TWO INEQUALITIES FOR PLANAR CONVEX SETS

BY

GEORGE TSINTSIFAS

Abstract

B. Grünbaum, J. N. Lillington and lately R. J. Gardner, S. Kwapien and D. P. Laurie have considered inequalities defined by three concurrent straight lines in the interior of a planar compact convex set. In this note we prove two elegant conjectures by R.J. Gardner, S. Kwapien and D. P. Laurie.

1. Introduction. Trying to establish a conjecture of B. Grünbaum [2], J. N. Lillington [3] came up with some interesting problems concerning the division of a planar compact convex set by three concurrent lines. In [1] R. J. Gardner, S. Kwapien and D. P. Laurie solve a conjecture of J. N. Lillington [3] and propose the following two new conjectures concerning area inequalities for planar convex sets.

Let X be a planar compact convex set and L_{1}, L_{2}, L_{3} three concurrent lines through the interior point 0 , which divide X into six regions with areas $\left|X_{i}\right|,\left|Y_{i}\right|, i=1,2,3$ (see figure 1).
(Here and throughout we denote by $|E|$ the area of the set E. Values of i lying outside the set $\{1,2,3\}$ are defined by $i \equiv i+3$).

Fig. 1.

Received by the editors May 31, 1983 and, in final revised form, March 13, 1984.
AMS Subject Classification 52A10, 52A40.
© Canadian Mathematical Society 1983.

We define

$$
\begin{aligned}
& Q(X)=\frac{\left|X_{1}\right|}{\left|Y_{1}\right|}+\frac{\left|X_{2}\right|}{\left|Y_{2}\right|}+\frac{\left|X_{3}\right|}{\left|Y_{3}\right|}, \\
& P(X)=\frac{\left|X_{1}\right|+\left|X_{2}\right|}{\left|Y_{3}\right|}+\frac{\left|X_{2}\right|+\left|X_{3}\right|}{\left|Y_{1}\right|}+\frac{\left|X_{3}\right|+\left|X_{1}\right|}{\left|Y_{2}\right|}
\end{aligned}
$$

R. J. Gardner, S. Kwapien and D. P. Laurie conjectured:

1. $Q(X) \geq 3 / 2$,
2. $P(X) \geq 3$.
3. Proof of the first conjecture. We originally obtained a trigonometrical proof for the first conjecture using an affine transformation and high school mathematics only. Below we give another proof, following R. J. Gardner's, S. Kwapien's and D. P. Laurie's formulation.

Theorem 1. $Q(X) \geq 3 / 2$.
Proof. The line L_{i} intersects X at the points $p_{i}, q_{i}, i=1,2,3$. Let $A_{1}=q_{1} p_{2} \cap p_{1} q_{3}$, $A_{2}=q_{2} p_{3} \cap p_{2} q_{1}, A_{3}=q_{3} p_{1} \cap p_{3} q_{2}$.

Case 1. Suppose O is an interior point of the triangle $A_{1} A_{2} A_{3}$ (see figure 2). Obviously we have

$$
\begin{equation*}
Q(X) \geq Q\left(A_{1} A_{2} A_{3}\right) \tag{1}
\end{equation*}
$$

We use areal coordinates, setting

$$
A_{1}=(1,0,0), \quad A_{2}=(0,1,0), \quad A_{3}=(0,0,1)
$$

$O=\left(\chi_{1}, \chi_{2}, \chi_{3}\right)$, where $\chi_{1}+\chi_{2}+\chi_{3}=\left|A_{1} A_{2} A_{3}\right|=1, \chi_{i} \geq 0$. We take L_{i} to be the line

$$
\chi_{i+1}^{\prime}-\chi_{i+1}=\lambda_{i}\left(\chi_{i-1}-\chi_{i-1}^{\prime}\right), \quad \lambda_{i}>0
$$

and

$$
p_{i}=\left(p_{1}^{i}, p_{2}^{i}, p_{3}^{i}\right), \quad q_{i}=\left(q_{1}^{i}, q_{2}^{i}, q_{3}^{i}\right)
$$

