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SOME RESULTS ON SEMI-PERFECT GROUP RINGS 

S. M. WOODS 

The aim of this paper is to find necessary and sufficient conditions on a 
group G and a ring A for the group ring AG to be semi-perfect. A complete 
answer is given in the commutat ive case, in terms of the polynomial ring A [X] 
(Theorem 5.8). In the general case examples are given which indicate a very 
strong interaction between the properties of A and those of G. Part ial answers 
to the question are given in Theorem 3.2, Proposition 4.2 and Corollary 4.3. 

1. Pre l iminar ie s . Given a group G and a ring A (with uni t element) the 
group ring A G is the free left A -module with the elements of G forming a basis. 
Multiplication is defined by 

(2>igi)(2>*g/) = EZ(a«Mfeig/)-
Alternatively AG may be thought of as all functions from G to A with finite 
support . The function r is identified with the element X^<?Kg)&> and the 
support of r, denoted Supp( r ) , is the set {g G G : r(g) 5* 0}. The fundamental 
ideal of AG, denoted AAG (or simply A if no confusion will arise), is the ideal 
generated by {1 — g : g G G}. Then AG/A ~ A. If H is a subgroup of G then 
œH will denote the right ideal of A G generated by {1 — h: h £ H}. If H is a 
normal subgroup of G then œH is an ideal and AG/œH ~ A (G/H). For further 
details, see [3]. 

If A is any ring then J A will denote the Jacobson radical of A and Â = A /JA. 
A ring A is semi-perfect if Â is art inian and every idempotent in À is 
the image of an idempotent in A. Since homomorphic images of semi-perfect 
rings are semi-perfect [2], if A G is semi-perfect then so is A, and so is A (G/N) 
for every normal subgroup N < G. Moreover if A and B are semi-perfect rings, 
then their direct sum A @ B is semi-perfect. 

If E is a division ring the characteristic of E will be denoted c h a r ( £ ) . 

2. R e d u c t i o n to t h e case : A i s loca l . A ring A is called local if A has a 
unique maximal left ideal M. In this case M = JA and Â is a division ring. 
If A is any ring, a /oca/ idempotent in 4̂ is an idempotent e such tha t eAe is 
a local ring. 

T H E O R E M (Mueller [4]). The following are equivalent for a ring A: 
(1) A is semi-perfect. 
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(2) The unit 1 Ç A is a sum of orthogonal local idempotents. 
(3) Every primitive idempotent is local, and there is no infinite set of orthogonal 

idempotents in A. 

L E M M A 2.1. Let A be a ring and let {eu . . . , en\ be a set of orthogonal idempo­
tents in A whose sum is 1. Then A is semi-perfect if and only if etAei is semi-
perfect for each i. 

Proof. Let A' = Y7i=ieiAet. Then A' is a subring of A, and is the direct sum 
of the rings etAei. T h u s each et is central in Af, and, it is sufficient to show tha t 
A is semi-perfect if and only if A' is semi-perfect. 

Suppose A is semi-perfect. Then clearly A' has no infinite set of orthogonal 
idempotents . L e t / be a primitive idempotent in A' and s u p p o s e / = ) \ + f<i in 
A, w h e r e / i , / 2 are orthogonal idempotents . S i n c e / = YTi=ifei a n d t h e / e * are 
orthogonal i d e m p o t e n t s , / = fet for some i. Bu t t h e n / i = / / i / = eiffifet G A'. 
Similarly / 2 Ç ^4'. Thus , / i = / or / 2 = / and / is primit ive in A. Since /I is 
semi-perfect, fAf is a local ring. But fA'f = feiAfetf = fetAeif = fAf. T h u s 
A' is semi-perfect. 

Conversely suppose A' is semi-perfect. Then \ £ A' can be wri t ten 1 = j \ + 
• • • + fm where theft are orthogonal local, and hence primitive, idempotents 
in A'. As above, ft = ftej for some j , and ftAft = j\A'f\ is a local ring. T h u s A 
is semi-perfect. 

P R O P O S I T I O N 2.2. Le/ 4̂ fo semi-perfect and let {eu . . • , £w} fre # se/ 0/ ortho­

gonal local idempotents in A whose sum is 1. Let G be any group. Then AG is 
semi-perfect if and only if (efAe^G is semi-perfect for each i. 

Proof. (eiAei)G = efAGei and the result follows from Lemma 2.1. 

