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SOME RESULTS ON SEMI-PERFECT GROUP RINGS
S. M. WOODS

The aim of this paper is to find necessary and sufficient conditions on a
group G and a ring A4 for the group ring AG to be semi-perfect. A complete
answer is given in the commutative case, in terms of the polynomial ring 4[X]
(Theorem 5.8). In the general case examples are given which indicate a very
strong interaction between the properties of A and those of G. Partial answers
to the question are given in Theorem 3.2, Proposition 4.2 and Corollary 4.3.

1. Preliminaries. Given a group G and a ring A (with unit element) the
group ring AG is the free left A-module with the elements of G forming a basis.
Multiplication is defined by

(Xag:) (2bg) = 22 (ad;)(ggs).

Alternatively AG may be thought of as all functions from G to 4 with finite
support. The function 7 is identified with the element Y ,7(g)g, and the
support of 7, denoted Supp (7), is the set {g € G:7(g) # 0}. The fundamental
ideal of AG, denoted A, (or simply A if no confusion will arise), is the ideal
generated by {1 — g:g € G}. Then AG/A= A. If H is asubgroup of G then
wH will denote the right ideal of 4G generated by {1 — h:h € H}. If Hisa
normal subgroup of G then wH is an ideal and AG/wH =< A (G/H). For further
details, see [3].

If A is any ring then J4 will denote the Jacobson radical of 4 and A = A/JA.
A ring A is semi-perfect if A is artinian and every idempotent in A is
the image of an idempotent in 4. Since homomorphic images of semi-perfect
rings are semi-perfect [2], if AG is semi-perfect then so is 4, and so is 4 (G/N)
for every normal subgroup N < G. Moreover if 4 and B are semi-perfect rings,
then their direct sum 4 @ B is semi-perfect.

If E is a division ring the characteristic of E will be denoted char(E).

2. Reduction to the case: 4 is local. A ring A4 is called local if A has a
unique maximal left ideal M. In this case M = J4 and 4 is a division ring.
If A is any ring, a local idempotent in A is an idempotent e such that ede is
a local ring.

THEOREM (Mueller [4]). The following are equivalent for a ring A:
(1) A is semi-perfect.
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(2) Theunit1 € A is a sum of orthogonal local idempotents.
(3) Every primitive idempotent is local, and there is no infinite set of orthogonal
idempotents in A.

LEMMA 2.1. Let A be a ring and let {ey, . . ., e,} be a sel of orthogonul idempo-
tents in A whose sum 1is 1. Then A 1s semi-perfect if and only if e;Ae; is semi-
perfect for each 1.

Proof. Let A’ = Y i_ie;Ae;. Then A’ is a subring of 4, and is the direct sum
of the rings e;4e;. Thus each e, is central in 4’, and, it is sufficient to show that
A is semi-perfect if and only if A’ is semi-perfect.

Suppose 4 is semi-perfect. Then clearly A’ has no infinite set of orthogonal
idempotents. Let f be a primitive idempotent in A’ and suppose f = fi + f» in
A, where fi, f are orthogonal idempotents. Since f = > i_ife; and the fe, are
orthogonal idempotents, f = fe; for some 7. Butthen fi = ffif = e, ffife; € A'.
Similarly f» € A’. Thus, fi = f or f, = f and f is primitive in 4. Since 4 is
semi-perfect, fAf is a local ring. But fA’f = fe,A’e.f = fe,de,f = fAf. Thus
A’ is semi-perfect.

Conversely suppose 4’ is semi-perfect. Then 1 € 4’ can be written 1 = f; +
... + f. where the f; are orthogonal local, and hence primitive, idempotents
in A’. As above, f; = f.e; for some j, and f,Af; = f;A'f;is a local ring. Thus 4
is semi-perfect.

PROPOSITION 2.2. Let A be semi-perfect and let {ey, . . ., e,} be a set of ortho-
gonal local idempotents in A whose sum s 1. Let G be any group. Then AG is
semi-perfect if and only if (e;Ae;)G is semi-perfect for each i.

Proof. (e;Ae;)G = ¢;AGe; and the result follows from Lemma 2.1.