An easy calculation gives:

$$
\begin{aligned}
& p_{i-1}^{i}=\chi_{i-1}+\chi_{i+1} / \lambda_{i}, \quad p_{i}^{i}=\chi_{i}+\left(1-\frac{1}{\lambda_{i}}\right) \chi_{i+1}, \quad p_{i+1}^{i}=0, \\
& q_{i-1}^{i}=0, \quad q_{i}^{i}=\chi_{i}+\left(1-\lambda_{i}\right) \chi_{i-1}, \quad q_{i+1}^{i}=\chi_{i+1}+\lambda_{i} \chi_{i-1},
\end{aligned}
$$

and

$$
\left|O p_{i-1} q_{i+1}\right|=\chi_{i}^{2}\left(\lambda_{i+1}+\left(\frac{1}{\lambda_{i-1}}\right)-1\right)
$$

$$
\begin{equation*}
\left|A_{i} p_{i+1} O q_{i-1}\right|=\left(\chi_{i-1}+\chi_{i+1}\right)^{2}-\lambda_{i-1} \chi_{i+1}^{2}-\chi_{i-1}^{2} / \lambda_{i+1}, \quad i=1,2,3 . \tag{2}
\end{equation*}
$$

These expressions were obtained in [1].
Now using the inequality

$$
\begin{equation*}
k_{1} a_{1}^{2}+k_{2} a_{2}^{2} \geq \frac{k_{1} k_{2}\left(a_{1}+a_{2}\right)^{2}}{k_{1}+k_{2}} \tag{3}
\end{equation*}
$$

where $k_{1}, k_{2}, a_{1}, a_{2} \in R, k_{1}+k_{2}>0$, we have

$$
\begin{equation*}
\lambda_{i-1} \chi_{i+1}^{2}+\frac{\chi_{i-1}^{2}}{\lambda_{i+1}} \geq \frac{\frac{\lambda_{i-1}}{\lambda_{i+1}}\left(\chi_{i+1}+\chi_{i-1}\right)^{2}}{\lambda_{i-1}+\frac{1}{\lambda_{i+1}}} \tag{3a}
\end{equation*}
$$

Consequently, from (2) and ($3 a$) we obtain:

$$
\frac{\left|O p_{i-1} q_{i+1}\right|}{\left|A_{i} p_{i+1} O q_{i-1}\right|} \geq\left[\frac{\chi_{i}}{\chi_{i-1}+\chi_{i+1}}\right]^{2}\left[\lambda_{i+1}+\frac{1}{\lambda_{i-1}}\right]
$$

or,

$$
Q\left(A_{1} A_{2} A_{3}\right) \geq \sum_{i=1}^{3}\left[\frac{\chi_{i}}{\chi_{i-1}+\chi_{i+1}}\right]^{2}\left[\lambda_{i+1}+\frac{1}{\lambda_{i-1}}\right]
$$

or,

$$
Q\left(A_{1} A_{2} A_{3}\right) \geq \sum_{i=1}^{3}\left(\left[\frac{\chi_{i-1}}{\chi_{i}+\chi_{i+1}}\right]^{2} \lambda_{i}+\left[\frac{\chi_{i+1}}{\chi_{i}+\chi_{i-1}}\right]^{2} \frac{1}{\lambda_{i}}\right),
$$

We have now

$$
\begin{equation*}
\left[\frac{\chi_{i-1}}{\chi_{i}+\chi_{i+1}}\right]^{2} \lambda_{i}+\left[\frac{\chi_{i+1}}{\chi_{i}+\chi_{i-1}}\right]^{2} \frac{1}{\lambda_{i}} \geq \frac{2 \chi_{i-1} \chi_{i+1}}{\left(\chi_{i}+\chi_{i+1}\right)\left(\chi_{i-1}+\chi_{i}\right)} \tag{4}
\end{equation*}
$$

and consequently

$$
Q\left(A_{1} A_{2} A_{3}\right) \geq \sum_{i=1}^{3} \frac{2 \chi_{i-1} \chi_{i+1}}{\left(\chi_{i}+\chi_{i+1}\right)\left(\chi_{i-1}+\chi_{i}\right)} .
$$

We use now the known inequality

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{2 \chi_{i-1} \chi_{i+1}}{\left(\chi_{i}+\chi_{i+1}\right)\left(\chi_{i}+\chi_{i-1}\right)} \geq \frac{3}{2} \tag{5}
\end{equation*}
$$

and finally obtain $Q(X) \geq 3 / 2$.
The equality holds if and only if X is a triangle and L_{1}, L_{2}, L_{3} are parallel straight lines through the centroid to the sides respectively. This can be seen by making use of (1), (3a), (4) and (5).