3. Necessary c o n d i t i o n s o n G. Here we show tha t if AG is semi-perfect 
then G is a torsion group and there are no infinite chains of finite subgroups of 
G whose orders are uni ts in A. In view of the reduction in §2 and the fact t h a t 
AG is semi-perfect whenever AG is, we may assume tha t A is a division ring. 

If p is a prime, a pf-group is a group which has no element of order p, and 
a pr-element of a group is an element whose order is not divisible by p. If p = 0, 
every group is a ^/-group and every element of a group is a ^/-element. 

If p = 0, by a p-subgroup or Sylow p-subgroup of G we mean the trivial sub­
group. 

L E M M A 3.1. Let R be any ring such that R = R/JR is artinian, and let x G R. 
Let {xn} be the sequence: x0 = x, xi+i = xt — xf

2 for i ^ 0. Then for some n, 
1 — xn has a right inverse in R. 

Proof. T h e chain X\R 2 #2^ ^ . . . of right ideals in R gives rise to a chain 

{xxR + JR)/JR 2 (x2R + JR)/JR 3 . . . 

of right ideals in R. T h u s for some n ^ 1, (xnR + JR)/JR = (xn+1R + JR)/JR, 
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and xn Ç xn+iR + JR. For some r G R and y G JR, xn = (xn — xn
2)r + y. 

Now 1 — 3/ = (1 — xn) (1 + xwr) has a right inverse in i£ and so 1 — xn has a 
right inverse in R. 

THEOREM 3.2. Let A be a division ring of characteristic p ^ 0 and let G be a 
group. If AG is semi-perfect then G is a torsion group and there is a positive integer 
n such that no chain of finite pr-subgroups of G has length greater than n. 

Proof. Suppose x £ G has infinite order. Construct a sequence {xm} in A G 
as in Lemma 3.1, starting with XQ — X. Then for some m, 1 — xm has a right 
inverse in AG. Since 1 — xm £ KH where K is the prime subfield of A and H 
is the subgroup of G generated by x, and since KH is a direct summand of A G 
as left LTiLmodules, 1 — xm has a right inverse in KH. 

Multiplying by a high enough power of x we obtain the factorization xr = 
(1 — xm)g(x) in the polynomial ring K[x]. This is impossible since 1 

XyYi n a s 

2 distinct terms: 1 and ztx2m. Thus G must be a torsion group. 
If H = {hi, . . . , hr) is a finite //-subgroup of G then r = r • 1 is a unit in 4̂ 

and eH = (l/r)(h\ + . . . + hr) is an idempotent in ^4G. Moreover if K S H 
then eHeK = e^e^ = e#. Let n be the length of a composition series for the 
right ^IG-module AG and suppose 

{1) £ f f l C . . . C f f | , + 1 

is a chain of n + 1 finite //-subgroups of G. Let e* = £#t-, i = 1, . . . , n + 1. 
Then AG Z) e ^ G ID . . . 3 ^W+1̂ 4G. Reducing modulo J (AG) we obtain 
.4G 3 êî 4G 2 . . . 2 ën+1AG. Thus for some i, ê ^ G = êi+1AG. Then 
^ — e i+i is an idempotent in J (AG) and so e* = e*+i. This implies Ht = iff+i, 
a contradiction. 

COROLLARY 3.3. Le/ A be a division ring of characteristic p ^ 0 and /e/ G &£ 
a locally finite group. If AG is semi-perfect then every pf-subgroup of G is finite. 

Remark. It is not known whether AG semi-perfect implies that G is locally 
finite. If LI is a field of characteristic p > 0 and G is a non-locally-finite p-group, 
then KG will be semi-perfect (even local) if J (KG) = A. However the problem 
of determining J (KG) appears to be very difficult. (See [5, p. 121].) 

From now on we consider only locally finite groups. 

4. Some sufficient conditions. Here we see that if G is locally finite we 
may consider a suitable subgroup of G rather than all of G. 

LEMMA 4.1. Let A be a ring, G a group and N a normal subgroup of G such that 
G/N is locally finite. Then J (AN) C J (AG). 

