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algebras and Macdonald polynomials

O. Schiffmann and E. Vasserot

Abstract

We exhibit a strong link between the Hall algebra HX of an elliptic curve X defined
over a finite field Fl (or, more precisely, its spherical subalgebra U+

X) and Cherednik’s
double affine Hecke algebras Ḧn of type GLn, for all n. This allows us to obtain a
geometric construction of the Macdonald polynomials Pλ(q, t−1) in terms of certain
functions (Eisenstein series) on the moduli space of semistable vector bundles on the
elliptic curve X.

Introduction

The spherical affine Hecke algebra SḢG of a reductive algebraic group G is the convolution
algebra of G(O)-invariant functions on the affine Grassmannian Ĝr =G(K)/G(O), where
K = Fl((z)) and O = Fl[[z]]; see [IM65]. The Satake isomorphism identifies SḢG with the
representation ring Rep(GL(C)) of the dual group of G. Now let us assume that G=GL = GLn,
so that the set of Fl-points of Ĝr is equal to

{L⊂ Fnl ((z)) : L is a free Fl[[z]]-module of rank n}

and Rep(G)' C[x±1
1 , . . . , x±1

n ]Sn . In [Lus81], the nilpotent conesNk ⊂ glk, k > 1, were embedded
into the positive Schubert variety

Ĝr
+

= {L⊂ Fnl [[z]] : L is a free Fl[[z]]-module of rank n}

of Ĝr. This yields a surjective algebra homomorphism

Θ+
n : Hcl =

⊕
k>0

CGLk [Nk]→ SḢ+
n ' C[v±1][x1, . . . , xn]Sn ; (0.1)

see [Mac95, ch. II] or [Lus81]. Here, Hcl is the classical Hall algebra and v = l−1/2. Since the
dependence on v is polynomial, we may treat v as a formal parameter. Letting n tend to infinity
in (0.1) yields an isomorphism in the stable limit,

Θ+
∞ : Hcl

∼→ SḢ+
∞ = C[v±1][x1, x2, . . .]S∞ . (0.2)

The first main result of this paper gives affine versions of (0.1) and (0.2). In [BS05] it was
found that the Hall algebra HX of the category of coherent sheaves on an elliptic curve X defined
over Fl contains a natural ‘spherical’ subalgebra U+

X which is a two-parameter deformation of
the ring of diagonal invariants,

R+
n = C[x1, . . . , xn, y

±1
1 , . . . , y±1

n ]Sn ,
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Elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials

where Sn acts simultaneously on the x-variables and the y-variables. The two deformation
parameters are the Frobenius eigenvalues σ and σ of H1(X,Qp) (viewed as complex numbers).
The dependence on σ and σ is polynomial, so we may treat these as formal variables.

Let Ḧn denote Cherednik’s double affine Hecke algebra of type GLn, and let SḦn = S · Ḧn · S
stand for its spherical subalgebra. Here S is the complete idempotent associated to the finite
Hecke algebra Hn ⊂ Ḧn. The algebra SḦn is a deformation of the ring

Rn = C[x±1
1 , . . . , x±1

n , y±1
1 , . . . , y±1

n ]Sn

that depends on two parameters t and q. Let SḦ+
n be the positive part of SḦn; see § 2.1. In

Theorem 3.1 we prove the following result.

Theorem. If σ = q−1 and σ = t−1, then for any n there exists a surjective algebra
homomorphism Φ+

n : U+
X � SḦ+

n . This map extends to a surjective algebra homomorphism

Φn : UX := DU+
X → SḦn.

Here DU+
X is the Drinfeld double of U+

X . It is equipped with an action of SL(2, Z) that comes
from the group of derived autoequivalences of Db(Coh(X)). Cherednik has defined an action of
SL2(Z) on SḦn; see [Che04, Ion03]. The map Φn is defined so as to intertwine these two actions.
The maps Φ+

n behave well with respect to the stable limit, according to Theorem 4.6.

Theorem. The maps Φ+
n induce an algebra isomorphism

Φ+
∞ : U+

X
∼→ SḦ+

∞ = lim←− SḦ+
n .

One of the essential features of the construction of the spherical affine Hecke algebras as
convolution algebras of functions (on the affine Grassmannian or on the nilpotent cones) is
that it lifts to a tensor category of perverse sheaves (see, for example, [Gin95, MV00]). Such a
geometric lift also makes sense here, and fits into Laumon’s theory of automorphic sheaves. We
refer to [Sch05] and § 4.3 for more details.

In the second part of this paper, we give an application of the above geometric construction
of SḦn to Macdonald polynomials.

The Hall algebra Hvec
X of the category of vector bundles on X (or on any smooth projective

curve) can be viewed as the algebra of (unramified) automorphic forms for GLn, for all n> 1, over
the function field ofX. The product is given by the functor of parabolic induction; see [Kap97]. To
obtain the whole Hall algebra HX , one needs to take into account the torsion sheaves as well. The
Hall algebra Htor

X of the category of torsion sheaves on X acts on Hvec
X by the adjoint action,

and HX is isomorphic to the semidirect product Hvec
X o Htor

X . The actions of torsion sheaves
can be interpreted in the language of automorphic forms as Hecke operators. For instance, the
skyscraper sheaf Ox at a point x ∈X corresponds to the elementary modification at x.

Under the map Φ+
∞, the element 1(0,1) ∈Utor

X responsible for the Hecke operator of rank
one is sent to Macdonald’s element ∆1 = S

∑
i YiS ∈ SḦ+

∞; see § 2. The importance of this
element stems from the fact that in the polynomial representation of SḦ+

∞, the operator ∆1

has distinct eigenvalues and the corresponding eigenvectors are the Macdonald polynomials
Pλ(q, t−1). Thus the map Φ+

∞ allows us to relate Hecke eigenvectors on the Hall or automorphic
side to Macdonald polynomials on the Hecke algebra side. In particular, we are naturally led to
find Hecke eigenvectors in U+

X whose eigenvalues match those of the Pλ(q, t−1).
Eisenstein series yield a way of producing new Hecke eigenvectors from old ones via parabolic

induction. In the present situation, it so happens that the simplest Eisenstein series, i.e. those
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induced from trivial characters of parabolic subgroups, already have the good eigenvalues under
the Hecke operator. Unfortunately, we are unable to construct the polynomial representation
of SḦ+

∞ in a geometric manner (see the remark in § 5.1), and thus we cannot obtain directly a
geometric construction of Pλ(q, t−1). To remedy this, we lift the Macdonald polynomials from the
polynomial representation and view them inside the Hecke (or Hall) algebra itself. More precisely,
it has been shown in [BS05] that the subalgebra of U+

X consisting of functions supported on the
set Coh(X)(0) of semistable sheaves of zero slope is canonically isomorphic to the algebra

Λ+
(σ,σ) = C[σ±1/2, σ±1/2][x1, x2, . . .]S∞ .

In short, under the Fourier–Mukai transform the set Coh(X)(0) is identified with the set of torsion
sheaves on X, and any function on the set of torsion sheaves with a fixed punctual support in X
can be viewed as an element of the classical Hall algebra; see [Pol03, Theorem 14.7] for details.
If f is any function in U+

X , we let f (0) denote its restriction to Coh(X)(0), viewed as an element
of Λ+

(σ,σ). For any l ∈ N+, put

El(z) =
∑
d∈Z

1(l,d)v
d(l−1)zd ∈ Û+

X [[z, z−1]] (0.3)

with v = (σσ)−1/2 = #F−1/2
l , where 1(l,d) denotes the characteristic function of the set of all

coherent sheaves on X of rank l and degree d and Û+
X is a certain completion of U+

X . For
(l1, . . . , ln) ∈ Nn, we form the Eisenstein series

El1,...,ln(z1, . . . , zn) = El1(z1) ·El2(z2) · · ·Eln(zn) ∈ Û+
X [[z±1

1 , . . . , z±1
n ]]. (0.4)

By a theorem of Harder, this is a rational function in z1, . . . , zn. Our second main result
(Theorem 7.1) reads as follows.

Theorem. Let (l1, . . . , ln) ∈ Nn. We have El1,...,ln(z, σz, . . . , σn−1z) = 0 unless (l1, . . . , ln) is
dominant, i.e. unless (l1, . . . , ln) is a partition, in which case

El1,...,ln(z, σz, . . . , σn−1z)(0) = ωPλ(σ−1, v2)

where λ= (l1, . . . , ln)′ is the conjugate partition and ω stands for the standard involution on
symmetric functions.

We give a similar construction of skew Macdonald polynomials Pλ/µ(σ−1, v2). Note that the
above Eisenstein series can be lifted to some constructible sheaves via the theory of Eisenstein
sheaves; see [Lau90, Sch05]. Hence the Macdonald polynomials Pλ(σ−1, v2) may be realized as
Frobenius traces of certain canonical constructible sheaves on the moduli stack of semistable
sheaves of zero slope on X. We hope to come back to this point in the future.

There is a well-known and important geometric approach to Macdonald polynomials, based
on the equivariant K-theory of the Hilbert schemes Hilbn(C2) of points on C2. There the
polynomials Pλ(q, t−1) are realized as the classes of certain canonical coherent sheaves on
Hilbn(C2); see [Hai02]. In [SV09] we related this ‘coherent sheaf’ picture to our ‘constructible
functions’ (or ‘perverse sheaf’) picture in the framework of Beilinson and Drinfeld’s geometric
Langlands duality for local systems on X in the formal neighborhood of the trivial local system.

The structure of this paper is as follows. Sections 1 and 2 recall some facts about the
elliptic Hall algebras HX and U+

X , taken from [BS05], and the Cherednik double affine Hecke
algebras Ḧn and SḦn. In § 3 we construct the surjective algebra morphism Φn : DU+

X → SḦn,
and in § 4 we study the stable limit SḦ+

∞ of the spherical Cherednik algebra and establish the
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isomorphism Φ+
∞ : U+

X
∼→ SḦ+

∞; this is the first main result of the paper. A table that compares
the classical Hall algebra with the ‘finite’ spherical affine Hecke algebra is given in § 4.3. Section 5
deals with Macdonald polynomials: we recall their definition and provide a characterization of the
family of all (possibly skew) Macdonald polynomials that will be used later. In § 6 we introduce
the Eisenstein series of relevance to this paper, and study some of their specializations. Finally,
our second main theorem, which gives a geometric construction of (possibly skew) Macdonald
polynomials from Eisenstein series, is given in § 7. Several of the proofs in this paper require
lengthy computations; the details of these are presented in Appendix A to Appendix D.

Let us give a word of warning concerning notation. There is an unfortunate clash between
the conventional notation used in the quantum group or Hall algebra literature and that used
in the Macdonald polynomials literature: q generally denotes the size of the finite field in the
former case, whereas it is the modular parameter in the latter case. We have opted to comply
with the conventions of the Macdonald polynomials literature.

1. The elliptic Hall algebra

1.1 We will use the standard v-integers and v-factorials

[i] = [i]v =
vi − v−i

v − v−1
and [i]! = [2] · · · [i]

as well as some positive and negative variants:

[i]+ =
v2i − 1
v2 − 1

, [i]+! = [2]+ · · · [i]+, [i]− =
v−2i − 1
v−2 − 1

, [i]−! = [2]− · · · [i]−.

Let us denote by Λ+
v Macdonald’s ring of symmetric functions,

Λ+
v = C[v±1][x1, x2, . . .]S∞ ,

defined over C[v±1]; see [Mac95]. We will denote by eλ, pλ and mλ the elementary, the power-sum
and the monomial symmetric functions, respectively. The ring Λ+

v is equipped with a natural
bialgebra structure ∆ : Λ+

v → Λ+
v ⊗ Λ+

v defined by ∆(pr) = pr ⊗ 1 + 1⊗ pr for r > 1.

We will often use notation relating to various subsets of Z2. We write Z = Z2 and set

Z+ = {(r, d) ∈ Z | r > 0 or r = 0, d > 0}, Z− =−Z+,

Z++ = {(r, d) | r > 0, d> 0}\{(0, 0)}, Z∗ = Z\{(0, 0)}.

1.2 Let X be a smooth elliptic curve over some finite field Fl, and let Coh(X) stand for the
category of coherent sheaves on X. If F is a sheaf in Coh(X), we call the pair F = (rk(F ), deg(F ))
the class of F . The set of all possible classes of sheaves in Coh(X) is equal to Z+. We briefly
recall the definition of the Hall algebra of Coh(X); see [BS05] for further details.

Let I(X) stand for the set of isomorphism classes of objects in Coh(X). Following [Rin90],
the C-vector space

HX = {f : I(X)→ C : |supp(f)|<∞}
of finitely supported functions can be equipped with the convolution product

(f · g)(M) =
∑
N⊆M

v−〈M/N,N〉f(M/N)g(N),
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where v = l−1/2 and

〈P, Q〉= dim Hom(P, Q)− dim Ext(P, Q)

is the Euler form. Here we write Ext(P, Q) for Ext1(P, Q). The sum on the right-hand side is
finite for any M because f and g have finite support and, for any N,M ∈ Coh(X), the
group Hom(N,M) is finite. The above formula indeed defines an element in HX , as for any
P, Q ∈ Coh(X) the group Ext(P, Q) is also finite. By the Riemann–Roch theorem, we have

〈P, Q〉= rk(P ) deg(Q)− deg(P )rk(Q). (1.1)

By [Gre95], the algebra HX also has the structure of a bialgebra, with coproduct

(∆(f))(P, Q) =
〈P, Q〉−1

|Ext(P, Q)|
∑

ξ∈Ext(P,Q)

f(Mξ)

where Mξ is the extension of P by Q corresponding to ξ. The product and coproduct are related
by the pairing

HX ⊗HX → C, 〈f, g〉G =
∑
M

f(M)g(M)
|Aut(M)|

,

which is a Hopf pairing, i.e. it satisfies the identity 〈fg, h〉G = 〈f ⊗ g,∆(h)〉G for any f, g and h.

Remarks.

(i) In our situation, as opposed to [Gre95], it is not necessary to twist the product in HX ⊗HX

in order to obtain a bialgebra, because the Euler form 〈 , 〉 is antisymmetric.

(ii) The coproduct ∆ only takes values in a certain formal completion of HX ⊗HX ; see [BS05,
§ 2.2] for details.

The characteristic functions {1M :M ∈ I(X)} form a basis for HX . Assigning to the
element 1M the degree (rk(M), deg(M)) yields a Z-grading on HX that is compatible with
the (co)multiplication.

1.3 Let µ(M) = deg(M)/rk(M) ∈Q ∪ {∞} be the slope of a sheaf M ∈ Coh(X), and for µ ∈
Q ∪ {∞} let Cµ stand for the category of semistable sheaves of slope µ. For instance, C∞ is the
category of torsion sheaves on X. The following fundamental result on the structure of Coh(X)
is due to Atiyah.

Theorem 1.1 [Ati57].

(i) For any µ and µ′, there is an equivalence of abelian categories εµ,µ′ : Cµ′
∼→Cµ.

(ii) Any coherent sheaf F decomposes uniquely as a direct sum F = F1 ⊕ · · · ⊕ Fs of semistable
sheaves Fi ∈ Cµi with µ1 < · · ·< µs.

By a standard property of semistable sheaves, we have Hom(Cµ, Cµ′) = {0} for µ > µ′.
By Serre duality, this implies that Ext(Cµ′ , Cµ) = {0} whenever µ > µ′. Hence any extension
0→F →G →H→ 0 with F ∈ Cµ and H ∈ Cµ′ is split. From the above two facts, it follows that
in HX we have

1H · 1F = v−〈H,F〉1F⊕H (1.2)

if F ∈ Cµ,H ∈ Cµ′ and µ > µ′.
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For µ ∈Q ∪ {∞}, let H(µ)
X stand for the subspace consisting of functions supported on the

set of semistable sheaves of slope µ. Since Cµ is stable under extensions, H(µ)
X is a subalgebra

of HX . By Theorem 1.1(i), all these subalgebras are isomorphic. Let ~⊗
µH

(µ)
X denote the ordered

tensor product of spaces H(µ)
X with µ ∈Q ∪ {∞}, i.e. the vector space spanned by elements of

the form aµ1 ⊗ · · · ⊗ aµr with aµi ∈H(µi)
X and µ1 < · · ·< µr. From (1.2) and Theorem 1.1(ii) we

deduce the following; see [BS05, Lemma 2.6].

Corollary 1.2. The multiplication map is an isomorphism of vector spaces ~⊗
µH

(µ)
X
∼→HX .

1.4 We will mainly be interested in a certain subalgebra U+
X ⊂HX , which we now define. For

any class α ∈ Z+ we set

1ssα =
∑

F=α;F∈Cµ(α)

1F ∈HX .