3. Necessary conditions on G. Here we show that if AG is semi-perfect
then G is a torsion group and there are no infinite chains of finite subgroups of
G whose orders are units in 4. In view of the reduction in §2 and the fact that
AG is semi-perfect whenever AG is, we may assume that 4 is a division ring.

If p is a prime, a p’-group is a group which has no element of order p, and
a p’-element of a group is an element whose order is not divisible by p. If p = 0,
every group is a p’-group and every element of a group is a p’-element.

If p = 0, by a p-subgroup or Sylow p-subgroup of G we mean the trivial sub-
group.

LemMA 3.1. Let R be any ring such that R = R/JR is artinian, and let x € R.
Let {x,} be the sequence: xo = x, X141 = x; — x;* for © = 0. Then for some n,
1 — x, has a right inverse in R.

Proof. The chain ;R D xR D ... of right ideals in R gives rise to a chain
xR+ JR)/JR D (x2R + JR)/JR D . ..
of right ideals in R. Thus for some#n =1, (x,R +JR)/JR = (%,41.R + JR)/JR,
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and x, € ®,41R + JR. For some » € R and y € JR,x, = (x, — x,2)r + y.
Now1l —y = (1 — x,)(1 4+ x,7) has a right inverse in R and so 1 — x, has a
right inverse in R.

THEOREM 3.2. Let A be a division ring of characteristic p = 0 and let G be a
group. If AG is semi-perfect then G is a torsion group and there is a positive integer
n such that no chain of finite p'-subgroups of G has length greater than n.

Proof. Suppose x € G has infinite order. Construct a sequence {x,} in 4G
as in Lemma 3.1, starting with xo = x. Then for some m, 1 — «x,, has a right
inverse in AG. Since 1 — x,, € KH where K is the prime subfield of 4 and H
is the subgroup of G generated by «, and since KH is a direct summand of 4G
as left KH-modules, 1 — x,, has a right inverse in KH.

Multiplying by a high enough power of x we obtain the factorization x™ =
(1 — x,)g(x) in the polynomial ring K[x]. This is impossible since 1 — x,, has
2 distinct terms: 1 and =4=x?". Thus G must be a torsion group.

It H = {hy, ..., h,} is a finite p’-subgroup of G then r = r - 1 isa unitin 4
and ey = (1/r)(hi + ... + k,) is an idempotent in AG. Moreover if K < H
then eyex = exey = ey. Let n be the length of a composition series for the
right AG-module AG and suppose

{1} -fC—ng'~~an+1
is a chain of # + 1 finite p’-subgroups of G. Lete; = eg;, 2 =1, ..., n + 1.
Then AG D e AG D ... 2 e,11AG. Reducing modulo J(4AG) we obtain
AGD&AGD ... D énHE. Thus for some 4, &AG = éi+1Z—G. Then
e; — ey is an idempotent in J(AG) and so e; = ;1. This implies H; = H 4,
a contradiction.

COROLLARY 3.3. Let A be a diwvision ring of characteristic p = 0 and let G be
a locally finite group. If AG is semi-perfect then every p'-subgroup of G is finite.

Remark. It is not known whether 4G semi-perfect implies that G is locally
finite. If K is a field of characteristic p > 0 and G is a non-locally-finite p-group,
then KG will be semi-perfect (even local) if J(KG) = A. However the problem
of determining J(KG) appears to be very difficult. (See [5, p. 121].)

From now on we consider only locally finite groups.

4. Some sufficient conditions. Here we see that if G is locally finite we
may consider a suitable subgroup of G rather than all of G.

LEMMA 4.1. Let A be a ring, G a group and N a normal subgroup of G such that
G/ N 1s locally finite. Then J(AN) C J(AG).

Proof. Let x € J(AN), r € AG. We show that 1 — xr has a right inverse
in AG. Let G’ be the subgroup of G generated by N and Supp(r). Then G'/N
is finitely generated, hence finite. Let

G'/N = {giN, &:N, ..., &N}
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where g, = 1. Then {gi, gs, ..., g} is a basis for the free right 4 N-module
AG'. Thus the endomorphism ring of AG’ as a module is the matrix ring
AN y. For each y € AG’ let \, be the matrix corresponding to left multiplica-
tion by y. Then \: AG" — ANy, is a ring homomorphism. In particular \, is
the diagonal matrix with entries x, go—'%xgs, ..., g, '%g,, each of which is in
J(AN) since J(AN) is invariant under automorphisms of AN. Thus
e € (JAN)@w = J(ANw) and for some f € ANy, (1 — A \,)f = 1. Regard-
ing these as endomorphisms and applying them to 1 € AG' vyields
(1 —«xr)-f(1) = 1. Then f(1) € AG' C AG is the required inverse of 1 — xr.