CASE 2. Suppose that O is not an interior point of the triangle $A_{1} A_{2} A_{3}$ and that O lies in the angle A_{1} of the triangle $A_{1} A_{2} A_{3}$. We can prove

$$
\frac{\left|X_{2}\right|}{\left|Y_{2}\right|}+\frac{\left|X_{3}\right|}{\left|Y_{2}\right|}>\frac{3}{2} .
$$

Proof. The straight lines through p_{1} parallel to the line $q_{1} p_{2}$ intersects L_{2}, L_{3} and $A_{2} A_{3}$ at the points N, M, A_{3}^{\prime} respectively. The proof of theorem 1 in case 1 is independent of the angle A_{1} of the triangle $A_{1} A_{2} A_{3}$. Consequently we can consider as a triangle the figure S with sides $A_{2} A_{3}^{\prime}$, the semiline $A_{2} p_{2}$ and the semiline $A_{3}^{\prime} p_{1}$. Then, from case 1, it follows that $Q(S)>3 / 2$ (this can be also proved directly).

Also, it is very easy to see that:

$$
\frac{\left|X_{1}\right|}{\left|Y_{1}\right|}+\frac{\left|X_{2}\right|}{\left|Y_{2}\right|}+\frac{\left|X_{3}\right|}{\left|Y_{3}\right|}=Q(X)>Q(S) .
$$

So, for the second case, we have $Q(X)>3 / 2$.

Fig. 2.

3. Proof of the second conjecture.

Theorem 2. $P(X) \geq 3$.
We similarly have to investigate two cases.
Case 1. Suppose that the point O is an interior point of the triangle $A_{1} A_{2} A_{3}$ (see
figure 2). From figure 2, we can see that

$$
P(X) \geq P\left(A_{1} A_{2} A_{3}\right) .
$$

We need the following lemma.
Lemma. Let $A B C$ be a triangle and O, N, M points on the sides $B C, C A, A B$, respectively. We will show that:

$$
P_{A}=\frac{|B O M|+|O C N|}{|A M O N|} \geq \frac{\sin (B+\omega) \sin \phi}{\sin (\omega+\phi) \sin B}+\frac{\sin (C+\phi) \sin \omega}{\sin (\omega+\phi) \sin C}-1
$$

where A, B, C are the angles of the triangle $A B C$ and $\Varangle B O M=\omega \Varangle C O N=\phi$. The equality holds if and only if $M N$ is parallel to $B C$.

Proof of the lemma. It is elementary to see that:

$$
\begin{aligned}
& \frac{|B O M|}{|A B C|}=\frac{\overline{B M} \cdot \overline{B O}}{c \cdot a}=\frac{d_{1} \cdot \overline{B O}^{2}}{c \cdot a}, \\
& \frac{|O C N|}{|A B C|}=\frac{\overline{C N} \cdot \overline{C O}}{b \cdot a}=\frac{d_{2} \cdot \overline{C O}^{2}}{b \cdot a},
\end{aligned}
$$

where

$$
d_{1}=\frac{\sin \omega}{\sin (B+\omega)}, \quad d_{2}=\frac{\sin \phi}{\sin (C+\phi)}
$$

and a, b, c are the sides of the triangle $A B C$. Using the key inequality (3) we obtain

$$
\frac{|B O M|+|O C N|}{|A B C|} \geq \frac{a \cdot d_{1} \cdot d_{2}}{b d_{1}+c d_{2}} .
$$

Consequently

$$
\begin{equation*}
P_{A}=\frac{1}{\frac{|A B C|}{|B O M|+|O C N|}-1} \geq \frac{1}{\frac{b d_{1}+c d_{2}}{a d_{1} d_{2}}-1} . \tag{6}
\end{equation*}
$$

Using simple trigonometrical formulas in the triangle $A B C$ we obtain:

$$
\begin{align*}
\frac{b d_{1}+c d_{2}}{a d_{1} d_{2}} & =\frac{\sin B \sin (C+\phi)}{\sin A \sin \phi}+\frac{\sin C \sin (B+\omega)}{\sin A \sin \omega} \tag{7}\\
& =\frac{\sin B \sin C}{\sin A}[\cot \phi+\cot \omega]+1 .
\end{align*}
$$

From (6) and (7) it follows that

$$
\begin{equation*}
P_{A} \geq \frac{\sin A}{\sin B \sin C[\cot \phi+\cot \omega]} . \tag{8}
\end{equation*}
$$

It is very easy to see that the following identity holds

$$
\begin{align*}
\frac{\sin A}{\sin B \sin C[\cot \phi+\cot \omega]}= & \frac{\sin (B+\omega) \sin \phi}{\sin B \sin (\phi+\omega)} \tag{9}\\
& \quad+\frac{\sin (C+\phi) \sin \omega}{\sin C \sin (\phi+\omega)}-1 .
\end{align*}
$$