The above sum is finite. Indeed, by Theorem 1.1(i), it is enough to check this for µ(α) =∞, in
which case finiteness of the sum follows from the fact that there are only finitely many closed
points on X which are rational over a fixed finite extension of Fl. Let U+

X be the subalgebra
generated by 1ssα , α ∈ Z+. It will be useful to consider a different set of generators Tα of U+

X ,
uniquely determined by the collection of formal relations

1 +
∑
l>1

1sslαs
l = exp

(∑
l>1

Tlα
[l
sl
)

(1.3)

for any α= (r, d) with r and d relatively prime.

To a slope µ ∈Q ∪ {∞} we can naturally associate the subalgebra U(µ)
X ⊂U+

X generated by
{1ssα : µ(α) = µ}. Of course, U(µ)

X ⊂H(µ)
X .

Proposition 1.3 [BS05, Theorem 4.5].

(i) The multiplication map induces an isomorphism ~⊗
µU

(µ)
X
∼→U+

X .

(ii) For any x = (r, d) ∈ Z+ with r and d relatively prime, the assignment Tlx/[l] 7→ pl/l

extends to an isomorphism of algebras U(µ(x))
X

∼→ (Λ+
ν )|ν=v. In particular, U(µ(x))

X is a free
commutative polynomial algebra in the generators {Tlx : l > 1}.

1.5 We now wish to give a presentation of U+
X by generators and relations. In fact, we will give

such a presentation for the Drinfeld double of U+
X , which is a more symmetric object. We will

use Sweedler’s notation for the coproduct of an element and write ∆(x) =
∑

i x
(1)
i ⊗ x

(2)
i . Recall

that if H is a bialgebra equipped with a Hopf pairing 〈 , 〉, then its Drinfeld double is the algebra
generated by two copies H+ and H− of H subject to the collection of relations∑

i,j

(h+)(1)
i (g−)(2)

j 〈h
(2)
i , g

(1)
j 〉=

∑
i,j

(g−)(1)
j (h+)(2)

i 〈h
(1)
i , g

(2)
j 〉. (1.4)

Here g and h range over all elements of H, and we write h+ and g− for the corresponding
elements of H+ and H−, respectively.

By [BS05, Theorem 4.5], the algebra U+
X is a subbialgebra of HX , and we denote by UX its

Drinfeld double.
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For x, y ∈ Z∗, let ∆x,y stand for the triangle with vertices o, x and x + y, where o = (0, 0)
denotes the origin in Z. If x = (r, d) ∈ Z∗, we write d(x) = gcd(r, d). For a pair of non-collinear
vectors (x, y) ∈ Z∗, we set εx,y to be sign(det(x, y)).

Let R = C[σ±1/2, σ±1/2] and K = C(σ1/2, σ1/2), where σ and σ are now treated as formal
variables.

Definition. For i ∈ N, put αi = αi(σ, σ) = (1− σi)(1− σi)(1− (σσ)−i)/i ∈R. Let EK be the
unital K-algebra generated by elements ux, x ∈ Z∗, subject to the following set of relations.

(i) If x and x′ belong to the same line in Z, then [ux, ux′ ] = 0.

(ii) Assume that x and y are such that d(x) = 1 and ∆x,y has no interior lattice point; then

[uy, ux] = εx,y
θx+y

α1

where the elements θz, z ∈ Z, are obtained by equating the Fourier coefficients of the
collection of relations ∑

i

θix0s
i = exp

(∑
i>1

αiuix0s
i

)
,

for any x0 ∈ Z such that d(x0) = 1.

The algebra EK is Z-graded by deg(ux) = x. Put

ũx =
1
i
(σ−i/2 − σi/2)(σ−i/2 − σi/2)ux

and let ER be the unital R-subalgebra of EK generated by {ũx : x ∈ Z∗}. We will write E±R for the
subalgebra of ER generated by {ũx : x ∈ ±Z+}. By [BS05, Proposition 5.1], the multiplication
yields an isomorphism E−R ⊗R E+

R ' ER. Let E++
R be the subalgebra generated by {ũx : x ∈ Z++}.

We have weight decompositions

E+
R =

⊕
x∈Z+

E+
R[x], E++

R =
⊕

x∈Z++

E++
R [x].

The algebra ER has an obvious symmetry: the group SL2(Z) acts by automorphisms such that
g · ũx = ũg(x). To a slope µ ∈Q ∪ {∞} is naturally associated the subalgebra E(µ)

R ⊂ E+
R generated

by {ũα : µ(α) = µ}. The group SL2(Z) permutes these subalgebras.
Let σ and σ be the two eigenvalues of the Frobenius endomorphism acting on the vector space

H1(X ⊗ Fl,Qp), with p prime to l. We shall fix once and for all a field isomorphism C'Qp.
This allows us to view σ and σ as complex numbers. Let EX stand for the specialization of ER

at these values of σ and σ. Observe that

σσ = #Fl = v−2, #X(Flr) = (1− σr)(1− σr). (1.5)

Theorem 1.4 [BS05, Theorem 5.4]. For x ∈ Z∗, the assignment ũx 7→ Tx/[deg(x)] extends to
an isomorphism EX

∼→UX . It restricts to an isomorphism E+
X
∼→U+

X .

2. Double affine Hecke algebras

2.1 We set R′ = C[t±1/2, q±1/2] and K′ = C(t1/2, q1/2). The double affine Hecke algebra Ḧn of
GLn, abbreviated DAHA, is the K′-algebra generated by the elements T±1

i , X±1
j and Y ±1

j ,
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with 16 i6 n− 1 and 16 j 6 n, subject to the following relations:1

(Ti + t1/2)(Ti − t−1/2) = 0, TiTi+1Ti = Ti+1TiTi+1, (2.1)
TiTk = TkTi if |i− k|> 1, (2.2)

XjXk =XkXj , YjYk = YkYj , (2.3)
TiXiTi =Xi+1, T−1

i YiT
−1
i = Yi+1, (2.4)

TiXk =XkTi and TiYk = YkTi if |i− k|> 1, (2.5)
Y1X1 · · ·Xn = qX1 · · ·XnY1, (2.6)

X−1
1 Y2 = Y2X

−1
1 T−2

1 . (2.7)

The subalgebra Hn generated by {Ti} is the usual Hecke algebra of the symmetric group
Sn, while the subalgebra Ḣn,X , generated by Hn and {X±1

i }, and the subalgebra Ḣn,Y ,
generated by Hn and {Y ±1

i }, are both isomorphic to the Hecke algebra of the affine Weyl group
Ŝn 'Sn n Zn. We define a Z-grading on Ḧn by giving Ti, Xi and Yi degrees 0, (1, 0) and (0, 1),
respectively. We will make use of the subalgebra Ḧ++

n of Ḧn generated by the elements Ti, Xj

and Yj .
Let si ∈Sn denote the transposition (i, i+ 1), and let l : Sn→ N be the standard length

function. If w = si1 · · · sir is a reduced decomposition of w ∈Sn, we set Tw = Ti1 · · · Tir and put
S̃ =

∑
w∈Sn

t−l(w)/2Tw. We have S̃2 = [n]−t !S̃, so the element S = S̃/[n]−t ! is idempotent. Here,

[n]t =
tn/2 − t−n/2

t1/2 − t−1/2
, [n]+t =

tn − 1
t− 1

, [n]−t =
1− t−n

1− t−1

and [n]±t ! = [1]±t · · · [n]±t . For any i we have TiS = STi = t−1/2S.
We will mainly be interested in the spherical DAHA of Ḧn, which is SḦn = SḦnS. We also

write SḦ++
n = SH++

n S. Before we can give bases for SḦn, we need some more notation. Let Rn

denote the algebra

C[x±1
1 , . . . , x±1

n , y±1
1 , . . . y±1

n ]Sn .

Here the symmetric group Sn acts by simultaneous permutation on the xi and yi.
There is an action of the braid group B3 on three strands by automorphisms on Ḧn, which

is explicitly given by the following operators:

ρ1 :


Ti 7→ Ti,

Xi 7→XiYi(Ti−1 · · · Ti)(Ti · · · Ti−1),
Yi 7→ Yi,

ρ2 :


Ti 7→ Ti,

Yi 7→ YiXi(T−1
i−1 · · · T

−1
i )(T−1

i · · · T−1
i−1),

Xi 7→Xi.

These operators preserve SḦn, and the corresponding B3-action factors through an SL2(Z)-
action ρ : SL2(Z)→Aut(SḦn) which satisfies ρ(A1) = ρ1 and ρ(A2) = ρ2, where A1 =

(
1 0
1 1

)
and

A2 =
(
1 1
0 1

)
.

The following technical lemma will be used frequently.

1 Note that the signs in our formulas differ from the standard conventions of [Che04] according to the relationship
t 7→ t−1.
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Lemma 2.1. For each l > 2 let

αl = T−1
l−1 · · · T

−1
2 T−2

1 T2 · · · Tl−1.

Then the following relations hold:

X−1
l Y1Xl = αlY1, (2.8)

YlX1 =X1Yl + (t1/2 − t−1/2)T−1
l−1 · · · T

−1
2 T−1

1 T−1
2 · · · T−1

l−1Y1X1, (2.9)

qX1Y1 = T−1
1 · · · T−1

n−2T
−2
n−1T

−1
n−2 · · · T

−1
1 Y1X1, (2.10)

α2 · · · αl = T−1
1 · · · T−1

l−2T
−2
l−1T

−1
l−2 · · · T

−1
1 . (2.11)

Proof. By definition we have T−2
1 Y1X

−1
2 =X−1

2 Y1, which is relation (2.8) for l = 2. Multiplying
on the left and on the right by T−1

2 and using the fact that [T2, Y1] = 0, we obtain

T−1
2 T−2

1 T2Y1 · T−1
2 X−1

2 T−1
2 = T−1

2 X−1
2 T−1

2 Y1 = Y1X
−1
3 .

Since T−1
2 X−1

2 T−1
2 =X−1

3 , we get

T−1
2 T−2

1 T2Y1X
−1
3 =X−1

3 Y1,

which is (2.8) for l = 3. Similar reasoning, using multiplication on the left and on the right
by T−1

3 , yields (2.8) for l = 4, and so on.

We now prove (2.9). From the defining relations of Ḧn we have

Y2X1 = X1Y2X
−1
1 T−2

1 X1 =X1Y2 + (t1/2 − t−1/2)X1Y2X
−1
1 T−1

1 X1

= X1Y2 + (t1/2 − t−1/2)X1Y2X
−1
1 T−1

1 X1T1T
−1
1

= X1Y2 + (t1/2 − t−1/2)X1Y2X
−1
1 T−2

1 X2T
−1
1 =X1Y2 + (t1/2 − t−1/2)Y2X2T

−1
1

= X1Y2 + (t1/2 − t−1/2)T−1
1 Y1X1,

which is (2.9) for l = 2. Now we multiply on the left and on the right by T−1
2 and use the fact

that [T2, X1] = [T2, Y1] = 0 to get

T−1
2 Y2T

−1
2 X1 =X1T

−1
2 Y2T

−1
2 + (t1/2 − t−1/2)T−1

2 T−1
1 T−1

2 Y1X1,

which, by virtue of the relation T−1
2 Y2T

−1
2 = Y3, gives (2.9) for l = 3. To obtain (2.9) for l = 4, 5

etc., we successively multiply on the left and on the right by T−1
3 , T−1

4 etc.

Next, we turn to (2.10). Recall that, by definition,

(X−1
n · · ·X−1

2 Y1X2 · · ·Xn)X1 = qX1Y1.

By (2.8) above we have X−1
2 Y1X2 = α2Y1. Since [αl, Xk] = 0 if k > l, upon conjugation by X3 we

obtain

X−1
3 X−1

2 Y1X2X3 = α2X
−1
3 Y1X3 = α2α3Y1.

Continuing in this manner yields, eventually,

X−1
n · · ·X−1

2 Y1X2 · · ·Xn = α2 · · · αnY1.

Thus (2.10) will follow from (2.11), which we now prove. It is easy to check (2.11) for l = 2 and
l = 3. Let us argue by induction on l. Fix l and assume that

α2 · · · αl = T−1
1 · · · T−1

l−2T
−2
l−1T

−1
l−2 · · · T

−1
1 .
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Then

α2 · · · αl+1 = T−1
1 · · · T−1

l−2T
−2
l−1T

−1
l−2 · · · T

−1
1 · T−1

l · · · T−1
2 T−2

1 T2 · · · Tl
= T−1

1 · · · T−1
l−2T

−2
l−1T

−1
l−2 · · · T

−1
2 · T−1

l · · · T−1
3 T−1

1 T−1
2 T−2

1 T2T3 · · · Tl
= T−1

1 · · · T−1
l−2T

−2
l−1T

−1
l−2 · · · T

−1
2 · T−1

l · · · T−1
3 T−1

2 T−1
1 T−1

2 T−1
1 T2T3 · · · Tl

= T−1
1 · · · T−1

l−2T
−2
l−1T

−1
l−2 · · · T

−1
2 · T−1

l · · · T−1
3 T−2

2 T−1
1 T3 · · · Tl

= T−1
1 · · · T−1

l−2T
−2
l−1T

−1
l−2 · · · T

−1
2 · T−1

l · · · T−1
3 T−2

2 T3 · · · TlT−1
1 .

The last expression above is of the form T−1
1 ZT−1

1 where, by the induction hypothesis, Z is equal
to α2 · · · αl for the subalgebra of Hn generated by T2, . . . , Tl. In particular, T1 is not involved
in Z. Using our induction hypothesis again, we deduce that

Z = T−1
2 · · · T−1

l−1T
−2
l T−1

l−1 · · · T
−1
2 ,

from which

α2 · · · αl+1 = T−1
1 · · · T−1

l−1T
−2
l T−1

l−1 · · · T
−1
1

follows. Thus the lemma is proved. 2

2.2 For e > 0 we set Pn(0,e) = S
∑

i Y
e
i S. More generally, if (r, d) = g · (0, e), we put Pn(r,d) =

ρ(g)Pn(0,e). If the element g′ ∈ SL2(Z) fixes the pair (0, e), then ρ(g′) = ρl1 for some l and hence
ρ(g′)Pn(0,e) = Pn(0,e). Therefore the above definition makes sense, and for each x ∈ Z∗ it yields an

element Pnx ∈ SḦn such that ρ(g)Pnx = Png(x) for any g ∈ SL2(Z).
As an illustration, let us give the expressions for certain elements Pn(r,d) where r and d are

relatively prime. To simplify the notation, we will drop the exponent n from Pn(r,d).

Lemma 2.2. For any l ∈ Z we have

P(l,1) = [n]+t SY1X
l
1S, (2.12)

P(1,l) = q[n]−t SX1Y
l
1S, (2.13)

P(0,−1) = q[n]−t SY
−1
1 S, (2.14)

P(l,−1) = q[n]−t SX
l
1Y
−1
1 S. (2.15)

Proof. Observe that since

SYi+1S = ST−1
i YiT

−1
i S = tSYiS,

we have

P(0,1) = S
∑
i

YiS = [n]+t SY1S.

Equation (2.12) follows from this and an application of ρl2. In particular, we have P(1,1) =
[n]+t SY1X1S. By (2.10) in Lemma 2.1, we have

P(1,1) = qt1−n[n]+t SX1Y1S = q[n]−t SX1Y1S.

Applying ρl1 yields (2.13). The equalities (2.14) and (2.15) are proved using similar techniques. 2

The value of P(r,d) when r and d are not relatively prime is usually harder to compute. Here
we give a few examples, which will be important for our purposes later on.
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Lemma 2.3. For any l > 1 we have

P(−l,0) = S
∑
i

X−li S, (2.16)

P(0,−l) = qlS
∑
i

Y −li S, (2.17)

P(l,0) = qlS
∑
i

X l
iS. (2.18)

Proof. Set A3 =
(
1 −1
1 0

)
and A4 =

(−1 0
2 −1

)
. Then

ρ(A3)Y1 = ρ1ρ
−1
2 · Y1 =X−1

1

and hence ρ(A3)Yi =X−1
i for all i. The first relation (2.16) immediately follows. The proofs of

the second and third relations are identical, so we treat only (2.17). By (2.10) in Lemma 2.1,
we have

ρ(A4)Y1 = ρ−1
2 ρ2

1ρ
−1
2 · Y1 =X−1

1 Y −1
1 X1

= qY −1
1 T1 · · · Tn−2T

2
n−1Tn−2 · · · T1

= qT−1
1 · · · T−1

n−1Y
−1
n Tn−1 · · · T1,

where for the last equality we have used the relations Y −1
i Ti = T−1

i Yi+1. It follows that

ρ(A4)(Y l
1 ) = qlT−1

1 · · · T−1
n−1Y

−l
n Tn−1 · · · T1 (2.19)

for any l. Hence ρ(A4)(SY l
1S) = qlSY −ln S. It is easy to show (and is a well-known fact) that the

elements SY l
1S, l = 1, . . . , n, freely generate the ring SC[Y1, . . . , Yn]S. Let

θ : C[SY1S, . . . , SY
n
1 S] ∼→ SC[Y1, . . . , Yn]S = SC[Y1, . . . , Yn]SnS

and

θ′ : C[SY −1
n S, . . . , SY −nn S] ∼→ SC[Y −1

1 , . . . , Y −1
n ]S = SC[Y −1

1 , . . . , Y −1
n ]SnS

be defined in a similar fashion. Equation (2.17) is then a consequence of the following result.