PROPOSITION 4.2. Let A be a local ring with char(A) = p > 0 and let G be a
locally finite group. Let N be a normal p-subgroup of G and let H be any subgroup
of G such that NH = G. If AH is semi-perfect, then so is AG.

Proof. Let m: AG — AG be the canonical epimorphism. If g € G then for
some # € N, h € H we have g =nh = (n — 1)h + % € oN + AH. Thus
AG = wN + AH. Since (JA)G C J(AG), = may be factored into

AG™ AG™ 4G
where Ker 7, = J(AG). Now Azy is anil ideal, hence Azy & J(AN) C J(AG).

Thus
Asy © w7 (Azy) & 7! (J(fIG)) = J(AG)

and oN = A,yAG C J(AG). It follows that AG = J(AG) + AH and
w(AH) = AG. By [3, Proposition 9], AH N JAG € JAH. But
AH/(AH N JAG) =~ AG is semi-simple. Thus JAH = AH N JAG and
ATl ~ 4G. o

If AH is semi-perfect then AG is artinian. Let&? = & in AG. Then & = = (e)

for some e = ein AH C AG. Thus AG is semi-perfect.

In [5] Passman asks: if K is a field when is KG semi-perfect? The next result
provides a partial answer in a somewhat more general setting.

COROLLARY 4.3. Let A be a local perfect ring with char(A) = p = 0 and let G
be a locally finite group. If G has a p-subgroup of finite index then AG is semi-
perfect.

Proof. G has a normal p-subgroup N of finite index and a finite subgroup F
such that NF = G. Then AF is perfect [6], hence semi-perfect and so AG is
semi-perfect.

5. Abelian groups. If G is an abelian torsion group and  is a prime then
G = G, X H where G, is the Sylow p-subgroup of G and H consists of all
p’-elements of G. Hence G/G, = H is a p’-group.

LeEmMA 5.1. (Burgess [2]). Let A be a local ring with char(d) = p = 0.
Let G be an abelian group and let G, be the Sylow p-subgroup of G. Then AG is
semi-perfect if and only if A(G/G,) is semi-perfect and in this case G/G, s finite.
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Proof. This follows easily from Proposition 4.2 and Corollary 3.3.

We now show that if G is a finite abelian group of exponent # and if C, is
the cyclic group of order # then AG is semi-perfect if and only if 4C, is semi-
perfect. Then necessary and sufficient conditions for AC, to be semi-perfect
are given when 4 is commutative, in terms of the polynomial ring 4[X].

We may assume that 4 is semi-perfect and # is a unit in 4. Thus J(4AG) =
(JA)G and AG = AG, an artinian ring. To prove that AG is semi-perfect it is
sufficient to prove either that idempotents lift from AG to AG or that every
primitive idempotent in AG is local. If ¢ is any idempotent in AG then #ne is a
unit in eAGe and eAGe = eAGe.

Let g be an element of order # in an abelian group G, let F be an algebraically
closed field whose characteristic does not divide # and let z be a primitive nth
root of unity in F. For< =0,...,n — 1let

7
L

s
27’
0

€; =

=

7
We show that the ¢; are orthogonal idempotents whose sum is 1, and that if

z!is a primitive mth root of 1 then ge; is a primitive mth root of e;.
Since z'ge; = €5, €2 = ;. 11 # jlet e;e; = (1/n2) Y7 Z0ag". Then

—1 n—1
i—j i—j ik_j(1—k it i—3j i— Dk
2 ]atzzllz: Zzzy(t )ZZJZIJE:Z( ])=az~

Since 27 # 1, a, = 0 and hence e;e; = 0. Let "t = (1/n) t_ob,g Then
2, = 2! YTzt = b, If0 < ¢t < m,z' # 1 and hence b, = 0. Thus

n—1 1
Y=g onel-l

If z% is a primitive mth root of 1 then g"e; = g"z™e; = €, but if 0 < 7 < m
then e; = g'z%e; 5% g'e; since 3°" % 1 and €; # 0.

