj4+1, we have:

(19)

R " —1
sup [w[*® < C'(n, p, p) - (ﬁ) -V (B,(R)) / o[
B, (h;) i+l — I By (hit1)

sCl(n,p,u)-2<”+2>'”~V(BG(R))_1~/ jw - sup Jw[*7.
By (hi+1) By (his1)

Denote M(i) = supy |w|?®, (19) becomes:

(200 M(i) < C'(n,p,p) - 2027 . V(By(R)) - / Jw[2 - M(i + 1) 7.
B,(R)

LetA=1-— 2%0' Iterating the inequality, we conclude that:
i—1

N )
(21) M(0) < H{cl(n,p,u)-2<"+2>‘ﬂ-v(Bo(R))‘1-/( )|w|24} M)
B,(R

i=0
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Let j — 00, we have:

1 Zutzo fB |w|
22 < (20.¢! 1.2
(22) ;}gp) jwl < ( (n, p, 1)) { (BO(R))

In any event, (18) and (22) imply that, for any g > 0, we have the inequality

S, 1@l
23 <C2 y Py 4, :
(23) ;Ol(lg)lwlf (n, p,q, 1) { (BO(R))

for some appropriate constant C*(n, p, q, 1) > 0 independent of R > 0.

On the other hand, S. T. Yau in [6] and E. Calabi in [7] independently showed that
when M is a complete noncompact manifold with nonnegative Ricci curvature, then
the volume of M is infinite. Hence, if [, |w|? < oo, by taking R — oo, we conclude
that:

sup |w| < 0.
M

Therefore, w must be identically 0.

By the definition, we know that the differential of a p-harmonic function is a p-
harmonic 1-form; thus we have the following corollary.

Corollary 2.5 Let M be a complete noncompact manifold with nonnegative Ricci cur-
vature, and u be a p-harmonic function on M. If [, || Vu[|? < 00, 0 < q < o0, then u
must be constant (p > 1).

If w is a harmonic 1-form, i.e., Aw = 0, from the proof of Theorem 2.4 one can
conclude the following corollary that can be viewed as a generalization of the result
due to R. E. Greene and H. Wu [1].

Corollary 2.6 Let M be a complete noncompact manifold with nonnegative Ricci cur-
vature, and w be a harmonic 1-form on M. If [, |w|1 < 00; 0 < q < 00, then w = 0.

3 Liouville Type Theorem of p-Harmonic Map

Let (M, g) be a complete Riemannian manifold (without boundary) of dimension
m with metric g, and (N, h) be a complete one of dimension #n with metric h. For
a smooth map U: M — N, fix a number 1 < p < 00, and consider a compact
domain 2 C M, we defined the p-energy of 1 on {2 by

(24) E,(Qu) = l/ |du(x)|? dv,
P Ja

where |du(x)| is the norm of the differential du(x) of u at x € € and dv, is the volume
element of M. Let u~! TN be the induced vector bundle by u over M, then du can be
viewed as a section of the bundle A'(u~!TN) = T*M ® u~'TN, and we denote by
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|du(x)| its norm at a point x of M, induced by the metrics g and 4, i.e., the Hilbert-
Schmidt norm of the linear map du(x).

We call 4 a p-harmonic map if it is a critical point of p-energy functional E,(§2, -)
for any compact domain 2 C M. That is, u is a p-harmonic map if and only if

dE, (u;)
25 2 =0

(25) dt t=0

for any one parameter family of maps u;: M — N with 4y = u and u,(x) = u(x)

for x € M\ Q. Note that 2-harmonic maps are harmonic maps by the definition. We

define the p-tension field 7, (u) of u by:

(26) Tp(u) = —d* (|du|"*du)

where d*: A'(u™'TN) — A°(u~!TN) is the codifferential operator. Equivalently,
a smooth map u: M — N is a p-harmonic map if and only if the p-tension field
Tp(u) = 0.

Assuming that (M, g) is a complete noncompact Riemannian manifold with non-
negative Ricci curvature and (N, k) is a complete Riemannian manifold with nonpos-
itive sectional curvature, denote the Ricci tensor of (M, g) by Ricyy, and the curvature
tensor of (N, h) by NR. Let e}, ey, . . ., e, be a local orthonomal frame on M, by the
Weitzenbock formula [8], we have:

%A|du|2 = (Adu, du) + |Vdu* + Y (du(Ricp(e)) , dule;))
i=1

— Z <NR(du(ej),du(ei)) due,-,duej>

i=1,j=1

> (Adu, du) + |Vdul*.

(27)

Let n be a compactly supported nonnegative smooth function on M, and ¢ =
n-|dulT',§ > p + 5. Asin Lemma 2.3, we have:

(28)

/¢2'<Adu qy— (P=DCI=p—4),
M

4

| 2

/ 7P - duPTC - | (d]dul?, du)

M

+(p—2)-/ 0 |duPT - ( (dldul, du), ((dn, du))).
M

By (27), (28), and as in Theorem 2.4, we can conclude the following theorem.

Theorem 3.1 Let (M,g) be a complete noncompact Riemannian manifold with non-
negative Ricci curvature and (N, h) be a complete Riemannian manifold with nonposi-
tive sectional curvature, then each p-harmonic map u from M to N with [, |du|? dvy <
00, 0 < q < 00 is a constant map (p > 1).
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Remark Note that 2-harmonic maps are harmonic maps by the definition. Applying
Theorem 3.1 with p = 2, one can obtain the result due to R. Schoen and S. T. Yau in
(5].

Let M be a complete noncompact Riemannian manifold with nonegative Ricci
curvature and N be a Riemannian manifold with nonpositive sectional curvature.
Then each harmonic map u from M to N with finite energy has to be a constant map.
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