Sublemma 2.4. The composition u= θ′ ◦ ρ(A4) ◦ θ−1 satisfies

u(SP (Y1, . . . , Yn)S) = qlSP (Y −1
1 , . . . , Y −1

n )S

for any symmetric polynomial P (t1, . . . , tn).

Proof of sublemma. Let Ḣ+
n,Y (respectively, Ḣ−n,Y ) be the subalgebra generated by Hn and

the elements Y1, . . . , Yn (respectively, Hn and the elements Y −1
1 , . . . , Y −1

n ). The assignment
Ti 7→ Tn−i, Yi 7→ Y −1

n+1−i gives rise to an isomorphism of algebras Θ : Ḣ+
n,Y

∼→ Ḣ−n,Y . It restricts to
an isomorphism of spherical algebras SΘ : SḢ+

n,Y
∼→ SḢ−n,Y . This last map clearly satisfies

SΘ(SP (Y1, . . . , Yn)S) = SP (Y −1
1 , . . . , Y −1

n )S

for any symmetric polynomial P (t1, . . . , tn). It remains to observe that u coincides with qlSΘ
on the elements SY l

1S, and that these elements generate SḢ+
n,Y S so that, in fact, u= qlSΘ. 2

This establishes (2.17) and completes the proof of Lemma 2.3. 2

Proposition 2.5. The elements {Pnx : x ∈ Z∗} generate SḦn as a K′-algebra.
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Proof. Let R′ be the localization of R′ with respect to the multiplicative set generated by
[n]t!. Let Ḧ++

R′,n be the R′-subalgebra form of Ḧn generated by the elements Ti, Xj and Yj

for i= 1, . . . , n− 1 and j = 1, . . . , n. We also set SḦ++
R′,n = SḦ++

R′,nS. For any (r, d) ∈ Z++,
let SḦ++

R′,n[r, d] stand for the piece of SḦ++
R′,n of degree (r, d). We claim that SḦ++

R′,n[r, d] is
free of finite rank as an R′-module. Indeed, it is known that Ḧ++

R′,n is free of finite rank over
the subalgebra R′[X1, . . . , Xn, Y1, . . . , Yn]Sn×Sn (by the PBW and Pittie–Steinberg theorems).
Since the spherical part SḦ++

R′,n is a direct summand of Ḧ++
R′,n, the same holds for SḦ++

R′,n. This
proves our claim. Let π : SḦ++

R′,n→R++
n be the specialization at q1/2 = t1/2 = 1, where R++

n is
the positive part of Rn. One can check, by looking at the SL2(Z) action defined above, that

π(Pn(r,d)) =
∑
i

xri y
d
i .

By Weyl’s theorem (see [Wey49]), the elements {π(Pn(r,d)) : (r, d) ∈ Z++} generate the ring R++
n .

Applying Nakayama’s lemma to each graded piece, we see that {Pn(r,d) : (r, d) ∈ Z++} generates

the algebra SḦ++
n over the field K′. To finish the proof of the proposition, we use the SL2(Z)-

action once more. 2

3. The projection map

3.1 Recall that K = C(σ1/2, σ1/2), K′ = C(t1/2, q1/2) and EK = ER ⊗K. The first main result
of this paper is the following.

Theorem 3.1. For any n > 0, the assignment σ1/2 7→ q−1/2, σ1/2 7→ t−1/2 and

ux 7→
1

qd(x) − 1
Pnx

for x ∈ Z∗ extends to a surjective C-algebra homomorphism

Φn : EK→ SḦn.

Proof. Fix an integer n and, for simplicity, drop the index n from the notation. We have to
show that the elements Pnx /(q

d(x) − 1) satisfy relations (i) and (ii) of § 1.5. Relation (i) is clear
for x = (0, r) and x′ = (0, r′) when r and r′ are of the same sign, and it follows from (2.17) in
Lemma 2.3 when r and r′ are of different signs. By applying a suitable automorphism ρg with
g ∈ SL2(Z), we deduce relation (i) for any other line in Z through the origin.

The proof of relation (ii) is much more involved. We reduce it to establishing two sets of
equalities, (3.3) and (3.9), which are dealt with in Appendix A and Appendix B, respectively.
Note that the assignment Φ respects the SL2(Z)-action on both sides; hence it is enough to
check relation (ii) for one pair in each orbit under this SL2(Z)-action. By the same argument as
in [BS05, Theorem 5.4] (based on Pick’s formula), we can constrain ourselves to the case where
x = (1, 0) and y = (0, l) with l ∈ Z∗, or where x = (0, 1) and y = (l,−1) with l > 0.

Case (A1). Assume that x = (1, 0) and y = (0, l) with l > 0. We have to show that

[Φ(u(1,0)), Φ(u(0,l))] =−Φ(u(1,l)), (3.1)

which we may rewrite as

[P(1,0), P(0,l)] = (1− ql)P(1,l). (3.2)
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By Lemma 2.2, we have

P(1,0) = q[n]−t SX1S, P(0,l) =
∑
i

SY l
i S, P(1,l) = q[n]−t SX1Y

l
1S;

hence verifying (3.2) is equivalent to proving the following proposition.

Proposition 3.2. For any l > 0 we have[
SX1S,

∑
i

SY l
i S

]
= S

[
X1,

∑
i

Y l
i

]
S = (1− ql)SX1Y

l
1S. (3.3)

Case (A2). Now let us assume that x = (1, 0) and y = (0,−l) with l > 0. We have to show that

[Φ(u(1,0)), Φ(u(0,−l))] = Φ(u(1,−l)), (3.4)

which, after using the definitions and Lemmas 2.2 and 2.3, reduces to[
SX1S,

∑
i

SY −li S

]
= (1− q−l)SX1Y

−l
1 S. (3.5)

Consider the C-algebra isomorphism σ : Ḧn→ Ḧn given by

Ti 7→ T−1
i , Xi 7→ Yi, Yi 7→Xi, t1/2 7→ t−1/2, q1/2 7→ q−1/2;

see [Che04]. Applying σ to (3.5) gives the equation[
SY1S,

∑
i

SX−li S

]
= (1− ql)SY1X

−l
1 S,

which, once transformed by the automorphism ρ(A5), A5 =
(

0 1
−1 0

)
, is none other than (3.3). Thus

this case also follows from Proposition 3.2.

Case (B). The final case to consider is that of x = (0, 1) and y = (l,−1) with l > 0. Here we
have to show that

[Φ(u(0,1)), Φ(u(l,−1))] =
Φ(θ(l,0))

(1− t−1)(1− q−1)(1− qt)
, (3.6)

which reduces to
(1− t−n)(1− qt)

q − 1

[∑
i

SYiS, SX
l
1Y
−1
1 S

]
= Φ(θ(l,0)). (3.7)

By forming a generating series, we can write this as

1 +
∑
l>1

(1− t−n)(1− qt)
q − 1

S

[∑
i

Yi, X
l
1Y
−1
1

]
Ssl = 1 +

∑
l>1

Φ(θ(l,0))s
l. (3.8)

Given the definition of θ(l,0), we obtain that establishing (3.6) for all l > 0 is equivalent to proving
the following assertion.

Proposition 3.3. The following holds:

exp
(∑
l>1

(1− t−l)(1− qltl)
l

∑
i

SX l
iSs

l

)

= 1 +
∑
l>1

(1− qt)(1− t−n)
q − 1

S

[∑
i

Yi, X1Y
−1
1

]
Ssl. (3.9)
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Thus, once Propositions 3.2 and 3.3 have been proved (see Appendix A and Appendix B), the
proof of Theorem 3.1 will be complete. 2

3.2 We may twist the map Φn by any of the automorphisms of EK defined in [BS05, § 6.3].
Observe that the defining relations for EK are invariant under any permutation of {σ, σ, (σσ)−1}.
We therefore have the following result.

Corollary 3.4. For any γ, γ′ ∈ {σ, σ, (σσ)−1} with γ 6= γ′, there is a surjective algebra

morphism Φγ,γ′
n : EK→ SḦn such that γ 7→ q−1, γ′ 7→ t−1 and ux 7→ Pnx /(q

d(x) − 1).

4. Stable limits of DAHAs

4.1 In considering stable limits of DAHAs, we will be concerned with the graded subalgebras
SḦ+

m and SḦ++
m of SḦm generated by the elements Pmx for x ∈ Z+ and x ∈ Z++, respectively.

We have
SḦ+

m =
⊕
x∈Z+

SḦ+
m[x], SḦ++

m =
⊕

x∈Z++

SḦ++
m [x].

Proposition 4.1. The assignment Pmx 7→ Pm−1
x for each x ∈ Z+ extends to a unique surjective

K′-algebra morphism Φm : SḦ+
m→ SḦ+

m−1. A similar statement holds for SḦ++
m .

Proof. The proof is based on the realization of double affine Hecke algebras as certain algebras
of q-difference operators. Let Dm stand for the algebra K′[x±1

1 , ∂±1
i , . . . , x±1

m , ∂±1
m ] with defining

relations
[xi, xj ] = [∂i, ∂j ] = 0 and ∂ixj = qδijxj∂i.

We also denote by Dm,loc the localization of Dm with respect to the elements

{xi − tl/2qn/2xj | l, n ∈ Z, i, j = 1, . . . , m}.

The symmetric group Sm acts on Dm,loc in an obvious fashion, and we may form the semidirect
product Dm,loc o Sm. The following lemma is due to Cherednik.

Lemma 4.2 [Che04]. Set ω = sm−1 · · · s1∂1. There is a unique embedding of algebras

ϕm : Ḧm→Dm,loc n Sm

satisfying

ϕm(Xi) = xi,

ϕm(Ti) = t−1/2si +
t−1/2 − t1/2

xi/xi+1 − 1
(si − 1),

ϕm(Yi) = ϕm(Ti) · · · ϕm(Tm−1)ωϕm(T−1
1 ) · · · ϕm(T−1

i−1).

It is known that ϕm(SḦm)⊂DSm
m,loc o Sm. Composing the restriction of ϕm to SḦm with

the projection
DSm
m,loc o Sm→DSm

m,loc, P (x±1
i , ∂±1

i )σ 7→ P (x±1
i , ∂±1

i )
provides us with an embedding

ψm : SḦm→DSm
m,loc.

We write D++
m,loc for K′[x1, ∂1, . . . , xm, ∂m]loc.
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Lemma 4.3. We have ψm(SḦ++
m )⊂ (D++

m,loc)
Sm .

Proof. It is easy to see that E++
K is generated by {u(0,l), u(l,0) : l > 1}. Hence, by Theorem 3.1,

SḦ++
m is generated by {Pm(0,l), P

m
(l,0) : l > 1}; it therefore suffices to check the veracity of the lemma

for these elements, which is obvious. 2

We now consider the map

πm : (D++
m,loc)

Sm → (Dm−1,loc)Sm−1

that sends xl, ∂l to xl, t
−1/2∂l for l < m and xm, ∂m to zero. This is a well-defined algebra

homomorphism. We can summarize the situation in a diagram of algebra homomorphisms

SḦ++
m

ψm // (D++
m,loc)

Sm

πm

��
SḦ++

m−1

ψm−1 // (Dm−1,loc)Sm−1

where ψm and ψm−1 are embeddings. Therefore, Proposition 4.1 will be proved for the algebra
SḦ++

m once we show that

πm ◦ ψm(Pmx ) = ψm−1(Pm−1
x ) for x ∈ Z++. (4.1)

Lemma 4.4. For any x ∈ Z++, there exists a polynomial Qx ∈ F∞ such that the following
formula holds in SḦm for any m:

Qx(Pm(0,1), P
m
(0,2), . . . , P

m
(1,0), P

m
(2,0), . . .) = Pmx .

Proof. Since E++
K is generated by the elements u(0,l) and u(l,0) with l > 1, for any x ∈ Z++ there

exists a polynomial Rx such that

Rx(u(0,1), u(0,2), . . . , u(1,0), u(2,0), . . .) = ux.

By Theorem 3.1, we may take as Qx the polynomial defined by

Qx(z(0,1), z(0,2), . . . , z(1,0), z(2,0), . . .)

=
1

o(d(x))
Rx(o(1)z(0,1), o(2)z(0,2), . . . , o(1)z(1,0), o(2)z(2,0), . . .),

where we have set o(l) = 1/(ql − 1). 2

Lemma 4.4 implies that it is enough to show that (4.1) holds for x = (l, 0) or for x = (0, l). In
the case of x = (l, 0), this is obvious by definition. We shall deal with the second case. Of course,
it suffices to prove that

πm ◦ ψm(Sfr(Y1, . . . , Ym)S) = ψm−1(Sfr(Y1, . . . , Ym−1, 0)S)

for any family of symmetric polynomials {fr} that generates the ring C[Y1, . . . , Ym]Sm . In
particular, for fr we can take the monomial symmetric function

m1r(Y1, . . . , Ym) =
∑

16i1<···<ir6m
Yi1 · · · Yir .

We now use the following explicit computation of ψn(Sm1r(Y1, . . . , Yn)S); see [Mac95,
ch. VI.5] for a proof.
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Lemma 4.5 (Macdonald). For any n and any l > 1,

ψn(Smr(Y1, . . . , Yn)S) =
∑

I⊂{1,...,n}

AI(x1, . . . , xn)
∏
i∈I

∂i

where I ranges over all subsets of {1, . . . , n} of size r and

AI(x1, . . . , xn) =
∏

i∈I,j 6∈I

t−1/2xi − t1/2xj
xi − xj

.

By the above lemma, we have

πm ◦ ψm(Sm1r(Y1, . . . , Ym)S) =
∑

I⊂{1,...,m−1}

AI(x1, . . . , xm−1, 0)
∏
i∈I

t1/2∂i

=
∑

I⊂{1,...,m−1}

AI(x1, . . . , xm−1)
∏
i∈I

∂i

= ψm−1(Sm1r(Y1, . . . , Ym−1)S).

We have thus proved that the assignment Pmx 7→ Pm−1
x for each x ∈ Z++ extends to a

surjective K′-algebra homomorphism Ψm : SḦ++
m → SḦ++

m−1. By applying the operator ρ(A−k1 )
and using the fact that ρ(g) · Pnx = Png·x for any g ∈ SL2(Z) and x ∈ Z, we deduce that the map
Ψm extends to a surjective algebra homomorphism

Ψm : SḦ>−km → SḦ>−km−1.

Here, for any n, we have written SḦ>−kn for the subalgebra of SḦ+
n generated by the elements

Pnx such that x = (r, d) ∈ Z+ satisfies d/r >−k. Letting k tend to infinity, we finally obtain that
the map Ψm extends to a surjective algebra homomorphism

Ψm : SḦ+
m→ SḦ+

m−1

such that Ψm(Pmx ) = Pm−1
x for all x ∈ Z+. This completes the proof of Proposition 4.1. 2

4.2 Proposition 4.1 allows us to define the projective limits

lim←− SḦ+
m and lim←− SḦ++

m .

By construction, the collection of generators Pmx , m> 1, gives rise to elements Px of these
projective limits. Let SḦ+

∞ and SḦ++
∞ stand for the subalgebras generated by Px for x ∈

Z+ and x ∈ Z++, respectively; we shall call these the stable limits of the projective systems
(SḦ+

m) and (SḦ++
m ), respectively. We may view lim←− SḦ+

m and lim←− SḦ++
m as completions of

SḦ+
∞ and SḦ++

∞ .
By construction, the map Φm : EK→ SḦm sends E+

K and E++
K onto SḦ+

m and SḦ++
m ,

respectively. Let us call Φ+
m and Φ++

m the restrictions of Φm to E+
K and E++

K , respectively.
The collection of maps Φ+

m and Φ++
m gives rise, in the limit, to algebra homomorphisms

Φ+
∞ : E+

K→SḦ+
∞ and Φ++

∞ : E++
K →SḦ++

∞ .

Theorem 4.6. The maps Φ+
∞ and Φ++

∞ are algebra isomorphisms.