For each m|n let e, = X ¢; where the sum is taken over all ¢ such that 3?
is a primitive mth root of 1 and let e,/ = Y e; where the sum is taken over all 7
such that 2 = 1. Then {e, : m|n} is an orthogonal set of idempotents whose
sum is 1. Since e,e; = ¢; whenever z? is a primitive mth root of unity, ge,, is

a primitive mth root of e,. Clearly en’ = D ameqs- Since z™ = 1 if and only if
sli where s = n/m, e, = Y7 oeq;. Let
1 n—1
e, = = Z cg.
7 =0
Then ¢, = Y7ozt If mlt, 289" = 1 and ¢, = m. If m £ ¢, then, since 2°%c, = ¢,

and 2t # 1, ¢, = 0. Thus

el =LA+ T
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If F = C, the complex numbers, then for each m|n, ne,’ € ZG where Z
denotes the integers. Since e, = e,’ — D>.eq where the sum is taken over all
dlm, d < m, we see by induction that #ne, € ZG.

Let 4 be any ring in which # is a unit and let A’ be the subring {¢-1:¢ € Z}.
Then 4" =< Z or A’ =< Z/(r) for some r relatively prime to #. In either case,
for some p 4 n there are homomorphisms

7Z7—-A4"—>7Z/(p)—>F

where F is the algebraic closure of Z/(p), which extend to homomorphisms
ZG — A'G — FG. In AG, we may define inductively for each m|n, ¢,’ =
(m/n)[1 + g™+ g™+ ...+ g™ and e, = e,/ — Y e, where the sum is
taken over all d|m, d < m. Then ne, € A’G for each m|n. Using the homo-
morphisms defined above, (ne,)? = n(ne,), (ne,)(ne,) =0 if m # d,
> minhen = n, and g™ (ne,) = ne,. Hence in AG, e, = ey, eneq = 0if m £ d,
> mintm = 1 and g"e,, = e,. If g’e,, = e, in AG for some r, 0 < r < m then
g"(ne,) = ne, in A’G, hence in FG. Thus g’e,, = e, in FG, a contradiction. It
follows that ge,, is a primitive mth root of unity in 4Ge,,.

LEMMA 5.2. Let e # 0 be a primative idempotent in AG and let m|n. Then ge is
a primitive mth root of unity in eAGe if and only if e = ene. In this case ge is
a primitive mth root of unity in eAGe.

Proof. Since (ge)® = g'e = e, ge is a primitive dth root of unity in e4AGe for
a unique d|n. Since ¢ is primitive and e = Y, .ene, € = ¢,¢ for a unique m|n.
We show that d = m.

Since (gen)™ = en, (ge)™ = (gene)™ = ene = e. Thus d|m. Since ge = e,
e/e = e. If d < m then e = e/ene = 0, a contradiction. Thus d = m.

In this case eAGe = éAGe and ge = gé in AG. Then & = ¢,¢é and the above
argument applied in AG shows that gé is a primitive mth root of unity in 24Ge.

LEMMA 5.3. Let A be a local ring, G a group and e an idempotent in AG such that
eAGe C eA M Ae and e(l) s central and not a zero-divisor in A. Let A" =
{a € A:ea = ae}. Then eAGe =2 4’ as rings and A’ is local.

Proof. If x € eAGe then x = ea for a unique a € 4. Define f:edGe — A
by f(ea) = a. Clearly f preserves sums and ker f = 0. If ea € e4AGe then eae =
ea. Thus f(ea - eb) = f(eab) = ab and f preserves products. This proves that
eAGe = Im f.

Clearly A’ C Im f. Let @« € Im f. Then ea € eAGe C eA M Ae and so
ea = d’e for some ¢’ € A. Thus e(1)a = a’e(1) = e(1)a’ and a = a’ € A'.
This completes the proof that eAGe = A4’.

Finally if @’ € A’ is a unit in A4, then «’ is a unit in A’. Thus the set of
non-units in A’ is precisely 4’ M JA, an ideal of 4’. It follows that A is local.