Proof. Let x Ç J (AN), r £ AG. We show that 1 — xr has a right inverse 
in ^4G. Let G' be the subgroup of G generated by N and Supp(r). Then G'/N 
is finitely generated, hence finite. Let 

G'/N= \glN,g2N,...,gnN} 
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where gi = 1. Then {gu g2, . . . , gn) is a basis for the free right AN'-module 
AG'. Thus the endomorphism ring of AG' as a module is the matrix ring 
AN(n). For each y £ AG' let \y be the matrix corresponding to left multiplica­
tion by y. Then X : AG' —» AN(n) is a ring homomorphism. In particular X.c is 
the diagonal matrix with entries x, g2~1xg2, . • . , grTlxgn, each of which is in 
J (AN) since J (AN) is invariant under automorphisms of AN. Thus 
X, G (JAN)in) = J(AN{n)) and for some/ £ i4iV(n)> (1 - X*Xf)/ = 1. Regard­
ing these as endomorphisms and applying them to 1 £ AG' yields 
(1 — xr) - / ( I ) = 1. Then/(1) Ç AG' C 4̂ G is the required inverse of 1 — xr. 

PROPOSITION 4.2. Le/ A be a local ring with char(Z) = p > 0 awd let G be a 
locally finite group. Let N be a normal p-subgroup of G and let H be any subgroup 
of G such that NH = G. If AH is semi-perfect, then so is AG. 

Proof. Let irlAG-^ AG be the canonical epimorphism. If g £ G then for 
some n G N, h £ H we have g = nh = (n — l)h + h £ uN + ^4iL Thus 
AG = uN + -4J?. Since (X4)G C J {AG), ir may be factored into 

where Ker TT2 = J (AG). Now Â AT is anil ideal, hence AÂN Q J (AN) C J (AG). 
Thus 

A ^ £ TrrHAjiv) Ç T r ^ L ^ G ) ) = J ( ^ G ) 

and œN =_AANAGQJ(AG). It follows that ,4G = L(,4G) +/1LT and 
TT(AH) = AG. By _ J 3 , Proposition 9], 4 i 7 H JAG £ L4/L But 
AH/(AH C\JAG) ^AG is semi-simple. Thus JAH = AH C\ JAG and 
^ H ^ M G . _ 

If vlif is semi-perfect then AG is artinian. Letx2 = x in ^4G. Then x = w(e) 
for some e2 = e in ^4i7 C ^4G. Thus 4̂ G is semi-perfect. 

In [5] Passman asks: if K is a field when is KG semi-perfect? The next result 
provides a partial answer in a somewhat more general setting. 

COROLLARY 4.3. Let A be a local perfect ring with char (if) = p ^ 0 and let G 
be a locally finite group. If G has a p-subgroup of finite index then AG is semi-
perfect. 

Proof. G has a normal ^-subgroup N of finite index and a finite subgroup F 
such that NF = G. Then A F is perfect [6], hence semi-perfect and so AG is 
semi-perfect. 

5. Abelian groups. If G is an abelian torsion group and p is a prime then 
G = Gp X -ff where Gp is the Sylow ^-subgroup of G and if consists of all 
//-elements of G. Hence G/Gp ~ H is a //-group. 

LEMMA 5.1. (Burgess [2]). Le/ i k a /oca/ ring with char (̂ 4) = p ^ 0. 
Le/ G fre an abelian group and let Gv be the Sylow p-subgroup of G. Then AG is 
semi-perfect if and only if A (G/Gv) is semi-perfect and in this case G/Gv is finite. 
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Proof. This follows easily from Proposition 4.2 and Corollary 3.3. 

We now show tha t if G is a finite abelian group of exponent n and if Cn is 
the cyclic group of order n then AG is semi-perfect if and only if ACn is semi-
perfect. Then necessary and sufficient conditions for ACn to be semi-perfect 
are given when A is commutat ive, in terms of the polynomial ring A [X]. 

We may assume tha t A is semi-perfect and n is a unit in A. T h u s J (AG) = 
(JA)G and AG = AG, an artinian ring. T o prove tha t AG is semi-perfect it is 
sufficient to prove either t h a t idempotents lift from AG to A G or t h a t every 
primitive idempotent in A G is local. If e is any idempotent in A G then ne is a 
uni t in eAGe and eAGe = eAGe. 

Let g be an element of order n in an abelian group G, let F be an algebraically 
closed field whose characteristic does not divide n and let z be a primitive n th 
root of uni ty in F. For i = 0, . . . , n — 1 let 

€* = £ £ „ 2 < v -
W e show t h a t the e* are orthogonal idempotents whose sum is 1, and t ha t if 
zl is a primitive rath root of 1 then get is a primitive rath root of e*. 