Proof. Both Φ+
∞ and Φ++

∞ are surjective by construction; we have to show their injectivity. The
subgroup

G =
{(

1 n
0 1

)
: n ∈ Z

}
⊂ SL2(Z)
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preserves Z+, and for any x ∈ Z+ there exists g ∈G such that g · x ∈ Z++. Since the map Φ+
∞

is clearly compatible with the action of G on E+
K and SḦ+

∞, it in fact suffices to prove the
injectivity of Φ++

∞ .
Now fix (r, d) ∈ Z++. By [BS05, § 5], the dimension of the weight space E++

K [r, d] is equal to
the number of convex paths p = (x1, . . . , xr) with xi ∈ Z++ for all i and

∑
i xi = (r, d). By the

proof of Proposition 2.5, the dimension of the weight space SḦ++
n [r, d] is equal to the dimension

of the space of polynomial diagonal invariants

R++
n = C[x1, . . . , xn, y1, . . . , yn]Sn

of x-degree r and y-degree d.
The latter dimension is equal to the number of orbits under Sn of monomials

xg11 · · · x
gn
n y

h1
1 · · · yhnn with gi, hi ∈ N satisfying

∑
i gi = r and

∑
i hi = d; equivalently, it is equal

to the number of n-tuples of pairs {(g1, h1), . . . , (gn, hn)} such that
∑

i gi = r and
∑

i hi = d, or
the number of convex paths p = (x1, . . . , xr) in Z++ of length r 6 n which have

∑
i xi = (r, d).

It remains to observe that for any given (r, d), the length of the convex paths p = (x1, . . . , xr)
in Z++ that have

∑
i xi = (r, d) is bounded above, say by n(r, d). Hence

dim E++
K [r, d] = dim SḦ++

n [r, d]

whenever n> n(r, d), and so, finally,

dim E++
K [r, d] = dim SḦ++

∞ [r, d].

The injectivity of the map Φ++
∞ follows, and Theorem 4.6 is proved. 2

Of course, Theorem 4.6 holds for the stable limits of the twisted versions Φ+,γ,γ′
n and Φ++,γ,γ′

n

as well (see § 3.2).

Remarks. Theorem 4.6 allows us to transform the PBW basis {βp : p ∈Conv+} and the
canonical basis {bp : p ∈Conv+} of E+

K defined in [Sch05, § 2.3] to bases {γp : p ∈Conv+} and
{cp : p ∈Conv+} of SḦ+

∞ such that γp = Φ+
∞(βp) and cp = Φ+

∞(bp). The element cp belongs

to the completion ŜH
+

∞ of SḦ+
∞, which is equal to the sum

⊕
(r,d) ŜH

+

∞[r, d] over all pairs
(r, d) ∈ Z+ of the vector spaces

ŜH
+

∞[r, d] =
∏
p

K′γp

where p runs over all paths p = (x1, . . . , xr) in Conv+ satisfying
∑

i xi = (r, d).

4.3 Theorem 4.6 could be viewed within the context of the theory of the classical Hall algebra Hcl

of a discrete valuation ring O; see [Mac95, ch. II]. Recall that Hcl is canonically isomorphic to
the algebra Λ+

v and that this isomorphism naturally fits into a chain

Hcl ' SḢ+
∞ ' Λ+

v (4.2)

where SḢ+
∞ is the stable limit of the positive spherical affine Hecke algebra of type GLn as n

tends to infinity. Hence Theorem 4.6 may be interpreted as an affine version of (4.2). Observe
that SḢ+

∞ is a trivial one-parameter deformation Λ+
v of Λ+, while SḦ+

∞ is a non-trivial two-
parameter deformation of the ring

R+ = C[x1, x2, . . . , y
±1
1 , y±1

2 , . . .]S∞ .

The analogy can be summarized in Table 1.
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Table 1.

Classical Hall algebra Hcl Elliptic Hall algebra E+

O-Mod Coh(X)

Λ+ = C[x1, x2, . . .]S∞ R+ = C[x1, x2, . . . , y
±1
1 , y±1

2 , . . .]S∞

Θ+
∞ : Hcl

∼→ SḢ+
∞ Φ+

∞ : E+ ∼→ SḦ+
∞

Π =
⊔
n

(Z+)n/Sn Conv+ =
⊔
n

(Z+)n/Sn

1Oλ = v−2n(λ)Pλ(v2) PBW basis βp

Nn, n ∈ N Cohr,d(X), (r, d) ∈ Z+⊔
n

PGLn(Nn)
⊔
r,d

Qr,d

IC(Oλ), λ ∈Π Pp, p ∈Conv+

Θ+
∞(tr(IC(Oλ)) = sλ Φ+

∞(tr(Pp)) = cp

Kλ,µ(v) ∈ N[v] kp,q ∈ N[v,−σv]

Affine Grassmannian Ĝr ??

Geometric Satake isomorphism ??⊔
n

PGLn(Nn)' Rep+ GL∞

Here Pλ is the Hall–Littlewood polynomial, sλ is the Schur polynomial, and Kλ,µ is the Kostka
polynomial. The middle portion of the table is based on the geometric version of the elliptic Hall
algebra, which involves the theory of automorphic sheaves as defined in [Lau90] and studied
in detail in [Sch05] for an elliptic curve. Here Qr,d is a certain category of semisimple perverse
sheaves over the moduli stack Cohr,d(X) of coherent sheaves of rank r and degree d over an
elliptic curve X, while the Pp, p ∈Conv+, are the simple perverse sheaves in

⊔
r,d Qr,d. The

basis elements cp, defined as the traces of the Pp, are analogues of the Kazhdan–Lusztig basis
elements of SḢ+

∞. Finally, the coefficients kp,q are the entries of the transition matrices between
the cp and the PBW basis elements βq (essentially, the Poincaré polynomials of the stalks of the
Pp over the stratas of Cohr,d(X)); we refer the reader to [Sch05] for more details.

In the bottom part of the table, we point out two important features of the classical picture for
which we do not know of any analogue in the elliptic Hall algebra setting: one is that functions
on the nilpotent cone Nn may be lifted to functions on some Schubert variety of the affine
Grassmannian Ĝr of type GLn; the other is that the category of perverse sheaves

⊔
n PGLn(Nn) is
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equivalent to the category Rep+(GL∞) of finite-dimensional polynomial representations of GL∞
(see [Gin95, MV00]).

5. Macdonald polynomials

5.1 Macdonald discovered in [Mac88] a remarkable family of symmetric polynomials Pλ(q, t)
that depend on two parameters and from which many of the classical symmetric functions can
be obtained via specializations. Because of our sign conventions (see the footnote in § 2.1), we
will actually be working with Pλ(q, t−1) rather than Pλ(q, t).

The Macdonald polynomials are defined as eigenfunctions of certain difference operators
acting on the spaces of symmetric functions

Λm(q,t) = K′[x1, . . . , xm]Sm .

Recall the embedding ψm : SḦ+
m→DSm

m,loc, which gives rise to an action ρm of SḦ+
m on Λm(q,t).

Consider the following linear operator on Λm(q,t):

Dm = ρm(S(Y1 + · · ·+ Ym)S) =
m∑
i=1

(∏
j 6=i

t−1/2xi − t1/2xj
xi − xj

)
∂i.

By [Mac95, ch. VI, (3.10)], the operator Dm is upper triangular with respect to the basis {mλ}
of monomial symmetric functions and has distinct eigenvalues.

We are interested in the stable limit as m goes to infinity of the corresponding eigenfunctions.
Let θm : Λm(q,t)→ Λm−1

(q,t) be the specialization xm = 0. It is not true that θm ◦Dm =Dm−1 ◦ θm;

however, the operator Em = t(m−1)/2(Dm − [m]) does satisfy θm ◦ Em = Em−1 ◦ θm. Recall that
the space

Λ+
(q,t) = K′[x1, x2, . . .]S∞

of symmetric functions is the projective limit of (Λm(q,t), θm) in the category of graded rings;
see [Mac95, ch. I, Remark 1.2.1]. Hence the operators Em, m> 1, give rise to a linear operator E
on the space Λ+

(q,t). This operator is still upper triangular with respect to the basis {mλ}, and it
has distinct eigenvalues {αλ} given by

αλ =
∑
i>1

(qλi − 1)ti−1. (5.1)

The Macdonald polynomial is defined to be the unique αλ-eigenvector of E such that

Pλ(q, t−1) ∈mλ ⊕
⊕
µ<λ

K′mµ.

For a pair of partitions µ⊂ λ, the skew Macdonald polynomial Pλ/µ(q, t−1) is determined by the
coproduct formula

∆(Pλ(q, t−1)) =
∑
µ⊂λ

Pµ(q, t−1)⊗ Pλ/µ(q, t−1).

Here ∆ : Λ+
(q,t)→ Λ+

(q,t) ⊗ Λ+
(q,t) is the standard coproduct on the ring Λ+

(q,t) (satisfying, for
example, ∆(pl) = pl ⊗ 1 + 1⊗ pl for power-sum functions pl =

∑
i x

l
i).

Examples.

(i) We have P(1r)(q, t−1) = er.
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(ii) We have

P(r)(q, t
−1) =

r−1∏
l=0

1− ql+1

1− t−1ql
·
∑
λ`r

zλ(q, t−1)−1pλ,

where

zλ(q, t−1) = zλ

l(λ)∏
i=1

1− qλi
1− t−λi

, z(1m12m2 ···) =
∏
i

imimi!.

In particular,

P(2)(q, t
−1) =

(1− q)(1 + t−1)
2(1− qt−1)

p2 +
(1 + q)(1− t−1)

2(1− qt−1)
p2
1.

Remark . The representations ρm : SḦ+
m→ End(Λm(q,t)) lift, after a suitable renormalization, to

a stable limit representation ρ∞ : SḦ∞→ End(Λ+
(q,t)) in which P(0,1) = S(

∑
i Yi)S acts as the

operator E. By composing with the isomorphism Φ+
∞, we obtain a representation of the Hall

algebra E+
K on Λ(q,t) in which the element u(0,1), i.e. the so-called Hecke operator, acts as

Macdonald’s operator E/(q − 1). We will not need this representation here (but see [SV09,
§ 4.3]).

5.2 There are many different characterizations of Macdonald polynomials; see [Hai02], for
instance. The characterization that best fits our needs treats the polynomials Pλ(q, t−1) and
Pλ/µ(q, t−1) at the same time. First, let us recall some standard notation from [Mac95].

Let µ⊂ λ be two partitions, and put |λ/µ|= |λ| − |µ|. The skew partition λ/µ is said to be
a vertical strip if λi − µi 6 1 for all i, i.e. if the corresponding diagram contains at most one box
per row. A skew partition λ/µ is a horizontal strip if its conjugate λ′/µ′ is a vertical strip. If λ/µ
is a horizontal strip, we put

ψλ/µ(q, t−1) =
∏ (1− tµ

′
j−µ′iqj−i−1)(1− t1+µ′j−µ′iqj−i+1)

(1− tµ
′
j−µ′iqj−i)(1− t1+µ′j−µ′iqj−i)

,

where the sum ranges over all pairs (i, j) with i < j such that µ′i = λ′i but µ′i = λ′i − 1. In
particular, we have ψλ/µ(q, t−1) = 1 if λ/µ is a horizontal strip containing no empty columns.

Proposition 5.1. The family {Pλ/µ(q, t−1) : µ⊂ λ} is uniquely determined by the following set
of properties.

(i) The polynomial Pλ/µ(q, t−1) is homogeneous of degree |λ/µ|.
(ii) We have

∆(Pλ/µ(q, t−1)) =
∑

µ⊆ν⊆λ
Pν/µ(q, t−1)⊗ Pλ/ν(q, t−1).

(iii) If λ/µ is not a horizontal strip, then

Pλ/µ(q, t−1) ∈
⊕
ν<(r)

K′mν where r = |λ/µ|.

(iv) If λ/µ is a horizontal strip, then

Pλ/µ(q, t−1) ∈ ψλ/µ(q, t−1)mr ⊕
⊕
ν<(r)

K′mν where r = |λ/µ|.
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Proof. Properties (i) through (iv) are all known to hold for Macdonald polynomials: statement
(ii) follows from [Mac95, ch. VI, § 7, (7.9’)], while statements (iii) and (iv) are consequences
of [Mac95, ch. VI, § 7, (7.13’)]). We now prove the uniqueness of polynomials satisfying properties
(i) through (iv). Let Qλ/µ(q, t−1) be such a family. When |λ/µ|= 1, by (iv) we have

Qλ/µ(q, t−1) = ψλ/µ(q, t−1)m1 = Pλ/µ(q, t−1).

Let r > 1 and assume that Qη/ν(q, t−1) = Pη/ν(q, t−1) for all η/ν satisfying |η/ν|< r. Let λ/µ
be a skew partition with |λ/µ|= r. By (ii) and the induction hypothesis,

∆(Qλ/µ(q, t−1)) = Qλ/µ(q, t−1)⊗ 1 + 1⊗Qλ/µ(q, t−1) +
∑

µ⊂ν⊂λ
Qν/µ(q, t−1)⊗Qλ/ν(q, t−1)

= Qλ/µ(q, t−1)⊗ 1 + 1⊗Qλ/µ(q, t−1) +
∑

µ⊂ν⊂λ
Pν/µ(q, t−1)⊗ Pλ/ν(q, t−1).

It follows that Qλ/µ(q, t−1)− Pλ/µ(q, t−1) is contained in

Ker(∆− Id⊗ 1− 1⊗ Id) = K′p|λ/µ|.

But then the coefficient of p|λ/µ| in Qλ/µ(q, t−1) is uniquely determined by (iii) or (iv), and

Qλ/µ(q, t−1) = Pλ/µ(q, t−1). 2

6. Eisenstein series

6.1 We return to the setting of § 1; that is, we assume that X is a smooth elliptic curve over
Fl, HX is its Hall algebra, and U+

X ⊂HX is the spherical subalgebra introduced in § 1.4. Recall
that HX and U+

X are Z-graded in the following way:

HX =
⊕
(r,d)

HX [r, d], U+
X =

⊕
(r,d)

U+
X [r, d].

The Eisenstein series that we will need to consider are certain elements of a completion of
the Hall algebra, which we now define in detail. Let ĤX [r, d] stand for the space of all
functions f : I(X)r,d→ C on the set of coherent sheaves of rank r and degree d, and put
ĤX =

⊕
(r,d) ĤX [r, d]. By [BS05, Proposition 2.2], the space ĤX is still a bialgebra. Recall from

§ 1.3 that, as a vector space,

HX [r, d] =
⊕

α1,...,αn

H(µ(α1))
X [α1]⊗ · · · ⊗H(µ(αn))

X [αn]

where the sum ranges over all tuples (α1, . . . , αn) of elements in Z+ that satisfy µ(α1)< · · ·<
µ(αn) and

∑
αi = (r, d). Then we have

ĤX [r, d] =
∏

α1,...,αn

H(µ(α1))
X [α1]⊗ · · · ⊗H(µ(αn))

X [αn].

In a similar fashion, we define the subalgebra Û+
X of ĤX by Û+

X =
⊕

(r,d) Û+
X [r, d] where

Û+
X [r, d] =

∏
α1,...,αn

U(µ(α1))
X [α1]⊗ · · · ⊗U(µ(αn))

X [αn].
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For instance, for any (r, d) the element

1(r,d) =
∑
F=(r,d)

1F

is a function with infinite support that belongs to Û+
X [r, d], since it may be written as the infinite

sum (see [BS05, (4.4)])

1r,d = 1ssr,d +
∑

µ(α1)<···<µ(αn)
α1+···+αn=(r,d)

v
∑
i<j〈αi,αj〉1ssα1

· · · 1ssαn . (6.1)

6.2 Consider the generating series

E0(z) = 1 +
∑
d>1

1(0,d)v
−dzd

and, for r > 1,

Er(z) =
∑
d∈Z

1(r,d)v
(r−1)dzd.

These take values in the space Û+
X [[z, z−1]] of Laurent series that extend infinitely in both

directions. We will be interested in products

Er1,...,rn(z1, . . . , zn) = Er1(z1) · · ·Ern(zn) ∈ Û+
X [[z±1

1 , . . . , z±1
n ]]

where r1, . . . , rn are non-negative integers. The value of such a series at a coherent sheaf of rank
r =

∑
ri and degree d is equal to the infinite sum

Er1,...,rn(F) = v−(r+1)d
∑

F1⊂···⊂Fn=F
v2

∑
i ri deg(Fi)z

deg(F1)
1 · · · zdeg(Fn/Fn−1)

n , (6.2)

where rk(Fi/Fi−1) = ri for all i. The following fundamental result is due to Harder.

Theorem 6.1 [Har74]. The series Er1,...,rn(z1, . . . , zn) converges in the region |z1| � · · · � |zn|
to a rational function in Û+

X(z1, . . . , zn) with at most simple poles along the hyperplanes

zi/zj ∈ {1, v2, . . . , v2r} where r =
∑

ri.

In other words, for each F the series (6.2) is the expansion in the region |z1| � · · · �
|zn| of some rational function in the variables z1, . . . , zn. When r1 = · · ·= rn = 1, the series
E1,...,1(z1, . . . , zn) is the Eisenstein series attached to the cusp form of rank one corresponding
to the trivial character Pic(X)→ C∗ taken n times; see [Kap97, § 2.4] for details. For other
values of r1, . . . , rn, the series Er1,...,rn(z1, . . . , zn) is the Eisenstein series attached to the trivial
character of the parabolic subgroup GLr1(kX)× · · · ×GLrn(kX) of GLr(kX), where kX is the
function field of X and r =

∑
ri.

