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TWO INEQUALITIES FOR PLANAR CONVEX SETS 

BY 

GEORGE TSINTSIFAS 

ABSTRACT. B. Griinbaum, J. N. Lillington and lately R. J. Gardner, 
S. Kwapien and D. P. Laurie have considered inequalities defined by three 
concurrent straight lines in the interior of a planar compact convex set. In 
this note we prove two elegant conjectures by R./J. Gardner, S. Kwapien 
and D. P. Laurie. 

1. Introduction. Trying to establish a conjecture of B. Griinbaum [2], J. N. 
Lillington [3] came up with some interesting problems concerning the division of a 
planar compact convex set by three concurrent lines. In [1] R. J. Gardner, S. Kwapien 
and D. P. Laurie solve a conjecture of J. N. Lillington [3] and propose the following 
two new conjectures concerning area inequalities for planar convex sets. 

Let X be a planar compact convex set and L\, L2, L3 three concurrent lines through 
the interior point 0, which divide X into six regions with areas \X,•], | Yt |, i = 1,2,3 (see 
figure 1). 
(Here and throughout we denote by \E\ the area of the set E. Values of / lying outside 
the set {1, 2, 3} are defined by / = / + 3). 

FIG. 1. 
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We define 

\Y I Iy I ly I 
G(X) = — - + — • + — , 

I I'll 1^1 \Y3\ 
\xt\ + \x2\ \x2\ + |x , | \x3\ + \x{\ 

P(X) = — — - + — —- + — — 
y I I y I I y I 

lr3| | / | | \*2\ 

R. J. Gardner, S. Kwapien and D. P. Laurie conjectured: 
l . G ( X ) > 3 / 2 , 
2. />(*) > 3. 
2. Proof of the first conjecture. We originally obtained a trigonometrical proof for 

the first conjecture using an affine transformation and high school mathematics only. 
Below we give another proof, following R. J. Gardner's, S. Kwapien's and D. P. 
Laurie's formulation. 

THEOREM 1. Q(X) > 3/2. 

PROOF. The line L, intersects X at the points pi,qi9i = 1,2,3. Let Ai = qxp2 Pi px q3, 
A2 = q2p3 H p2qu A3 = q3px H p3q2. 

CASE 1. Suppose O is an interior point of the triangle A\A2A3 (see figure 2). 
Obviously we have 

(1) Q(X) > Q(AiA2A3). 

We use areal coordinates, setting 

A, = (1 ,0 ,0) , A2 = (0, 1,0), A3 = (0,0, 1) 

O = (Xi> X2, Xa), where xi+ X2 + X3 = |AiA2A3| = 1, X/ ^ 0. We take L, to be the 
line 

X/+1 " Xi+i = MX/ - i - x/-i)> ^ > ° 

and 

Pi = ( P l » P 2 » P 3 ) » <7i = (<7l> <?2> <?3)-

An easy calculation gives: 

P\-\ = X/-i + X/+1A/, A = X/ + ( l ~ ^ J x m , P!+I = 0, 

0/-i = °> <?! = X/ +(1 - X/)x,--i, <7m = X/+i + hXi-i, 

and 

|OA--I^/+I| = X?(X/+, + ( ^ ; ) - 0 

(2) 
|A,/?m0<7;_,| = (x,--i + X/+1)2 ~ ^ - i X m ~ X?- iAm> * = 1, 2, 3. 
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These expressions were obtained in [1]. 
Now using the inequality 

(3) k]a] + k2a2 ^ 
klk2(a] + a2)

2 

kx + k2 

where ku k2, a\, a2 E R, k\ + k2> 0, we have 

X, 

(3fl) *«-x;+1 + 

2 7 (X«+l + X / - l ) 2 

X/'-i A / + i 

X m 
X,-, + 

X/+, 

Consequently, from (2) and (3a) we obtain: 

or, 

or, 

lfl/V,<7ml > 

\AiPi+xOqt-\\ 

3 

e(A,A2A3) > S 

Xi 

X/-I + X/4 

X/- i + X H 

X,+ , + 
X,-

X,+ , + 
\f.. 

Ô(A,A2A3) ^ S ( 
X i - i 

LX/ + X/-f 
X/ + 

r Xi+i 

L + x/ 
We have now 

(4) 
X/- i 

X. + X/+i 

and consequently 

X/ + 
Xi+i I 2 1 

</ + X/-J X, 

X/ + X/-iJ 

2x«-iX« + i 

3 

e(A,A2A3) > S 

(X* + X/+i)(X«-i + Xi) 

2X/-iX« + i 

= i (Xi + X/+i)(X/-i + X«) 

We use now the known inequality 

3 2x,--iX/+i 3 
(5) 2 

/=! (Xi + X/+i)(Xi + X«-i) 2 

and finally obtain Q(X) > 3/2. 
The equality holds if and only if X is a triangle and LUL2, L3 are parallel straight lines 

through the centroid to the sides respectively. This can be seen by making use of (1), 
(3a), (4) and (5). 