S i n c e r e * = eif e*2 = et. If i 9* j let e ^ = (1/w2) E Ï I o V g ' . Then 

n— 1 n— 1 

z at = z 2~i z z — z z 2-*/ z = a,f 
k=0 k=Q 

Since s'~J j* l,at = 0 and hence e^- = 0. Let E ^ o e * = (1/w) Y^^tg1- Then 

z'&, = ^ ' E * l k " = &«• I f 0 < * < »» *' ^ 1 a n d h e n c e ^ = 0. T h u s 

n—l -j 

X €* = - • n • 1 = 1. 
TTo » 

If zl is a primitive rath root of 1 then gmet = gmzim€i = et, but if 0 < r < ra 
t h e n €t = grzir€i 9e gr€i s ince ziT ^ 1 a n d et ^ 0. 

For each m\n let em = E € * where the sum is taken over all i such tha t JS* 
is a primitive rath root of 1 and let ej = E e * where the sum is taken over all i 
such t h a t zim = 1. Then {em: m\n) is an orthogonal set of idempotents whose 
sum is 1. Since emti = ef whenever sz is a primitive rath root of unity, gem is 
a primitive rath root of em. Clearly em' = X^im^- Since s'm = 1 if and only if 
s\i where s = n/m, em

f = ET^oe^-. Let 

1 n— 1 
ern = - E C/g'-

Then ct = ET^oV^. If m\t, zsjt = 1 and ct = ra. If ra \ t, then, since s * ^ = ct 

and £s* 7e 1, ct = 0. Thus 

em = — [!+ g + g + • • • + g J. 

https://doi.org/10.4153/CJM-1974-013-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-013-x


126 S. M. WOODS 

If F = C, the complex numbers, then for each m\n, nej G ZG where Z 
denotes the integers. Since em = em' — J^ed where the sum is taken over all 
d\m, d < m, we see by induction that nem G ZG. 

Let A beany ring in which n is a unit and let A' be the subring {t • 1 : / G Z}. 
Then ^4' = Z or A' == Z/(r) for some r relatively prime to n. In either case, 
for some p \ n there are homomorphisms 

Z->A'->Z/(p)->F 

where F is the algebraic closure of Z/(p), which extend to homomorphisms 
ZG-^A'G—^FG. In AG, we may define inductively for each m\n, em' = 
(m/n)[l + gm + g2m + . . . + gn-m] and em = ej — ]Ted where the sum is 
taken over all d\m, d < m. Then nem G A'G for each m\n. Using the homo­
morphisms defined above, (nem)2 = n(nem), (nem)(ned) = 0 if m ^ d, 
Y,m\nnem = n, and gm(nem) = nem. Hence in AG, em

2 = em, emed = 0 if m ^ d, 
T,m\nem = 1 and gmem = em. If grem = em in AG for some r, 0 < r < m then 
gr(nem) = w m̂ in^4rG, hence in FG. Thus gr£m = ^w in FG, a contradiction. It 
follows that gem is a primitive mth root of unity in AGem. 

LEMMA 5.2. Let e ^ 0 be a primitive idempotent in AG and let m\n. Then ge is 
a primitive mth. root of unity in eAGe if and only if e — eme. In this case ge is 
a primitive mth root of unity in eAGe. 

Proof. Since (ge)n = gne = e, ge is a primitive dth root of unity in eAGe for 
a unique d\n. Since e is primitive and e = J2m\neme, e = eme for a unique m\n. 
We show that d = m. 

Since (gem)m = emy (ge)m = (geme)m = eme = e. Thus d\m. Since gde = e, 
ede = e. If d < m then e = edeme = 0, a contradiction. Thus d = m. 

In this case eAGe = eAGe and ge = ge in ZG. Then e — ëmë and the above 
argument applied in AG shows that ge is a primitive mth root of unity in eÂGe. 

LEMMA 5.3. Let A be a local ring, G a group and e an idempotent in AG such that 
eAGe CI eA C\ Ae and e(\) is central and not a zero-divisor in A. Let A' = 
\a G A : ea = ae}. Then eAGe ~ A' as rings and A' is local. 

Proof. If x G eAGe then x = ea for a unique a G A. Define / : eAGe -^ A 
by f{ea) = a. Clearly/preserves sums and ke r / = 0. If ea G eAGe then eae = 
ea. Thus f(ea • eb) = f{eab) = ab and / preserves products. This proves that 
eAGe ^ I m / . 

Clearly A' Cj Im / . Let a G Im / . Then ea G eAGe CI eA f~\ Ae and so 
ea = a'e for some a' £ A. Thus e(l)a = a'e(l) = e(\)af and a = a' ^ A'. 
This completes the proof that eAGe ~ A'. 