The Eisenstein series behave well with respect to the coproduct.

Proposition 6.2. For non-negative integers r1, . . . , rn,

∆(Er1,...,rn(z1, . . . , zn))

=
∑

06si6ri

Es1,...,sn(z1, . . . , zn)⊗Er1−s1,...,rn−sn(v2s1z1, . . . , v
2snzn).
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In particular, we have

∆(Er(z)) =
r∑
s=0

Es(z)⊗Er−s(v2sz).

Proof. This result is a consequence of the fact that Û+
X is a bialgebra and that, by [BS05, (4.5)],

∆(1(r,d)) =
∑

r1+r2=r
d1+d2=d

vr1d2−r2d11(r1,d1) ⊗ 1(r2,d2). 2

One of the properties of Eisenstein series most crucial for us is the fact that they are
eigenvectors for the adjoint action of the element T(0,1) =

∑
x∈X(Fl)1Ox and, more generally, of

the elements T(0,d) for d> 1. These are the so-called Hecke operators in the theory of automorphic
forms on function fields. Let

ζ(z) =
(1− σz)(1− σz)
(1− z)(1− v−2z)

be the zeta function of X.

Theorem 6.3. For any r > 0, the following hold:

[T(0,1),Er(z)] = v#X(Fl)
v−2r − 1
v−2 − 1

z−1Er(z), (6.3)

E0(z1)Er(z2) =
r−1∏
i=0

ζ

(
v−2i z1

z2

)
·Er(z2)E0(z1). (6.4)

In particular, we have

E0(z1)E1(z2) = ζ

(
z1
z2

)
E1(z2)E0(z1).

Proof. Both statements are well known (perhaps in a different form) in the theory of automorphic
forms. For the reader’s convenience, we have included in Appendix C a proof in the spirit of Hall
algebras. 2

We finish with the so-called functional equation for rank-one Eisenstein series.

Theorem 6.4 (Harder [Har74]). The rational function E1,...,1(z1, . . . , zn) is symmetric in the
variables z1, . . . , zn.

Remarks. Strictly speaking, the Eisenstein series most often considered in the theory of
automorphic forms are given by expressions like (6.2) in which, additionally, each factor Fi/Fi−1

is required to be a vector bundle. In other words, if one sets

1vec
(r,d) =

∑
V=(r,d)

1V and Evec
r (z) =

∑
d∈Z

1vec
(r,d)v

(r−1)dzd

where V runs over the set of vector bundles, the corresponding product would be

Evec
r1,...,rn(z1, . . . , zn) = Evec

r1 (z1) · · ·Evec
rn (zn).

The two series, when restricted to vector bundles, are related by a global rational factor, the
so-called L-factor. Indeed, there is an obvious factorization

Er(z) = Evec
r (z)E0(v2rz).
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Therefore, by Theorem 6.3 we have, upon restricting to the set of vector bundles,

Er1,...,rn(z1, . . . , zn) = Lr1,...,rn(z1, . . . , zn)Evec
r1,...,rn(z1, . . . , zn),

where

Lr1,...,rn(z1, . . . , zn) =
∏
i<j

rj−1∏
k=0

ζ

(
v2(ri−k) zi

zj

)
.

Example. To conclude this section, we present the series E1,1(z1, z2) as an example. For
simplicity, we will compute only the degree-zero component

E1,1(z1, z2)0 =
∑
d∈Z

(
z1
z2

)d
1(1,d)1(1,−d)

and, then, only the values of E1,1(z1, z2)0 on vector bundles. So, let F be a vector bundle of
degree zero and rank two. Because any rank-one subsheaf of F is a line bundle and any non-zero
map from a line bundle to F is injective, we have

E1,1(z1, z2)(F) =
∑
d∈Z

(
z1
z2

)d
v2d

∑
L−d∈Pic−d(X)

# Hom(L−d, F)− 1
v−2 − 1

.

If F is a stable bundle, then

Hom(L−d, F) =

{
F2d
l if d > 0,
{0} if d6 0.

Hence

E1,1(z1, z2)(F) =
#X(Fl)
v−2 − 1

∑
d>0

(
z1
z2

)d
v2d(v−4d − 1)

=
z1z2(1 + v−2)#X(Fl)

(z2 − v−2z1)(v−2z2 − z1)
. (6.5)

If F = L0 ⊕ L′0 is a direct sum of two distinct line bundles of degree zero, then

Hom(L−d, F) =


F2d
l if d > 0,

Fl if d= 0 and L−d ∈ {L0, L′0},
{0} if d= 0 and L−d 6∈ {L0, L′0},
{0} if d < 0.

Hence we get

E1,1(z1, z2)(F) =
z1z2(1 + v−2)#X(Fl)

(z2 − v−2z1)(v−2z2 − z1)
+ 2. (6.6)

From (6.5) and (6.6) we deduce that the semistable component of E1,1(z1, z2)0 is equal to

E1,1(z1, z2)(0) =
z1z2(1 + v−2)#X(Fl)

(z2 − v−2z1)(v−2z2 − z1)

{
T(2,0)

[2]
+
T 2

(1,0)

2

}
+ T 2

(1,0).

Finally, to compute the unstable component of E1,1(z1, z2)0 we use the coproduct. Observe that
since Ext(L−d, Ld) = {0}, the component of bidegree (1,−d), (1, d) of ∆(1L−d⊕Ld) is equal to

v2d1L−d ⊗ 1Ld ,
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and no other term can contribute to 1L−d ⊗ 1Ld . Hence

E1,1(z1, z2)(L−d ⊕ Ld) = v−2d∆(E1,1(z1, z2))(L−d, Ld).

By Proposition 6.2 and Theorem 6.3 we have

∆1,1(E1,1(z1, z2)) = E0(z1)E1(z2)⊗E1(z1)E0(v2z2) + E1(z1)E0(z2)⊗E0(v2z1)E1(z2)

= ζ

(
z1
z2

)
E1(z2)E0(z1)⊗E1(z1)E0(v2z2)

+ ζ

(
z2
z1

)
E1(z1)E0(z2)⊗E1(z2)E0(v2z1),

from which we eventually obtain

E1,1(z1, z2)(L−d ⊕ Ld) = v−2d

[
ζ

(
z1
z2

)
zd1z
−d
2 + ζ

(
z2
z1

)
z−d1 zd2

]
.

6.3 So far, we have considered the Eisenstein series Er1,...,rn(z1, . . . , zn) only for a fixed
elliptic curve X. Recall from § 1.5 that there exists an algebra E+

R defined over the ring
R = C[σ±1/2, σ±1/2] whose specialization for any X is isomorphic to U+

X . Using the
formulas (1.3) and (6.1), we see that the generating series Er(z) and hence the Eisenstein series
Er1,...,rn(z1, . . . , zn) can naturally be lifted to elements

REr(z) ∈ Ê
+

R[[z, z−1]] and REr1,...,rn(z1, . . . , zn) ∈ Ê
+

R[[z±1
1 , . . . , z±1

n ]].

Proposition 6.5. The series REr1,...,rn(z1, . . . , zn) converges in the region |z1| � · · · � |zn|
to a rational function in Ê

+

R(z1, . . . , zn) with at most simple poles along the hyperplanes
zi/zj ∈ {1, v2, . . . , v2r}, where r =

∑
ri.

Proof. The coefficient of REr1,...,rn(z1, . . . , zn) on any basis element of E+
R is given by a Laurent

series of the form

P (z1, . . . , zn)
∑

d1,...,dn>0

αd1,...,dn

(
z1
z2

)d1
· · ·
(
zn−1

zn

)dn
,

where P (z1, . . . , zn) ∈R[z±1
1 , . . . , z±nn ] and αd1,...,dn ∈R. By Harder’s theorem, the specializa-

tion for any elliptic curve X of the expression( r∏
l=1

∏
i,j

(zi − v−2lzj)
)
· P (z1, . . . , zn)

∑
d1,...,dn

αd1,...,dn

(
z1
z2

)d1
· · ·
(
zn−1

zn

)dn
is a Laurent polynomial (of fixed degree). This is equivalent to the vanishing of certain R-linear
combinations of the αd1,...,dn . Of course, if such a linear combination vanishes when evaluated at
all (i.e. infinitely many) elliptic curves X, then it must already vanish in R. So we are done. 2

6.4 Motivated by the analogy between the Hecke operator T(0,1) and Macdonald’s operator
(see § 5.1 and, in particular, the remark in that section), we introduce for every partition
λ= (λ1, . . . , λn) the following specialization of Eisenstein series:

Eλ(z) = REλ1,...,λn(z, σ1z, . . . , σn−1z).

By Proposition 6.5, the line (z, σz, . . . , σn−1z) is not contained in the pole locus of the rational
function REλ1,...,λn(z1, . . . , zn), and hence Eλ(z) belongs to Ê

+

R(z). More generally, for any pair
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of partitions µ⊂ λ we put

Eλ/µ(z) = REλ1−µ1,...,λn−µn(v2µ1z, v2µ2σz, . . . , v2µnσn−1z).

Observe that, by Theorem 6.3, the series Eλ(z) are eigenvectors for the adjoint action of the Hecke
operator T(0,1), whose eigenvalues βλ are (up to a global factor) the same as those of the
Macdonald polynomials; specifically, we have

βλ = z−1c1(σ, σ)
∑
i

v−2λi − 1
v−2 − 1

σ1−i = z−1σ
c1(σ, σ)
1− σ

αλ′ ,

where c1(σ, σ) = (σ1/2 − σ−1/2)(σ1/2 − σ−1/2) and αλ′ is given by formula (5.1). Note that
we have in mind the map Φσ,(σσ)−1

∞ to identify U+
X = E+

X with SḦ+
∞. Hence the relevant

specialization between variables in the Hall algebra and those in the Cherednik algebra or
Macdonald polynomials is

σ 7→ q−1, (σσ)−1 = v2 7→ t−1. (6.7)

It would seem natural to define, more generally, the specialization

El(z) = REl1,...,ln(z, σz, . . . , σn−1z)

for any sequence of non-negative integers l1, . . . , ln. However, there is the following vanishing
result.

Lemma 6.6. If l = (l1, . . . , ln) is not dominant, i.e. if lk > lk−1 for some k, then El(z) = 0.

Proof. One can check that the L-factor Ll1,...,ln(z1, . . . , zn) vanishes on the line
(z, σz, . . . , σn−1z) whenever l is not dominant. Hence Lemma 6.6 would follow from the fact
that the unnormalized Eisenstein series Evec

l1,...,ln
(z1, . . . , zn) is regular on that line. Instead of

appealing to this fact, we provide a direct proof. To make the notation less cumbersome, we
shall drop the subscript R throughout the proof. By Proposition 6.2 we have

∆(1,...,1)(Er(z)) = E1(z)⊗E1(v2z)⊗ · · · ⊗E1(v2(r−1)z),

and, more generally, given integers εk ∈ {0, 1} such that εi1 = · · ·= εir = 1 while εk = 0 if
k 6∈ {i1, . . . , ir}, we have

∆(ε1,...,εn)(Er(z)) = Eε1(z)⊗ · · · ⊗Eεk(v2skz)⊗ · · · ⊗Eεn(v2snz) (6.8)

where sk = #{l : il < k}. Now take l = (l1, . . . , ln) ∈ Nn and set l =
∑
li. We can compute

∆(1,...,1)(El(z)) using (6.8); it is equal to a sum, indexed by the set of maps φ : {1, . . . , l}→
{1, . . . , n}, of terms

aφ = ∆(ε11,...,ε
1
n)(El1(z)) · · ·∆(εk1 ,...,ε

k
n)(Elk(σk−1z)) · · ·∆(εn1 ,...,ε

n
n)(Eln(σn−1z))

where εki ∈ {0, 1} is defined by

εki =

{
0 if φ(i) 6= k,

1 if φ(i) = k.

In other words, the map φ describes the way the coproducts (6.8) of the Elk(σk−1z) have been
distributed among the l components of the tensor product. We claim that if l is not dominant,
then each term aφ vanishes. Indeed, suppose that lk > lk−1 for some k; then aφ is divisible by a
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term of the form

∆(ε1,...,εn)(Elk−1
(σk−2z)) ·∆(ε′1,...,ε

′
n)(Elk(σk−1z))

= Eε1(σk−2z)Eε′1
(σk−1z)⊗ · · · ⊗Eεn(v2snσk−2z)Eε′n(v2s′nσk−1z). (6.9)

If εi = 1, then ε′i = 0, and vice versa. Because s1 = s′1 = 0 while

sn ∈ {lk−1, lk−1 − 1} and s′n ∈ {lk, lk − 1},

it is easy to see that there exists an index j for which εj = 0, ε′j = 1 and sj = s′j . But then the
jth component of (6.9) is equal to

E0(v2sjσk−2z)E1(v2sjσk−1z) = ζ(σ−1)E1(v2sjσk−1z)E0(v2sjσk−2z) = 0

since ζ(σ−1) = 0. Hence aφ = 0 as claimed and ∆(1,...,1)(El(z)) = 0. It remains to show that
the map

∆(1,...,1) : Û+[r, d]→
∏

d1+···+dr=d
Û+[1, d1]⊗ · · · ⊗ Û+[1, dr]

is injective, but this follows from the fact that Û+ is equipped with a non-degenerate Hopf
pairing and that it is generated by elements of degree zero and one; see [BS05, Corollary 6.1]. 2

Proposition 6.7. For any partition λ we have

∆(Eλ(z)) =
∑
µ⊆λ

Eµ(z)⊗Eλ/µ(z). (6.10)

More generally, for any skew partition λ/µ we have

∆(Eλ/µ(z)) =
∑

µ⊆ν⊆λ
Eν/µ(z)⊗Eλ/ν(z). (6.11)

Proof. We prove the first statement. From Proposition 6.2 it follows that

∆(Eλ(z, . . . , σn−1z)) =
∑

s1,...,sn
06si6λi

REs1,...,sn(z, . . . , σn−1z)

⊗ REλ1−s1,...,λn−sn(v2s1z, . . . , v2snσn−1z). (6.12)

By Lemma 6.6 we have

REs1,...,sn(z, σz, . . . , σn−1z) = 0
if (s1, . . . , sn) is not a partition. Therefore the right-hand side of (6.12) reduces to (6.10). The
proof of the second statement is similar. 2

7. Geometric construction of Macdonald polynomials

In this section, we make explicit the link between Macdonald polynomials Pλ(q, t−1) and the
Eisenstein series Eλ(z).

7.1 For any skew partition λ/µ, we denote by E(0)
λ/µ the restriction of Eλ/µ(z) to the set of

semistable vector bundles of degree zero. Notice that, by homogeneity, this is independent of z;
it is therefore an element of the subalgebra E+,(0)

K of the universal Hall algebra E+
K generated

by elements u(r,0) for r > 0. See § 1.5 for details. By Proposition 1.3, this last subalgebra is
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canonically identified with the algebra of symmetric functions Λ+
(σ,v2)

. Explicitly, the isomorphism
is given by ũ(r,0) = pr/r. For instance, from the example in § 6.2 we see that

E(0)
1,1 =

(1 + v−2)(σ − v−2)(1− σ)
(σ − v−2)(σv−2 − 1)

(
p2

2
+
p2
1

2

)
+ p2

1

=
(1 + v−2)(1− σ)

σv−2 − 1
p2

2
+

(v−2 − 1)(1 + σ)
σv−2 − 1

p2
1

2
.

Let ω stand for the standard involution on symmetric functions, defined by ω(pr) = (−1)r−1pr.

7.2 We are now ready to state the second main theorem of this paper.

Theorem 7.1. For any partition λ we have

E(0)
λ = ωPλ′(σ−1, v2),

and for any skew partition λ/µ we have

E(0)
λ/µ = ωPλ′/µ′(σ

−1, v2).

The rest of this section is devoted to the proof of this theorem. We will use the characterization
of the polynomials Pλ/µ(σ−1, v2) given in Proposition 5.1. It is clear from the definitions

that ω(E(0)
λ′/µ′) is of degree |λ/µ|. Property (ii) of Proposition 5.1 was shown for ω(E(0)

λ′/µ′) in

Proposition 6.7. Thus it only remains to check that the coefficient of mr in ω(E(0)
λ′/µ′) for r = |λ/µ|

is given by properties (iii) and (iv) of Proposition 5.1.

To do this, we introduce the following family of elements in E+,(0)
K :

gr =
∑
λ`r

z−1
λ

∏
i

(v−λi − vλi)u(λi,0) =
∑
λ`r

z−1
λ

∏
i

v−2λi − 1
(1− σλi)(1− σλi)

pλ.

Alternatively, these elements can be defined through the formula

1 +
∑
r>0

grs
r = exp

(∑
r>1

v−2r − 1
(1− σr)(1− σr)

pr
r
sr
)
.