LEMMA 5.4. Let A be a local ring with char(A) = p = 0. Let G = (g) be a
cyclic group of order n, p  n. Let m|n and suppose A has a primitive mth root of
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unity a such that @ is a primitive mth root of unity in A. Then AGe,, is semi-

perfect.

Proof. Since AGe,’ = AGe,, @ AG(e,/ — e,) it is sufficient to show that
AGe,, is semi-perfect.
Fori=1,...,mlet

_ i) L=
fl_(m ;}agem~

Since a'gf; = fo, f& =fo If i £ kthen0 < | — k| < m. Thus a** % 1in 4
and ™% — 1 is a unit in 4. Now

m—1 m—1 m—1
1 :
1= (2) E E ettt = (1) E s

=0 =0 =0
where
m—1

x= 2 at o,

=0

But a**x = x and so x = 0. Thus f,;f, = 0. Moreover

m m—1 m
Sr= (1) 5 (8 o)eer = e,
i=1 m/ =0 =1

the unit element of AGe,, .

Finally, f:AGe,'f; = fiAGf,. Since a'gf, = fi, gfi = «7'f; € Af.. Thus
AGf; = Af,. Similarly f,AG = f;4, and so f.AGf; C f:4 M Af;. Moreover
f:(1) = (1/m)(m/n)a’® = 1/n, a central unit in 4. By Lemma 5.3, f;AGf,; is
local. Thus AGe,,’ is semi-perfect.

LeEMMA 5.5. Let g and h be commuting elements in a group G, of orders s and ¢
respectively, and let w = L.C.M.(s, t). Then for some integer r, gh™ has order u.

Proof. The group (g, k) is a finite abelian group of exponent «. Hence (g, /) =
Y X Z where ¥ = (y) is a cyclic group of order # and z* = 1 for all z € Z.
Let g = (3% 21) and £ = (3%, 22). Since g and % generate ¥ X Z, y* and 4°
generate Y. Thus G.C.D. (a, b, u) = 1. If u|a let # = 1. Otherwise let » be the
product of all primes which divide # but not a. A check of possible prime factors
reveals that G.C.D. (a + br, u) = 1. Thus gh” = (y**"", z12,") has order u.

LEMMA 5.6. Let A be a ring and let G = C,. If AG 1is semi-perfect then so is
A(G X G).

Proof. Without loss of generality we may assume that 4 is local and # is a
unit in 4. Let g generate G and let H = (k) denote the second copy of G.
For each m|n define e, € AG as at the beginning of this section and define
fm € AH in a corresponding way using % in place of g.

Let e be a primitive idempotent in 4 (G X H). We show that e is local. Now
e = ee,f, for a unique s, ¢|n. Thus, by Lemma 5.2, in the multiplicative group
(ge, he), ge has order s and ke has order ¢. Let u = L.C.M.(s, ) and let r be

https://doi.org/10.4153/CJM-1974-013-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-013-x

128 S. M. WOODS

an integer such that gh’e has order #. The automorphism of G X H which
sends gh” to g and & to & extends to an automorphism 6 of 4(G X H). Since
0(e)A(G X H)0(e) =2 ed (G X H)e it is sufficient to show that 6(e) is a local
idempotent.

Since e is a primitive idempotent, so is 8(¢). In (gf(e), h6(e) ), gd(e) = 0(gh’e)
has order u# and %8(e) = 6(he) has order {. By Lemma 5.2, 0(e) = 6(e)e,f..
Now 4 (G X H)e.f, = (AGe,)Hf, in a natural way. Since 4Ge, is semi-perfect
the unit element ¢, is a sum of orthogonal local idempotents. If f is a local
idempotent in AGe, then f(AGe,)Hf,f= (fAGe.f )Hf, is semi-perfect by
Lemmas 5.2 and 5.4. Thus (4Ge,)Hf, is semi-perfect by Lemma 2.1. It follows
that

0(e)A (G X H)b(e) = 0(e)A (G X H)eufH(e)

is a local ring and 4 (G X H) is semi-perfect.

PROPOSITION 5.7. Let A be a ring and let G be a finite abelian group of exponent
n. Then AG is semi-perfect if and only if AC, is semi-perfect.