Finally if a' G A' is a unit in yl, then a' is a unit in A'. Thus the set of 
non-units in A ' is precisely A' C\ J A, an ideal of A'. It follows that A' is local. 

LEMMA 5.4. Let A be a local ring with char(Z) = p ^ 0. Le/ C7 = (g) be a 
cyclic group of order n, p \ n. Let m\n and suppose A has a primitive mth root of 
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unity a such that a is a primitive mth root of unity in A. Then AGem is semi-
perfect. 

Proof. Since AGem' = AGem ©AG(em' — em) it is sufficient to show that 
AGem

f is semi-perfect. 
For i = 1, . . . , m let 

ft = (-M E a'YeJ. \ m 1 j=0 

Since afgft = fufi2 = ft. If i j* k then 0 < \i — k\ < m. Thus â*_A; ^\\x\Â 
and a*'-* — 1 is a unit in ^4. Now 

/ 1 \ m~^ m~•*• / i \ wi—l 

\m i j=o t=o \m i /==o 
where 

ra—1 

a 

But a'_A;x = x and so x = 0. Thus/*/* = 0. Moreover 
m / 1 \ m~* i m \ 

i=i \ m / J=o \ x=i / 

the unit element of AGeJ. 
Finally, fiAGeJft = ftAGft. Since algf t = / , , g/, = arf x £ ^4/z-. Thus 

^G/i = 4/V Similarly / ^ G = / ^ , and so ftAGftQfiA C\Aft. Moreover 
fi{I) = (l/m)(m/n)a° = 1/n, a central unit in ^4. By Lemma 5.3, ftAGfi is 
local. Thus AGeJ is semi-perfect. 

LEMMA 5.5. Let g and h be commuting elements in a group G, of orders s and t 
respectively, and let u = L.C.M.(s, /). Then for some integer r, ghr has order u. 

Proof. The group (g, h) is a finite abelian group of exponent u. Hence (g, h) = 
Y X Z where Y = (y) is a. cyclic group of order u and zu = 1 for all z £ Z. 
Let g = (ya, z\) and h = (yb, z2). Since g and h generate Y X Z, ya and yb 

generate F . Thus G.C.D. (a, b, u) = 1. If u\a let r = 1. Otherwise let r be the 
product of all primes which divide u but not a. A check of possible prime factors 
reveals that G.C.D. (a + br, u) = 1. Thus ghr = (ya+br, z^) has order u. 

LEMMA 5.6. Let A be a ring and let G — Cn. If AG is semi-perfect then so is 
A{GXG). 

Proof. Without loss of generality we may assume that A is local and n is a 
unit in A. Let g generate G and let H = (h) denote the second copy of G. 
For each m\n define em £ AG as at the beginning of this section and define 
fm G AH in a corresponding way using h in place of g. 

Let e be a primitive idempotent in A (G X # ) . We show that e is local. Now 
e = eesft for a unique 5, /|w. Thus, by Lemma 5.2, in the multiplicative group 
(ge, he), ge has order s and he has order /. Let u = L.C.M.(s, t) and let r be 

https://doi.org/10.4153/CJM-1974-013-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-013-x


128 S. M. WOODS 

an integer such that ghre has order u. The automorphism oî G X H which 
sends ghr to g and h to h extends to an automorphism 6 of A (G X H). Since 
die)A (G X H)6(e) = eA(G X H)e it is sufficient to show that 6(e) is a local 
idempotent. 

Since e is a primitive idempotent, so is 6(e). In (gd(e), hd(e)), gd(e) = 6(ghre) 
has order u and A0(e) = 6(he) has order /. By Lemma 5.2, 0(e) = 6(e)euft. 
Now yl (G X H)euft = (AGeu)Hft in a natural way. Since AGeu is semi-perfect 
the unit element eu is a sum of orthogonal local idempotents. If / is a local 
idempotent in AGeu then f(AGeu)Hftf~ (fAGeuf)Hft is semi-perfect by 
Lemmas 5.2 and 5.4. Thus (AGeu)Hft is semi-perfect by Lemma 2.1. It follows 
that 

6(e)A(G X H)d(e) = d(e)A(G X H)euftd(e) 

is a local ring and 4̂ (G X H) is semi-perfect. 

PROPOSITION 5.7. Let A be a ring and let G be a finite abelian group of exponent 
n. Then A G is semi-perfect if and only if A Cn is semi-perfect. 