Recall that E+
X is equipped with a non-degenerate Hopf scalar product, which, by [BS05,

Lemma 4.10], satisfies

〈T(r,0), T(s,0)〉G = δr,s
[r]2#X(Flr)
r(v−2r − 1)

. (7.1)

This scalar product lifts to a non-degenerate scalar product on E+
K such that

〈u(r,0), u(s,0)〉G = δr,s
r

(1− v2r)(1− σr)(1− σr)
, (7.2)

which, after identification with Λ(σ,v2), reads

〈pr, ps〉G = δr,sr
(1− σr)(1− σr)

v−2r − 1
. (7.3)

From [Mac95, ch. VI.2] we deduce that gr is dual to mr with respect to the basis {mλ}; that is,

〈gr, mr〉G = 1,
〈gr, mλ〉G = 0 if |λ|= r and λ < (r).
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Therefore the proof of Theorem 7.1 will be complete once we have shown that

〈gr, ω(E(0)
λ′/µ′)〉G = 0 (7.4)

if λ/µ is not a horizontal strip while

〈gr, ω(E(0)
λ′/µ′)〉G = ψλ/µ(q, v2) (7.5)

if λ/µ is a horizontal strip. As we will see, verifying these equations essentially amounts to
establishing certain relations between the factors ψλ/µ(q, v2) and the L-factors appearing in the
Eisenstein series.

Observe that since gr is itself semistable of degree zero (i.e. gr ∈ E+,(0)
K ) and the subalgebras

E+,(µ)
K are all mutually orthogonal, we may as well replace E(0)

λ′/µ′ by Eλ′/µ′(z) in equations (7.4)
and (7.5). Note also that ω is an orthogonal involution for 〈 , 〉.

7.3 The basic idea is to find a factorization of gr and use the Hopf property of the scalar product
〈 , 〉G to reduce (7.4) and (7.5) to a lower rank. For simplicity we shall drop the index G from
the scalar product notation. Of course, since gr is dual to mr and mr is primitive, factoring gr
directly within E+,(0)

K is not feasible. However, this becomes possible as soon as we step out of
the subalgebra E+,(0)

K . More precisely, let us put g(1)
r = [u(0,1), gr] and ωg

(1)
r = [u(0,1), ωgr].

Lemma 7.2. For any r > 1 we have

ωg
(1)
r+1 = v[u(1,0), ωg

(1)
r ] + (v−1 − v)ωgru(1,1).

Proof. An essentially direct computation, based on the relation [u(s,1), u(t,0)] = u(s+t,1) for any s
and t, yields

ωg(1)
r = (−1)r

r∑
s=1

vs(1− v−2)(−1)sωgr−su(s,1). (7.6)

The recursion formula in the lemma is an easy consequence of (7.6). 2

Lemma 7.3. For any skew partition λ/µ we have

〈ωg(1)
r ,Eλ′/µ′(z)〉=

1
1− v2

(∑
i

(v2µ′i − v2λ′i)σi−1z

)
〈ωgr,Eλ′/µ′(z)〉.

Proof. Because 〈 , 〉 is a Hopf pairing, we have

〈ωg(1)
r ,Eλ′/µ′(z)〉 = 〈u(0,1) · ωgr − ωgr · u(0,1),Eλ′/µ′(z)〉

= 〈u(0,1) ⊗ ωgr,∆0,r(Eλ′/µ′(z))〉 − 〈ωgr ⊗ u(0,1),∆r,0(Eλ′/µ′(z))〉.

Using Proposition 6.2, the coproducts are computed to be

∆0,r(Eλ′/µ′(z)) = E0(v2µ′1z) · · ·E0(v2µ′nσn−1z)⊗Eλ′/µ′(z)

=
(

1 +
∑
i

v2µ′i−1σi−1zũ(0,1) + · · ·
)
⊗Eλ′/µ′(z)

and

∆r,0(Eλ′/µ′(z)) = Eλ′/µ′(z)⊗E0(v2λ′1z) · · ·E0(v2λ′nσn−1z)

= Eλ′/µ′(z)⊗
(

1 +
∑
i

v2λ′i−1σi−1zũ(0,1) + · · ·
)
,
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where ũ(0,1) = v(1− σ)(1− σ)u(0,1). The result then follows from the scalar product
〈u(0,1), ũ(0,1)〉= v/(1− v2). 2

7.4 We now proceed with proving (7.4) and (7.5), arguing by induction on |λ/µ|. Assume first
that |λ/µ|= 1. This means that λ′i = µ′i for all but one value of i, say j, for which λ′j = µ′j + 1.
Then, on the one hand,

Pλ/µ(σ−1, v2) = ψλ/µm1 =
∏
i<j

(1− v2(µ′i−µ′j)σi−j+1)(1− v2(µ′i−µ′j−1)σi−j−1)

(1− v2(µ′i−µ′j)σi−j)(1− v2(µ′i−µ′j−1)σi−j)
·m1,

while on the other hand,

Eλ′/µ′(z) = E0(v2µ′1z) · · ·E0(v2µ′j−1σj−2z)E1(v2µ′jσj−1z) · · ·E0(v2µ′nσn−1z).

So, by Theorem 6.3, we get

E(0)
λ′/µ′ =

∏
i<j

ζ(v2(µ′i−µ′j)σi−j) ·E1(v2µ′jσj−1z)(0)

=
∏
i<j

ζ(v2(µ′i−µ′j)σi−j) ·m1.

It remains to notice that

(1− v2(µ′i−µ′j)σi−j+1)(1− v2(µ′i−µ′j−1)σi−j−1)

(1− v2(µ′i−µ′j)σi−j)(1− v2(µ′i−µ′j−1)σi−j)
= ζ(v2(µ′i−µ′j)σi−j)

so that the ψ-factor and the L-factors do indeed coincide:

ψλ/µ(σ−1, v2) =
∏
i<j

ζ(v2(µ′i−µ′j)σi−j).

Next, assume that equations (7.4) and (7.5) hold true for all skew partitions ν/η for which
|ν/η|< r, and let λ/µ be a skew partition of size r. Combining Lemmas 7.2 and 7.3 gives

1
1− v2

(∑
i

(v2µ′ − v2λ′)σi−1z

)
〈ωgr,Eλ′/µ′(z)〉

= v{〈u(1,0) ⊗ ωg
(1)
r−1,∆1,r−1(Eλ′/µ′(z))〉 − 〈ωg

(1)
r−1 ⊗ u(1,0),∆r−1,1(Eλ′/µ′(z))〉}

+ (v−1 − v)〈ωgr−1 ⊗ u(1,1),∆r−1,1(Eλ′/µ′(z))〉. (7.7)

Let us first consider the case of a vertical strip λ′/µ′ (so that λ/µ is a horizontal strip). In this
case,

Eλ′/µ′(z) = Eε1(v2µ′1z) · · ·Eεn(v2µ′nσn−1z)
for some εi ∈ {0, 1}. Let I (respectively, J) be the set of k ∈ {1, . . . , n} for which εk = 0
(respectively, εk = 1). Then

Eλ′/µ′(z) =
∏
i<j

i∈I,j∈J

ζ(v2(µ′i−µ′j)σi−j) · ~
∏
j∈J

E1(v2µ′jσj−1z) · ~
∏
i∈I

E0(v2µ′iσi−1z).

As above, the ψ-factor and the L-factor coincide,

ψλ/µ(σ−1, v2) =
∏
i<j

i∈I,j∈J

ζ(v2(µ′i−µ′j)σi−j),
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and therefore (7.5) reduces to the simple relation

〈ωgr,E1(v2µ′j1σj1−1z) · · ·E1(v2µ′jrσjr−1z)〉= 1.

We claim that, in fact, 〈ωgr,E1(α1) · · ·E1(αr)〉= 1 for any α1, . . . , αr. Upon expanding (7.7)
one finds that it is equivalent to the following strange identity, which is proved in Appendix D.

Lemma 7.4. For any r > 1, the following identity holds over the field of rational functions
K′(α1, . . . , αr):

r∑
i=1

αi =
1

v−2 − 1

r∑
j=1

[(∏
l 6=j

ζ

(
αl
αj

)
−
∏
l 6=j

ζ

(
αj
αl

))
·
(∑
l 6=j

αl

)]

+
r∑
j=1

(∏
l 6=j

ζ

(
αj
αl

))
αj . (7.8)

Next, let us assume that λ′/µ′ has exactly one part of length two and r − 2 parts of length
one. Arguing as above and cancelling the L-factor, we see that (7.4) is equivalent to

〈ωgr,E1(v2µ′j1σj1−1z) · · ·E2(v2µ′kσk−1z) · · ·E1(v2µ′jr−1σjr−1−1z)〉= 0.

Again, we claim that in fact 〈ωgr,E1(α1) · · ·E2(αk) · · ·E1(αr−1)〉= 0 for any α1, . . . , αr−1.
This can be checked directly by using (7.7).

In all of the remaining cases, λ′/µ′ has at least two parts of length at least two, i.e. λ′i > µ′i + 1
for more than one value of i. But then no sub-skew-partition of size r − 1 of λ′/µ′ can be vertical.
By the induction hypothesis, this implies that all terms on the right-hand side vanish and thus
〈ωgr,Eλ′/µ′(z)〉= 0 as desired. Theorem 7.1 is therefore proved.

Remarks.

(i) A factorization similar to (7.6), involving rank-one difference operators in the context of
Pieri rules for skew Macdonald polynomials, appears in [BGHT99]. We thank Mark Haiman
for bringing this to our attention.

(ii) In addition to Macdonald’s operator ∆1, one can define an operator ∇, acting on symmetric
polynomials in Λ(q,t) (see [BGHT99]), which has distinct eigenvalues and whose eigenvectors
are the Macdonald polynomials. Specifically, ∇ is defined by

∇(Pλ(q, t−1)) = tn(λ)qn(λ′)Pλ(q, t−1).

Our conventions, taken from [Mac95], differ slightly from those in [BGHT99]. In our
framework, this operator ∇ is simply given by the action of the element A2 =

(
1 1
0 1

)
∈ SL2(Z)

by automorphism on the Hall algebra, which is none other than the tensor product with a
line bundle O(x) over X of degree one. Thus we have

ρ(A2)(Eλ(z)) =O(x)⊗Eλ(z) = v−2n(λ′)σ−n(λ)Eλ(z).

(iii) In [Lau90], Laumon defined and studied a ‘geometric lift’ of Eisenstein series to certain
perverse sheaves (or, more precisely, constructible complexes) on the stacks Cohr,d(X),
called Eisenstein sheaves. The Eisenstein series themselves are recovered from the Eisenstein
sheaves via the faisceaux-function correspondence. In the special case of an elliptic curve,
simple Eisenstein sheaves are determined in [Sch05]. The construction of the (non-simple)
Eisenstein sheaves relevant to Macdonald polynomials can easily be translated from
Theorem 3.1. Let us denote by (Qp)r,d the trivial rank-one constructible sheaf on Cohr,d(X),
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and let us consider the following formal series whose coefficients are semisimple constructible
complexes:

Er(σlz) =
⊕
d∈Z

(Qp)r,d[(r − 1)d](ld)zd,

where [n] is the standard shift of complexes and (m) denotes the Tate twist by the Frobenius
eigenvalue σ in H1(X,Qp). Note that a choice of one Frobenius eigenvalue σ is involved
here, but choosing the other eigenvalue σ would, of course, give a similar result. Using the
induction functor of [Lau90], we may form the product

Eλ(z) = Eλ1(z) ? Eλ2(σz) ? · · · ? Eλl(σ
l−1z).

This is still a series with coefficients in semisimple constructible complexes; these will usually
be of infinite rank. Upon restricting to the open substack parametrizing semistable sheaves
of zero slope, we finally obtain a semisimple constructible complex E(0)

λ . Using [Sch05,
Proposition 6.1], one can show that the Frobenius eigenvalues of Eλ(z) and E(0)

λ all belong
to vZσZ. Hence the Frobenius trace Tr(E(0)

λ ) is a Laurent series in v and σ. Recall that we
have fixed an isomorphism C'Qp. By Harder’s theorem, the series Tr(E(0)

λ ) converges (in
a suitable domain) to E(0)

λ and hence, by Theorem 3.1, we have Tr(E(0)
λ ) = ωPλ′(σ−1, v2).

(iv) Pick a Fl-rational closed point x ∈X(Fl). Let i :Dx→X be the embedding of the formal
neighborhood of x in X. Given an étale coordinate at x, we get an isomorphism Dx '
Spec(Fl(($))) where $ is a formal variable. Thus the set of isomorphism classes of torsion
sheaves on Dx is equal to the set of conjugacy classes of nilpotent matrices. Invariant
functions on the nilpotent cone Nd, where d> 1, are canonically identified with elements of
the ring Λ+

(σ,v2)
of symmetric functions. The restriction of coherent sheaves on X to Dx yields

a map I(X)0,d→
∐
d′6d Nd′ . This factors to an algebra isomorphism Λ+

(σ,v2)
'U(∞)

X . The

Fourier–Mukai transform yields an algebra isomorphism FM : U(0)
X →U(∞)

X . The composed
map U(0)

X → Λ+
(σ,v2)

coincides with the isomorphism in Proposition 1.3.
The involution ω in Theorem 7.1 can be removed as follows. We shall give another
isomorphism U(∞)

X ' Λ+
(σ,v2)

which takes the Laurent series FM(E(0)
λ ) to Pλ′(σ−1, v2). Let

X(d) be the dth symmetric power of E, and let C̃oh
0,d

(X) be the stacks of flags

Md→Md−1→ · · ·M1,

where eachMi is a coherent (torsion) sheaf on X of length i. Consider the Cartesian square

Xd
ιd //

rd

��

C̃oh
0,d

(X)

πd
��

X(d)
ι(d) // Coh0,d(X)

in which πd is the Springer map, rd is the ramified finite cover (x1, x2, . . . xd) 7→ x1 + x2 +
· · · xd, and ι(d) takes a divisor D to the sheaf OD. According to Laumon, the complex
F =R(πd)∗(Qp) is the intermediate extension of its restriction F |Ud to the dense open
subset Ud = ι(d)(X(d)). We have ι∗(d)F = (rd)∗(Qp) by base change. Thus the symmetric
group Sd acts on F |Ud . For each irreducible character φ of Sd, let Fφ be the intermediate
extension of the constructible sheaf HomSd(φ, F |Ud). Each Fφ is a simple constructible
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complex on Coh0,d(X). The representation ring of Sd is canonically identified with a subring
of Λ+

(σ,v2)
. We claim that there is an unique isomorphism U(∞)

X ' Λ+
(σ,v2)

taking Tr(Fφ) to
the symmetric function associated to φ. This is the map we want.
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Appendix A. Proof of Proposition 3.2

A.1 We begin the proof of Proposition 3.2 with a sequence of lemmas.

Lemma A.1. We have

S

[
X1,

∑
i

Yi

]
S = (1− q)SX1Y1S. (A.1)

Proof. Using equations (2.8) and (2.9) in Lemma 2.1, we get

S
∑
i

YiX1S = SX1

(∑
i>2

Yi

)
S + qt1−nSX1Y1S + (t− 1)SY1X1S

+ (t2 − t)SY1X1S + · · ·+ (tn−1 − tn−2)SY1X1S

= SX1

(∑
i>2

Yi

)
S + qt1−nSX1Y1S + qt1−n(tn−1 − 1)SX1Y1S

= SX1

(∑
i

YiX1

)
S + (q − 1)SX1Y1S. 2

Lemma A.2. For any indices 26 j2 < j3 < · · ·< jl 6 n we have

SY1Yj2 · · · YjlX1 = qtl−nSX1Y1Yj2 · · · Yjl . (A.2)

Proof. By (2.8) in Lemma 2.1, we have SY1X1 = qt1−nSX1Y1. By (2.9) we have

Yj2X1 =X1Yj2 + (t1/2 − t−1/2)T−1
j2−1 · · · T

−1
1 · · · T−1

j2−1Y1X1.

Multiplying the above equation by Yj3 · · · Yjl and using the fact that [Tk, Yh] = 0 if h > k − 1,
we deduce that

Yj2Yj3 · · · YjlX1 = Yj3 · · · YjlX1Yj2

+ (t1/2 − t−1/2)T−1
j2−1 · · · T

−1
1 · · · T−1

j2−1Y1Yj3 · · · YjlX1.

Now, multiplying by Y1 and using the relation

Y1T
−1
1 · · · Y −1

j2−1 = T1 · · · Tj2−1Yj2

yields

Y1Yj2 · · · YjlX1 = Y1Yj3 · · · YjlX1Yj2

+ (t1/2 − t−1/2)T−1
j2−1 · · · T

−1
2 T1 · · · Tj2−1Y1Yj2 · · · YjlX1,
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from which it follows that

SY1Yj2 · · · YjlX1 = SY1Yj3 · · · YjlX1Yj2 + (1− t−1)SY1Yj2 · · · YjlX1

and thus that

tSY1Yj2 · · · YjlX1 = SY1Yj3 · · · YjlX1Yj2 .