Proof. Since AC, is a homomorphic image of 4G, if AG is semi-perfect then
so is AC,.

Conversely suppose AC, is semi-perfect. If » = 2 then AC,” = (4C,?)
(C, X C,) and AC," ' = (AC,?)C,. By Lemma 5.6 and induction 4C,” is
semi-perfect for all » > 0. But 4G is a homomorphic image of 4 C,” for some r.
Thus AG is semi-perfect.

THEOREM 5.8. Let A be a commutative local ring with char(4) = p = 0 and
let G be an abelian group with Sylow p-subgroup G,. Then AG is semi-perfect if
and only if G/G, ts a finite group of exponent n and every monic factor of X® — 1
in A|X] can be lifted to a monic factor of X* — 1 1n A[X].

Proof. By Lemma 5.1 and Proposition 5.7 we may assume G = C, and # is
a unit in 4. Then AG =~ A[X]/(X” — 1) and 4G = AG =~ A[X]/(X" — 1).
Since 7 is a unit in A, X* — 1 has no multiple roots in any extension of A.
Thusif X” — 1 = f(X)g(X) in A[X] then f(X) and g(X) are relatively prime.
By [1, Theorem 19] idempotents in A[X]/(X* — 1) lift to idempotents in
A[X]/(X" — 1) if and only if every monic factor of X” — 1 in A[X] lifts to a
monic factor of X” — 1 in A[X].

6. Examples. In this section it is shown that for a given ring 4, the class of
groups G for which AG is semi-perfect is not closed under taking subgroups or
direct products.

Let g generate (s, the 2-element group. If 4 is a local ring and char(4) # 2
then (1 + g)/2 and (1 — g)/2 are local idempotents in AC> whose sum is 1.
Thus A4 C, is semi-perfect. If char (4) = 2 then 4 C, is semi-perfect by Proposi-
tion 4.2.

LeEmMA 6.1. If A is semi-perfect and Sy is the symmetric group of degree 3
then AS3 is semi-perfect.
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Proof. We may assume 4 is local. If char(4) = 3 let N be the subgroup of
order 3 and let H be a subgroup of order 2 in S;. Then S; = NH and A4S; is
semi-perfect by Proposition 4.2.

If char(d) s 3, let g generate N and % generate H, and let e =
(1 + g + g?)/3, a central idempotent. Then

AS3 = ASge @AS,;(]. - 6).

Since A4S;(1 — e) = wN, AS;e = AS;/oN = A(S;/N) = AC,. Thus AS;e is
semi-perfect.

Let fi = (1 —g)(1 + %)/3 and let fo» = (1 — ¢) — f1. Then f; and f. are
orthogonal idempotents whose sumis1 — e. Also for¢ = 1, 2, f,45; (1 — e)f, =
fidSsf: € fid M Af;and f;(1) = 1/3. By Lemma 5.3, f:4S;f; is local. Thus
AS;3(1 — e) is semi-perfect.

Now we exhibit a local ring 4 such that A C; is not semi-perfect. Let

A ={a/bia,b € Zand 7 10},

a subring of the rationals. Then A4 is the field with 7 elements. In A[X],
X3—1=X-1)(X —2)(X —4) butin 4[X], X3 — 1 = (X — 1)(X? +
X + 1). Since X2 4+ X 4+ 1 is irreducible over 4, AC; is not semi-perfect.

For our second example we let
A ={x/y:ix,y € Z[{] and (2 4 7) ¥y in Z[{]},

a subring of the complex numbers. Then A is the field with 5 elements. In
AX], X3 —1= (X —-1)X24+1X+ 1) and X* - 1= X - D1)(X + 1)
X —71)(X +7)(X?2 —2)(X? 4+ 7), and the quadratic factors are irreducible.
Since these factorizations can be lifted to 4[X], AC; and A Cs are semi-perfect.

Now C3; X Cs = Cay. In A[X], X?** — 1 has the irreducible factor X* —
iX? — 1butin A[X], X* —7X2 — 1 = X* 4+ 2X2+ 9 = (X* + 2X + 3)
(X2 — 2X + 3). Thus ACs, is not semi-perfect.
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