Formulas (8) and (9) prove our lemma.
The equality in (3) holds when $k_{1} \alpha_{1}=k_{2} \alpha_{2}$ or,

$$
\frac{d_{1} \cdot \overline{B O}}{c}=\frac{d_{2} \cdot \overline{C O}}{b},
$$

or,

$$
\frac{\overline{B M}}{c}=\frac{\overline{C N}}{b},
$$

that is, $M N$ is parallel to $B C$.
We are now ready to prove the second conjecture. In figure 2 we define:

$$
\Varangle O p_{3} q_{2}=\omega_{1}, \quad \Varangle O p_{2} q_{1}=\omega_{3}, \quad \Varangle O p_{1} q_{3}=\omega_{2} .
$$

Applying the lemma to the triangles $q_{1} A_{1} p_{1}, q_{2} A_{2} p_{2}, q_{3} A_{3} p_{3}$, we take,

$$
\begin{aligned}
& P_{A_{i}}=\frac{\left|q_{i} O p_{i+1}\right|+\left|O p_{i} q_{i-1}\right|}{\left|A_{i} p_{i+1} O q_{i-1}\right|} \\
& \quad \geq \frac{\sin \omega_{i-1} \sin \left(\pi-A_{i-1}-\omega_{i}+\omega_{i+1}\right)}{\sin \left(\pi-A_{i}-\omega_{i+1}\right) \sin \left(\pi-A_{i+1}-\omega_{i-1}+\omega_{i}\right)} \\
& \quad \begin{array}{l}
\quad+\frac{\sin \left(\pi-A_{1}-\omega_{i+1}+\omega_{i-1}\right) \sin \left(\pi-A_{i-1}-\omega_{i}\right)}{\sin \omega_{i+1} \sin \left(\pi-A_{i+1}-\omega_{i-1}+\omega_{i}\right)}-1
\end{array}
\end{aligned}
$$

Now

$$
P\left(A_{1} A_{2} A_{3}\right)=\sum_{i=1}^{3} P_{A_{i}}
$$

or
(10)

$$
P\left(A_{1} A_{2} A_{3}\right) \geq \sum_{i=1}^{3}\left(\frac{m_{i-1}}{n_{i+1}}+\frac{n_{i+1}}{m_{i-1}}\right)-3,
$$

where,

$$
\begin{aligned}
& m_{i-1}=\sin \omega_{i-1} \sin \left(\pi-A_{i-1}-\omega_{i}+\omega_{i+1}\right) \\
& n_{i+1}=\sin \left(\pi-A_{i}-\omega_{i+1}\right) \sin \left(\pi-A_{i+1}-\omega_{i-1}+\omega_{i}\right) .
\end{aligned}
$$

Obviously it follows

$$
P\left(A_{1} A_{2} A_{3}\right) \geq 2+2+2-3=3 .
$$

The equality holds, according to our lemma, if $p_{2} q_{3}$ is parallel to $L_{1}, p_{3} q_{1}$ is parallel to L_{2} and $p_{1} q_{2}$ is parallel to L_{3}. Also taking (10) and (11) into account we find that L_{1}, L_{2}, L_{3} must be parallel to the sides of $A_{1} A_{2} A_{3}$. Therefore we conclude that the equality holds if and only if X is a triangle, O is its centroid and L_{1}, L_{2}, L_{3} are parallel to the sides, respectively.

CASE 2. A similar argument holds as in Theorem 1, case 2.
4. Comments. The theorems 1 and 2 are remarkable tools in proving inequalities on convex sets. R. J. Gardner, S. Kwapien and D. P. Laurie noticed (see [1] page 309) that their theorems 3.1 and 4.1 follow immediately from theorems 1 and 2 respectively. Also it is worthwhile to notice here that Grünbaum's inequality $f(X) \geq 1 / 2$ (see [2]) follows easily from theorem 1.

The author is grateful to the referee for several improvements in the paper.

References

1. R. J. Gardner, S. Kwapien and D. P. Laurie, Some inequalities related to planar convex sets. Canad. Math. Bull. 25(3), (1982), pp. 302-310.
2. B. Grünbaum, Measures of symmetry for convex sets, Proceedings of Symposia in Pure Math. Vol. VII, Convexity. Amer. Math. Soc. p. 270.
3. J. N. Lillington, Problems related to a conjecture by Grünbaum, Mathematika 21 (1974), pp. 45-54.

23 Platonos str.
54631 Thessaloniki, Greece