By the same argument,

tSY1Yj3 · · · YjlX1Yj2 = SY1Yj4 · · · YjlX1Yj2Yj3 ,

and continuing in this manner we finally arrive at

SY1Yj2 · · · YjlX1 = tl−1SY1X1Yj2 · · · Yjl = qtl−nSX1Y1Yj2 · · · Yjl
as asserted. 2

Lemma A.3. For any indices 1< j1 < j2 · · ·< jl 6 n we have

SYj1 · · · YjlX1 = SX1Yj1 · · · Yjl

+
l∑

u=1

q(1− t−1)tl−n+ju−uSX1Y1Yj1 · · · Ŷju · · · Yjl . (A.3)

Here, x̂ means that the term x is omitted from the product.

Proof. First of all, again by (2.9) in Lemma 2.1, we have

YjX1 =X1Yj + (t1/2 − t−1/2)βjYjX1

for all j > 1, where we have set

βj = T−1
j−1 · · · T1−1 · · · T−1

j−1.

Define elements

A(j1, . . . , jl) = SYj1 · · · YjlX1 and B(j2, . . . , jl) = SY1Yj2 · · · YjlX1.

Using the same arguments as in the previous lemma, we obtain that

A(j1, . . . , jl) = A(j2, . . . , jl)Yj1 + (t1/2 − t−1/2)Sβj1Y1Yj2 · · · YjlX1

= A(j2, . . . , jl)Yj1 + (t1/2 − t−1/2)t(j1−1)−1/2B(j2, . . . , jl).

By Lemma A.2,

B(j2, . . . , jl) = qtl−nSX1Y1Yj2 · · · Yjl ,
and therefore

A(j1, . . . , jl) = A(j2, . . . , jl)Yj1 + q(1− t−1)tl−n+j1−1SX1Y1Yj2 · · · Yjl
= (A(j3, . . . , jl)Yj2 + q(1− t−1)tl−n+j2−2SX1Y1Yj3 · · · Yjl)Yj1

+ q(1− t−1)tl−n+j1−1SX1Y1Yj2 · · · Yjl
= · · ·

= SX1Yj1 · · · Yjl +
l∑

u=1

q(1− t−1)tl−n+ju−uSX1Yj1 · · · Ŷju · · · Yjl ,

which is what we wanted to prove. 2
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Lemma A.4. The following holds:

S

[
X1,

∑
j1<···<jl

Yj1 · · · Yjl
]

= (1− q)
∑

1<j2<···<jl

SX1Y1Yj2 · · · Yjl . (A.4)

Proof. Using the previous two lemmas, we compute∑
j1<···<jl

SYj1 · · · YjlX1 =
∑

1<j2<···<jl

SY1Yj2 · · · YjlX1 +
∑

1<j1<···<jl

SYj1 · · · YjlX1

=
∑

1<j2<···<jl

qtl−nSX1Y1Yj2 · · · Yjl +
∑

1<j1<···<jl

SX1Yj1 · · · Yjl

+
∑

1<j1<···<jl

{ l∑
u=1

q(1− t−1)tl−n+ju−uSX1Y1Yj1 · · · Ŷju · · · Yjl
}

=
∑

1<j2<···<jl

qtn−lSX1Y1Yj2 · · · Yjl +
∑

1<j1<···<jl

SX1Yj1 · · · Yjl

+
∑

1<k1<···<kl−1

qtl−n(1− t−1)σk1,...,kl−1
SX1Y1Yk1 · · · Ykl−1

,

where

σk1,...,kl−1
= {(t+ · · ·+ t(k1−1)−1) + (t(k1+1)−2 + · · ·+ t(k2−1)−2)

+ · · ·+ (t(kl−1+1)−l + · · ·+ tn−l)}

=
tn−l − 1
1− t−1

.

Hence,∑
j1<···<jl

SYj1 · · · YjlX1 =
∑

1<j2<···<jl

qtl−nSX1Y1Yj2 · · · Yjl +
∑

1<j1<···<jl

SX1Yj1 · · · Yjl

+
∑

1<k1<···<kl−1

qtl−n(tn−l − 1)SX1Y1Yk1 · · · Ykl−1

= q
∑

1<j2<···<jl

qtl−nSX1Y1Yj2 · · · Yjl +
∑

1<j1<···<jl

SX1Yj1 · · · Yjl ,

from which the assertion follows. 2

We are finally ready to give the proof of Proposition 3.2. We will argue by induction, with
Lemma A.1 being the l = 1 base case. So fix l ∈ N and assume that Proposition 3.2 has been
proved for all l′ < l. It is necessary to distinguish two cases.

Case 1. Let us assume that l 6 n. We will use the formula∑
i

Y l
i =

(∑
i

Y l−1
i ·

∑
i

Yi

)
−
(∑

i

Y l−2
i ·

∑
i<j

YiYj

)

+ · · ·+ (−1)l
(∑

i

Yi ·
∑

j1<···<jl−1

Yj1 · · · Yjl−1

)
+ (−1)l+1l

∑
j1<···<jl

Yj1 · · · Yjl .
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According to the above, we have

S

[
X1,

∑
i

Y l
i

]
S = S

[
X1,

∑
i

Yi

]
S ·
∑
i

Y l−1
i +

∑
i

Yi · S
[
X1,

∑
i

Y l−1
i

]
S

− S

[
X1,

∑
j1<j2

Yj1Yj2

]
S ·
∑
i

Y l−2
i −

∑
j1<j2

Yj1Yj2 · S
[
X1,

∑
i

Y l−2
i

]
S

+ · · ·+ (−1)lS
[
X1,

∑
j1<···<jl−1

Yj1 · · · Yjl−1

]
S ·
∑
i

Yi

+ (−1)l
∑

j1<···<jl−1

Yj1 · · · Yjl−1
· S
[
X1,

∑
i

Yi

]
S

+ (−1)l+1lS

[
X1,

∑
j1<···<jl

Yj1 · · · Yjl
]
S. (A.5)

By the induction hypothesis and Lemma A.4,

S

[
X1,

∑
i

Y m
i

]
S = (1− qm)SY t

1X1S,

S

[
X1,

∑
j1<···<js

Yj1 · · · Yjs
]
S = (1− q)

∑
1<j2<···<js

SX1Y1Yj2 · · · YjsS

for all m< l and all s. Substituting these into (A.5), we deduce that

S

[
X1,

∑
i

Y l
i

]
S = (1− q)SX1Y1

∑
i

Y l−1
i S + (1− ql−1)S

∑
i

YiX1Y
l−1
1 S

− (1− q)SX1Y1

∑
1<j2

Yj2
∑
i

Y l−2
i S − (1− ql−2)S

∑
j1<j2

Yj1Yj2X1Y1S

+ · · ·+ (−1)l(1− q)SX1Y1

∑
1<j2<···<jl−1

Yj2 · · · Yjl−1

∑
i

YiS

+ (−1)l(1− q)S
∑

j1<···<jl−1

Yj1 · · · Yjl−1
X1Y1S

+ (−1)l+1l(1− q)SX1Y1

∑
1<j2<···<jl

Yj2 · · · YjlS. (A.6)

This is where we use Lemma A.4 again, in the form

S
∑

j1<···<jt

Yj1 · · · YjtX1 = SX1

∑
j1<···<jt

Yj1 · · · Yjt + (q − 1)SX1Y1

∑
1<j2<···<jt

Yj2 · · · Yjt ,

to obtain the following expression for the bracket S[X1,
∑

i Y
l
i ]S:

S

[
X1,

∑
i

Y l
i

]
S

= (1− q)SX1

{
Y1

∑
i

Y l−1
i − Y1

∑
1<j2

Yj2
∑
i

Y l−2
i + Y1

∑
1<j2<j3

Yj2Yj3
∑
i

Y l−3
i − · · ·
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+ · · ·+ (−1)lY1

∑
1<j2<···<jl−1

Yj2 · · · Yjl−1

∑
i

Yi + (−1)l+1lY1

∑
1<j2<···<jl

Yj2 · · · Yjl
}

+ (1− ql−1)SX1Y
l−1
1

∑
i

YiS + (1− ql−1)(q − 1)SX1Y
l
1S

− (1− ql−2)SX1Y
l−2
1

∑
j1<j2

Yj1Yj2 − (1− ql−2)(q − 1)SX1Y
l−1
1

∑
1<j2

Yj2S

+ · · ·+ (−1)l(1− q)SX1Y1

∑
j1<···<jl−1

Yj1 · · · Yjl−1
S

+ (−1)l(1− q)(q − 1)SX1Y
2
1

∑
j2<···<jl−1

Yj2 · · · Yjl−1
S.

After collecting terms, we get

S

[
X1,

∑
i

Y l
i

]
S

= SX1Y
l
1S{(1− q) + (1− ql−1) + (1− ql−1)(q − 1)}

+ SX1Y
l−1
1

∑
1<j2

Yj2S{(q − 1) + (1− ql−1)− (1− ql−2)(q − 1)− (1− ql−2)}

+ SX1Y
l−2
1

∑
1<j2<j3

Yj2Yj3S{(1− q) + (ql−2 − 1)− (ql−3 − 1)(q − 1)− (ql−3 − 1)}

+ · · ·+ SX1Y
2
1

∑
1<j2<···<jl−1

Yj2 · · · Yjl−1
S{(−1)l((1− q) + (q2 − 1)− (q − 1)2 − (q − 1))}

+ SX1Y1

∑
1<j2<···<jl

Yj2 · · · YjlS{(1− q)((−1)l(l − 1) + (−1)l+1l + (−1)l)}

+
∑
j>1

l−2∑
m=1

SX1Y1Y
l−m
j

∑
1<j2<···<jm

ju 6=j

Yj2 · · · Yjm{(1− q)((−1)m+1 + (−1)m+2)}

= (1− ql)SX1Y
l
1S.

This concludes the proof of Proposition 3.2 in the first case.

Case 2. Let us deal with the situation where l > n. The method is very similar to that used in
the proof of Case 1 above. This time we use the following identity:∑

i

Y l
i =

∑
i

Y l−1
i ·

∑
i

Yi −
∑
i

Y l−2
i ·

∑
j1<j2

Yj1Yj2 + · · ·+ (−1)n−1
∑
i

Y l−n
i Y1 · · · Yn.

Based on the above decomposition, we write

S

[
X1,

∑
i

Y l
i

]
S = S

[
X1,

∑
i

Yi

]
S ·
∑
i

Y l−1
i +

∑
i

Yi · S
[
X1,

∑
i

Y l−1
i

]
S

− S

[
X1,

∑
j1<j2

Yj1Yj2

]
S ·
∑
i

Y l−2
i −

∑
j1<j2

Yj1Yj2 · S
[
X1,

∑
i

Y l−2
i

]
S
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+ · · ·+ (−1)n−1S[X1, Y1 · · · Yn]S ·
∑
i

Y l−n
i

+ (−1)n−1Y1 · · · YnS
[
X1,

∑
i

Y l−n
i

]
S. (A.7)

By the induction hypothesis and Lemma A.4, this simplifies to

S

[
X1,

∑
i

Y l
i

]
S

= (1− q)SX1Y1

∑
i

Y l−1
i S + (1− ql−1)S

∑
i

YiX1Y
l−1
1 S

− (1− q)SX1

∑
1<j2

Yj2Y1

∑
i

Y l−2
i S − (1− ql−2)S

∑
j1<j2

Yj1Yj2X1Y
l−2
1 S

+ · · ·+ (−1)n−1

(
(1− q)SX1Y1 · · · Yn

∑
i

Y l−n
i S + (1− ql−n)SY1 · · · YnX1Y

l−n
1 S

)
=
{

(1− q)SX1Y1

∑
i

Y l−1
i S + (1− ql−1)SX1

∑
i

YiY
l−1
1 S

+ (1− ql−1)(q − 1)SX1Y
l
1S

}
−
{

(1− q)SX1

∑
1<j2

Yj2Y1

∑
i

Y l−2
i S + (1− ql−2)SX1

∑
j1<j2

Yj1Yj2Y
l−2
1 S

+ (1− ql−2)(q − 1)SX1

∑
1<j2

Yj2Y
l−1
1 S

}

+ · · ·+ (−1)n−1

{
(1− q)SX1Y1 · · · Yn

∑
i

Y l−n
i S + (1− ql−n)SX1Y1 · · · YnY l−n

1 S

+ (1− ql−n)(q − 1)SX1Y2 · · · YnY l−n+1
1 S

}
.

Upon gathering terms, we obtain

S

[
X1,

∑
i

Y l
i

]
S

= SX1Y
l
1S{(1− q) + (1− ql−1) + (q − 1)(1− ql−1)}

+ SX1

∑
1<j2

Yj2Y
l−1
1 S{−(1− q) + (1− ql−1)− (1− ql−2)− (q − 1)(1− ql−2)}

+ · · ·+ SX1Y2 · · · YnY l−n+1
1 S{(−1)n−1((1− q)− (1− ql−n+1) + (1− ql−n)

+ (q − 1)(1− ql−n))}

+
∑
i>1

n∑
m=1

SX1

∑
1<j2<···<jm−1

ju 6=i

Yj2 · · · Yjm−1Y
l−m
i S{(−1)m+1(q − 1) + (−1)m(q − 1)}

= (1− ql)SX1Y
l
1S

as desired. This concludes the proof of Case 2 as well as that of Proposition 3.2.
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Appendix B. Proof of Proposition 3.3

We start by giving a closed expression for the commutator S[
∑

i Yi, X
l
1Y
−1
1 ]S.

Lemma B.1. For any l > 1 we have

S

[∑
i

Yi, X
l
1Y
−1
1

]
S = (tn−1 − 1)S{qX l−1

1 Xn + q2X l−2
1 X2

n + · · ·+ qlX l
n}S

+ qlSX l
nS − SX l

1S. (B.1)

Proof. First of all, by (2.10) we have

Y1X1Y
−1
1 = qT1 · · · Tn−2T

2
n−1Tn−2 · · · T1X1

= qT1 · · · Tn−2Tn−1XnT
−1
n−1 · · · T

−1
1 ,

from which it follows that

Y1X
l
1Y
−1
1 = qlT1 · · · Tn−2Tn−1X

l
nT
−1
n−1 · · · T

−1
1 (B.2)

and hence that SY1X
l
1Y
−1
1 S = qlSX l

nS. Now we compute

S

[∑
i

Yi, X
l
1Y
−1
1

]
S = SY1X

l
1Y
−1
1 S − SX l

1S +
n∑

m=2

S[Ym, X l
1Y
−1
1 ]S

= qlSX l
nS − SX l

1S +
n∑

m=2

S[Ym, X l
1Y
−1
1 ]S.

The lemma will therefore be proved once we have shown that

S[Ym, X l
1Y
−1
1 ]S = (1− t−1)tm−1S{qX l−1

1 Xn + q2X l−2
1 X2

n + · · ·+ qlX l
n}S. (B.3)

For this, we need a preparatory result.

Sublemma B.2. For any m, the following identity holds:

T−1
m−1 · · · T

−1
2 T−1

1 T−1
2 · · · T−1

m−1T1 · · · Tn−2T
2
n−1Tn−2 · · · T1

= T−1
1 · · · T−1

m−2TmTm+1 · · · Tn−2T
2
n−1Tn−2 · T1. (B.4)

Proof of sublemma. We argue by induction. The relation can easily be checked directly for m= 2.
Fix m and assume that (B.4) holds for m− 1. We have

T−1
m−1 · · · T

−1
2 T−1

1 T−1
2 · · · T−1

m−1T1 · · · Tn−2T
2
n−1Tn−2 · · · T1

= T−1
m−1 · · · T

−1
1 T−1

2 T−1
1 · · · T−1

m−1T1 · · · Tn−2T
2
n−1Tn−2 · · · T1

= T−1
1 T−1

m−1 · · · T
−1
3 T−1

2 T−1
3 · · · T−1

m−1T
−1
1 T1 · · · Tn−2T

2
n−1Tn−2 · · · T1

= T−1
1 (T−1

m−1 · · · T
−1
3 T−1

2 T−1
3 · · · T−1

m−1T2 · · · Tn−2T
2
n−1Tn−2 · · · T2)T1.

Using the induction hypothesis applied to the set of indices 2, 3, . . . , n rather than 1, 2, . . . , n,
we may simplify the expression enclosed in parentheses to get

T−1
m−1 · · · T

−1
2 T−1

1 T−1
2 · · · T−1

m−1T1 · · · Tn−2T
2
n−1Tn−2 · · · T1

= T−1
1 (T−1

2 · · · T−1
m−2TmTm+1 · · · Tn−2T

2
n−1Tn−2 · · · T2)T1,

which proves (B.4) for the integer m. This finishes the induction step and hence the proof of the
sublemma. 2
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We may now prove Lemma B.1. Once again, we argue by induction. Fix m and set
ul = YmX

l
1Y
−1
1 . We compute u1 directly, using (2.9) and (B.4), as follows:

u1 = X1YmY
−1
1 + (t1/2 − t−1/2)T−1

m−1 · · · T
−1
2 T−1

1 T−1
2 · · · T−1

m−1Y1X1Y
−1
1

= X1YmY
−1
1 + q(t1/2 − t−1/2)T−1

m−1 · · · T
−1
1 · · · T−1

m−1T1 · · · T 2
n−1 · · · T1X1Y1Y

−1
1

= X1YmY
−1
1 + q(t1/2 − t−1/2)T−1

1 · · · T−1
m−2Tm · · · T

2
n−1 · · · T1X1

= X1YmY
−1
1 + q(t1/2 − t−1/2)T−1

1 · · · T−1
m−2Tm · · · Tn−1XnT

−1
n−1 · · · T

−1
1 .