Proof. Since ACn is a homomorphic image of AG, if AG is semi-perfect then 
so is A Cn. 

Conversely suppose ACn is semi-perfect. If r ^ 2 then ACn
r = (ACn

r~2) 
(Cn X Cn) and ACn

r~l ^ C4C/-2)CW. By Lemma 5.6 and induction ACn
r is 

semi-perfect for all r > 0. But 4̂C7 is a homomorphic image of ACn
r for some r. 

Thus AG is semi-perfect. 

THEOREM 5.8. Let A be a commutative local ring with char(Z) = p ^ 0 and 
/e£ G be an abelian group with Sylow p-subgroup Gv. Then AG is semi-perfect if 
and only if G/Gv is a finite group of exponent n and every monic factor of Xn — 1 
in Â[X] can be lifted to a monic factor of Xn — 1 in A[X]. 

Proof. By Lemma 5.1 and Proposition 5.7 we may assume G = Cn and n is 
a unit in A. Then AG ^A[X]/(Xn - 1) and AG = ÂG ^À[X]/(Xn - 1). 
Since n is a unit in A, Xn — 1 has no multiple roots in any extension of Â. 
Thus if Xn - 1 = f(X)g(X) in A[X] then/ (X) and g(X) are relatively prime. 
By [1, Theorem 19] idempotents in A[X]/(Xn — 1) lift to idempotents in 
A[X]/(Xn - 1) if and only if every monic factor of Xn — 1 in Â[X] lifts to a 
monic factor of Xn — 1 in A[X]. 

6. Examples. In this section it is shown that for a given ring A, the class of 
groups G for which A G is semi-perfect is not closed under taking subgroups or 
direct products. 

Let g generate C2, the 2-element group. If 4̂ is a local ring and char (if ) ^ 2 
then (1 + g)/2 and (1 — g)/2 are local idempotents in AC2 whose sum is 1. 
Thus A C2 is semi-perfect. If char (Â ) = 2 then AC2 is semi-perfect by Proposi­
tion 4.2. 

LEMMA 6.1. If A is semi-perfect and 5 3 is the symmetric group of degree 3 
then ASz is semi-perfect. 
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Proof. We may assume A is local. If char(Z) = 3 let TV be the subgroup of 
order 3 and let H be a subgroup of order 2 in 53. Then S3 = iV77 and AS% is 
semi-perfect by Proposition 4.2. 

If char(Z) ^ 3, let g generate N and h generate H, and let e = 
(1 + g + g2)/3, a central idempotent. Then 

.4S3 = AS,e ®AS,(l - e). 

Since AS*(1 - e) = coiV, ,4S3e ^ ^53/coiV ^ 4 (53/iV) = AC2. Thus .4S3e is 
semi-perfect. 

Let fl = (1 - g) (1 + A)/3 and let f2 = (1 - e) - fx. Then /2 and f2 are 
orthogonal idempo tents whose sum is 1 — e. Also fori = 1, 2 , / ^ 5 3 ( l — e)ft = 

fiASsfi C ftA r\ Aft a n d / , ( l ) = 1/3. By Lemma 5.3, JV*S3/Z- is local. Thus 
y!53(l — e) is semi-perfect. 

Now we exhibit a local ring 4̂ such that A C3 is not semi-perfect. Let 

A = {a/b:a,b £ Zand 7 f&}, 

a su bring of the rationals. Then Â is the field with 7 elements. In Z[X], 
Xs - Ï = (X - T)(X - 2)(X - 4) but in ,4[X], AT3 - 1 = (X - 1)(AT2 + 
X + 1). Since X2 + X + 1 is irreducible over A, ACZ is not semi-perfect. 

For our second example we let 

A = {x/y : x, y € Z[i] and (2 + i) \ y in Z[i]\, 

a subring of the complex numbers. Then Â is the field with 5 elements. In 
Â[X], Xs - 1 = (X - Ï )(X2 + IX + Ï) and X8 - 1 = (X - l)(X + Ï ) 
(X — ï)(X + ï)(X2 — ï)(X2 + ï), and the quadratic factors are irreducible. 
Since these factorizations can be lifted to ^4[X], ^4C3 and AC8 are semi-perfect. 

Now C3 X C* = C24. In A[X], X24 - 1 has _the irre_ducible factor X4 -
iX2 - 1 but in I[X], X4 - IX2 - 1 = X4 + 2X2 + 9 = (X2 + 2X + 3) 
(X2 - 2X + 3). Thus AC2i is not semi-perfect. 
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