CASE 2. Suppose that O is not an interior point of the triangle A\A2A3 and that O 
lies in the angle A\ of the triangle AiA2A7,. We can prove 
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l * 2J | * 3 J 3 

%\ \Y2\ Ï 

PROOF. The straight lines through px parallel to the line qxp2 intersects L2, L3 and 
A2A3 at the points N,M, A3 respectively. The proof of theorem 1 in case 1 is indepen
dent of the angle A ! of the triangle A] A2A3. Consequently we can consider as a triangle 
the figure S with sides A2A3, the semiline A2p2 and the semiline A3px. Then, from case 
1, it follows that Q(S) > 3/2 (this can be also proved directly). 

Also, it is very easy to see that: 

l*i I \X2\ M 

J7~\ + Fi + MM = Q{X) > Q{S)-
lrl| \r2\ 1^31 

So, for the second case, we have Q{X) > 3/2. 

FIG. 2. 

3. Proof of the second conjecture. 

THEOREM 2. P(X) > 3. 

We similarly have to investigate two cases. 

CASE 1. Suppose that the point O is an interior point of the triangle AlA2A3 (see 
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figure 2). From figure 2, we can see that 

P(X) > P(A{A2A3). 

We need the following lemma. 

LEMMA. Let ABC be a triangle and O, N, M points on the sides BC, CA, AB, 
respectively. We will show that: 

\BOM\ + \OCN\ sin (B + w) sin d> sin (C + cb) sin o> 
PA = ' > + 1 

\AMON\ sin (a) + (j>) sin B sin (co + 4>) sin C 

where A, B, C are the angles of the triangle ABC and < BOM = co < COA^ = (J). 

The equality holds if and only if MN is parallel to BC. 

PROOF OF THE LEMMA. It is elementary to see that: 
\BOM\ JBM^BÔ _ drJÔ2 

\ABC\ c-a c-a 

\OCN\ ~CN-CÔ d2-C02 

\ABC\ b-a b-a ' 

where 

sin a) , sin <\> 
d\ = , d2 = 

sin (B + w) sin (C + ((>) 
and a, b, c are the sides of the triangle ABC. Using the key inequality (3) we obtain 

\BOM\ + \OCN\ a-drd2 

\ABC\ hd\ + cd2' 

Consequently 

1 1 
(6) PA = 

\ABC\ bdl + cd2 

- 1 —. 1 \BOM\ + \OCN\ adxd2 

Using simple trigonometrical formulas in the triangle ABC we obtain: 

bdx + cd2 sin B sin (C + (()) sin C sin (B + oo) 

tfdi J2 sin A sin $ sin A sin co 

sin Z? sin C r , -, 
= :—; Icot 6 + cot 0)1 + 1. 

sin A 
From (6) and (7) it follows that 

sin A 
(8) 

sin B sin C [cot 4> + cot co] 

It is very easy to see that the following identity holds 
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sin A sin (B + to) sin <\> 
(9) 

sin B sin C [cot cj) + cot co] sin B sin (4> + co) 

sin (C + cj)) sin to 

sin C sin (c|) + to) 

Formulas (8) and (9) prove our lemma. 

The equality in (3) holds when kxax = k2a2 or, 

dx-~BÔ d2-~CÔ 

- 1. 

c b ' 

or, 

~BM = ~CN 

c ~~ b ' 

that is, MN is parallel to BC. 

We are now ready to prove the second conjecture. In figure 2 we define: 

< Op3q2 = to,, < Op2q\ = co3, < Opxq3 = to2. 

Applying the lemma to the triangles qxAxpx, q2A2p2, q3A3p3, we take, 

_ \qiOpi+\\ + [Op/gi-il 
PA, — : ; 

\Aipi+xOqi-X\ 

sin to,-, sin (TT — A,-, — to, + to,+ 1) 

sin (TT — A, — o)/+i) sin (TT — A m — to,-] + to,) 

Now 

or 

sin (TT — A, - to/+i + to,_i) sin (TT — A,_i — to,) 
+ 1 

sin to/+I sin (TT — A /+1 — to;_i + co,) 

P(AXA2A3) = S / Y , 

* //n,--, ni+]\ 
(10) />(A,A2A3) > S + - 3 , 

where, 

m/_i = sin to;_| sin (TT — A,_i — to, + to,+ i) 

ni+x = sin (TT — A, — to/+i) sin (TT — A m — to,_i + to,). 

Obviously it follows 

P(AXA2A3) > 2 + 2 + 2 - 3 = 3 . 
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The equality holds, according to our lemma, if p2q^ is parallel to L{, p3q\ is parallel 
to L2 and pxq2 is parallel to L3. Also taking (10) and (11) into account we find that L\, 
L2, L3 must be parallel to the sides of A \A2A}. Therefore we conclude that the equality 
holds if and only if X is a triangle, O is its centroid and L,, L2, L3 are parallel to the 
sides, respectively. 

CASE 2. A similar argument holds as in Theorem 1, case 2. 

4. Comments. The theorems 1 and 2 are remarkable tools in proving inequalities on 
convex sets. R. J. Gardner, S. Kwapien and D. P. Laurie noticed (see [1] page 309) 
that their theorems 3.1 and 4.1 follow immediately from theorems 1 and 2 respectively. 
Also it is worthwhile to notice here that Grunbaum's inequality/(X) > 1/2 (see [2]) 
follows easily from theorem 1. 

The author is grateful to the referee for several improvements in the paper. 
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