We will now prove the following formula by induction on l:

ul =X l
1Y
−1
1 Ym + (t1/2 − t−1/2)T−1

1 · · · T−1
m−2Tm · · · Tn−1elT

−1
n−1 · · · T

−1
1 (B.5)

where

el = qXnX
l−1
1 + q2X2

nX
l−2
1 + · · ·+ qlX l

n.

The l = 1 case was proved above. Let us assume that formula (B.5) holds for a certain integer l.
We have

ul+1 = X1ul + q(t1/2 − t−1/2)T−1
1 · · · T−1

m−2Tm · · · Tn−1XnT
−1
n−1 · · · T

−1
1 Y1X

l
1Y
−1
1

= X1ul + ql+1(t1/2 − t−1/2)T−1
1 · · · T−1

m−2Tm · · · Tn−1XnT
−1
n−1 · · · T

−1
1

× T1 · · · Tn−1X
l
nT
−1
n−1 · · · T

−1
1

= X1ul + ql+1(t1/2 − t−1/2)T−1
1 · · · T−1

m−2Tm · · · Tn−1X
l+1
n T−1

n−1 · · · T
−1
1 , (B.6)

and (B.5) for the integer l + 1 follows from this by the induction hypothesis.

Equation (B.3) is obtained from multiplying (B.5) by S on both sides. Lemma B.1 is now
proved. 2

We can now proceed with the proof of Proposition 3.3. Let us form the generating series for
S[
∑

i Yi, X
l
1Y
−1
1 ]S. By Lemma B.1, we find∑

r>1

S

[∑
i

Yi, X
r
1Y
−1
1

]
Sur = S

{
− X1u

1−X1u
+ (tn−1 − 1)

∑
i>1 q

iXi
nu

i ·X1u

1−X1u
+ tn−1 qXnu

1−Xnu

}

= S
−X1u+ tn−1qXnu

(1−X1u)(1− qXnu)
S.

On the other hand, we have

exp
(∑
r>1

(tr/2 − t−r/2)(t−r/2 − qrtr/2)
r

∑
i

Xr
i u

r

)

=
exp(

∑
r>1(1/r)

∑
i X

r
i u

r) exp(
∑

r>1(qr/r)
∑

i X
r
i u

r)
exp(

∑
r>1(t−r/r)

∑
i X

r
i u

r) exp(
∑

r>1(qrtr/r)
∑

i X
r
i u

r)

=
n∏
i=1

exp(
∑

r>1(1/r)Xr
i u

r) exp(
∑

r>1(qr/r)Xr
i u

r)
exp(

∑
r>1(t−r/r)Xr

i u
r) exp(

∑
r>1(qrtr/r)Xr

i u
r)

=
n∏
i=1

(1− t−1Xiu)(1− qtXiu)
(1− qXiu)(1−Xiu)

.
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Hence we are reduced to proving the following relation:

S
n∏
i=1

(1− t−1Xiu)(1− tqXiu)S = S
n∏
i=1

(1−Xiu)(1− qXiu)S +
(1− t−n)(1− tq)

1− q
S

×
{

(X1u− tn−1qXnu)
n∏
2

(1−Xiu)
n−1∏
i=1

(1− qXiu)
}
S. (B.7)

Of course, owing to homogeneity, we may drop the dummy variable u from this formula. A brute
force approach based on the equalities

SX1S =
1

1 + t−1
S(X1 +X2)S = tSX2S,

SX2
1S =

1
1 + t−1

S(X2
1 +X2

2 + (1− t−1)X1X2)S,

SX2
2S =

1
1 + t

S(X2
1 +X2

2 + (1− t)X1X2)S

allows one to check (B.7) directly for n= 2. We will now prove (B.7) by induction on n. So fix n
and assume that (B.7) holds for the integer n− 1, with n− 1> 2. For any subset {i1, . . . , ir} of
{1, . . . , n}, we denote by Si1,...,ir the partial symmetrizer with respect to the indices {i1, . . . , ir}.

Using the relation

S12(X1 − tn−1qXn)(1−X2)S12 = tS12(X2 − tn−2qXn)(1− t−1X1)S12,

we get

(1− t−n)(1− tq)
1− q

S

{
(X1 − tn−1qXn)

n∏
2

(1−Xi)
n−1∏
i=1

(1− qXi)
}
S

=
(1− t−n)(1− tq)

1− q
tS

{
(1− qX1)(1− t−1X1)(X2 − tn−2qXn)

n∏
3

(1−Xi)
n−1∏
i=2

(1− qXi)
}
S

=
1− t−n

1− t1−n
tS

{
(1− qX1)(1− t−1X1)

( n∏
i=2

(1− t−1Xi)(1− tqXi)−
n∏
i=2

(1−Xi)(1− qXi)
)}

S.

Next, we use the formulas

S(1− qX1)
n∏
i=2

(1− tqXi)S = t−1S

n∏
i=1

(1− tqXi)S + (1− t−1)S
n∏
i=2

(1− tqXi)S,

S(1− t−1X1)
n∏
i=2

(1−Xi)S = t−1S

n∏
i=1

(1−Xi)S + (1− t−1)S
n∏
i=2

(1−Xi)S

to simplify (B.7) to the following relation:

(t−n − t1−n)S
{ n∏
i=1

(1− t−1Xi)(1− tqXi)−
n∏
i=1

(1−Xi)(1− qXi)
}
S

= (1− t−n)(t− 1)
( n∏
i=1

(1− t−1Xi)S
n∏
i=2

(1− tqXi)S −
n∏
i=1

(1− qXi)S
n∏
i=2

(1−Xi)S
)
. (B.8)
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As usual, let

mλ(z1, . . . , zk) =
∑
σ∈S k

zλ1

σ(1) · · · z
λk
σ(k)

stand for the monomial symmetric function. The computation of the (t1/2)-symmetrization of a
monomial symmetric function m(1r) is an easy exercise which we leave to the reader.

Sublemma B.3. For any 16 r 6 n we have

Sm(1r)(X2, . . . Xn)S = t−r

[
n− 1
r

]−
t[

n
r

]−
t

Sm(1r)(X1, . . . , Xn)S.

We take the convention that
[
n−1
r

]+
t

= 0 if r = n and drop the index t for simplicity. Using
Sublemma B.3, we can now write down closed and symmetric expressions for all terms involved
in (B.8):

n∏
i=1

(1− t−1Xi) =
n∑
r=0

(−1)rt−rm(1r)(X2, . . . , Xn),

n∏
i=1

(1− qXi) =
n∑
r=0

(−1)rqrm(1r)(X2, . . . , Xn),

S
n∏
i=2

(1−Xi)S =
n∑
r=0

(−1)rt−r

[
n− 1
r

]−
[
n
r

]− Sm(1r)(X1, . . . , Xn)S,

S
n∏
i=2

(1− tqXi)S =
n∑
r=0

(−1)rqr

[
n− 1
r

]−
[
n
r

]− Sm(1r)(X1, . . . , Xn)S.

This allows us to write

n∏
i=1

(1− t−1Xi)S
n∏
i=2

(1− tqXi)S =
∑
r,k

(−1)r


r∑

u=0

(
r
u

)
qu+k

[
n− 1
u+ k

]−
[

n
u+ k

]− tu−r−k


× Sm(1r2k)(X1, . . . , Xn)S

and

n∏
i=1

(1− qXi)S
n∏
i=2

(1−Xi)S =
∑
r,k

(−1)r


r∑

u=0

(
r
u

)
t−u−k

[
n− 1
u+ k

]−
[

n
u+ k

]− qr−u+k


× Sm(1r2k)(X1, . . . , Xn)S.
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Hence
n∏
i=1

(1− t−1Xi)S
n∏
i=2

(1− tqXi)S −
n∏
i=1

(1− qXi)S
n∏
i=2

(1−Xi)S

=
∑
r,k

(−1)r
r∑

u=0

(
r
u

)[n− 1
u+ k

]−
[

n
u+ k

]− {qu+ktu−r−k − t−u−kqr−u+k}Sm(1r2k)(X1, . . . , Xn)S (B.9)

while, of course,

S

{ n∏
i=1

(1− t−1Xi)(1− tqXi)−
n∏
i=1

(1−Xi)(1− qXi)
}
S

=
∑
r,k

(−1)r
r∑

u=0

(
r
u

)
(t2u−r − 1)qu+km(1r2k)(X1, . . . , Xn). (B.10)

Let A denote the right-hand side of (B.9) multiplied by (1− t−n)(t− 1), and let B stand for
the right-hand side of (B.10) multiplied by (t−n − t1−n). Equation (B.8) says simply that A=B.
To show this, we check that the term qu+km(1r2k)(X1, . . . , Xn) appears in A and in B with the
same coefficient. In B this coefficient is clearly equal to

(−1)r
(
r
u

)
(t2u−r − 1)(t−n − t1−n)

whereas, as far as A is concerned, it is equal to

(1− t−n)(t− 1)(−1)r
(
r
u

)t
u−r−k

[
n− 1
u+ k

]−
[

n
u+ k

]− − tu−r−k
[

n− 1
r − u+ k

]−
[

n
r − u+ k

]−


= (1− t−n)(t− 1)(−1)r
(
r
u

)
tu−r−k

(
tr+k−n−u − tu−n+k

1− t−n

)
= (t− 1)t−n(1− t2u−r)(−1)r

(
r
u

)
= (t−n − t1−n)(t2u−r − 1)(−1)r

(
r
u

)
,

as desired. Thus equation (B.8) and Proposition 3.3 are (finally!) proved.

Appendix C. Proof of Theorem 6.3

C.1 We begin with (6.3). Since

Er(z2) = Evec
r (z2)E0(v2rz2) and [E0(z1),E0(v2rz2)] = 0,

the relation (6.3) is equivalent to

[T(0,1),E
vec
r (z)] = v#X(Fl)

v−2r − 1
v−2 − 1

z−1Evec
r (z). (C.1)
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We prove (C.1) by showing that for any x ∈X(Fl),

[1Ox , 1
vec
r,d ] =

v−r − vr

v−2 − 1
1vec
r,d+1,

where Ox is the structure sheaf at x. Indeed, we have

1vec
r,d · 1Ox = v−r

∑
F vector bundle
F=(r,d)

1F⊕Ox ,

whereas, since every non-zero map to Ox is onto,

1Ox · 1vec
r,d = vr

{ ∑
G vector bundle
G=(r,d+1)

# Hom(G,Ox)− 1
v−2 − 1

1G +
∑

F vector bundle
F=(r,d)

# Hom(F ,Ox)1F⊕Ox

}
.

We conclude by using dim Hom(G,Ox) = dim Hom(F ,Ox) = r.

C.2 We now turn to the proof of (6.4). We begin with a lemma.

Lemma C.1. For any d> 1 and any r, the series Er(z) is an eigenvector for the adjoint action
of T(0,d).

Proof. We will first show that for any vector bundle V of rank r, the commutator [T(0,d), 1V ] is
supported on the set of vector bundles. To see this, let F be a coherent sheaf of rank r, and write
F = νF ⊕ τF where νF is a vector bundle and τF is a torsion sheaf. Let us assume that τF 6= 0
and compute

〈T(0,d)1V , 1F 〉G = 〈T(0,d)1V , v
〈νF ,τF 〉1νF1τF 〉G

= v〈νF ,τF 〉〈∆(T(0,d)) ·∆(1V), 1νF ⊗ 1τF 〉G. (C.2)

Since ∆(T(0,d)) = T(0,d) ⊗ 1 + 1⊗ T(0,d), V and F are both of rank r and no subsheaf of V is
torsion, we may simplify (C.2) to

〈T(0,d)1V , 1F ) = v〈νF ,τF 〉(T(0,d)1V ⊗ 1 + 1V ⊗ T(0,d), 1νF ⊗ 1τF 〉G. (C.3)

This is non-zero only if deg(τF ) ∈ {0, d}. A very similar computation shows that

〈1VT(0,d), 1F ) = v〈νF ,τF 〉(1VT(0,d) ⊗ 1 + 1V ⊗ T(0,d), 1νF ⊗ 1τF 〉G, (C.4)

which is also non-zero only if deg(τF ) ∈ {0, d}. Furthermore, if deg(τF ) = d (i.e. if F is not a
vector bundle), then (C.3) and (C.4) actually coincide, so that 〈[T(0,d), 1V ], 1F 〉G = 0. This proves
that [T(0,d), 1V ] is indeed supported on the set of vector bundles.

To finish the proof of Lemma C.1, we need to show that the scalar product

〈[T(0,d), 1
vec
(r,l)], 1F 〉G = 〈T(0,d)1

vec
(r,l), 1F 〉G

is independent of the particular choice of a vector bundle F of rank r and degree d+ l and that,
furthermore, this value is itself independent of l. The proof of this is essentially the same as for
the d= 1 case above (see §C.1). It suffices to notice that the number Surj(G, T ) of surjective
maps from a vector bundle F of rank r to a torsion sheaf T is independent of the choice (and
degree) of F . This last statement is clear when T is stable and, in general form, can be proved
by induction using the formula

# Hom(F , T ) =
∑
T ′⊆T

#Surj(F , T ′). 2
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From Lemma C.1 and the formula

E0(z) = exp
(∑

r

T(0,r)

[r]
zr
)
,

we deduce that there exists a series Sr(z1/z2) ∈ C[[z1/z2]] such that

E0(z1)Er(z2) = Sr
(
z1
z2

)
Er(z2)E0(z1). (C.5)

Let us first determine S1(z1/z2). Relation (C.5) for r = 1 is equivalent to

E0(z1)Evec
1 (z2) = S1

(
z1
z2

)
Evec

1 (z2)E0(z1). (C.6)

Thus, in order to compute S1(z1/z2), it is enough to consider the restriction of E0(z1)E1(z2) to
line bundles of degree zero, say. If L is such a line bundle, then for any d > 0 we have

1(0,d) · 1(1,−d)(L) = vd
∑

L−d∈Pic−d(X)

# Hom(L−d, L)− 1
v−2 − 1

= vd#X(Fl)
v−2d − 1
v−2 − 1

,

from which we get

E0(z1)E1(z2)(L) = 1 +
∑
d>0

v−d
(
z1
z2

)d
1(0,d)1(1,−d)(L)

= 1 +
#X(Fl)
v−2 − 1

∑
d>0

(
z1
z2

)d
(v−2d − 1)

= 1 +
z1
z2

#X(Fl)
(1− (z1/z2))(1− v−2(z1/z2))

= ζ

(
z1
z2

)
.

This shows that S1(z1/z2) = ζ(z1/z2). Finally, to determine Sr(z1/z2), observe that by the
coproduct formulas in Proposition 6.2,

Sr
(
z1
z2

)
∆1,...,1(Er(z2)E0(z1)) = ∆1,...,1(E0(z1)Er(z2))

= E0(z1)E1(z2)⊗E0(z1)E1(v2z2)⊗ · · · ⊗E0(z1)E1(v2(r−1)z2)

=
r−1∏
i=0

ζ

(
v−2i z1

z2

)
E1(z2)E0(z1)⊗ · · · ⊗E1(v2(r−1)z2)E0(z1)

=
r−1∏
i=0

ζ

(
v−2i z1

z2

)
∆1,...,1(Er(z2)E0(z1)).

It follows that

Sr(z1/z2) =
r−1∏
i=0

ζ(v−2iz1/z2),

as desired. So Theorem 6.3 is proved.
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Appendix D. Proof of Lemma 7.4

Let us denote by F (α1, . . . , αr) the right-hand side of (7.8). Each ζ(αi/αj) is a rational function
of degree zero and leading coefficient one in both αi and αj . From this and the expression (7.8)
we see that F (α1, . . . , αr) is a rational function of degree one in each of the variables α1, . . . , αr
whose leading coefficient in any of these variables is also equal to one. Next, since ζ(z) has a
simple pole at z = 1 and at z = v2, the function F (α1, . . . , αr) has at most simple poles, and
these are located along the hyperplanes αi = αj and αi = v2αj . We claim that the residues on
each of these hyperplanes vanish, so that F (α1, . . . , αr) is a polynomial in α1, . . . , αr.

In fact, the residues along hyperplanes αi = αj vanish because F (α1, . . . , αr) is symmetric
in α1, . . . , αr; as for the hyperplanes ai = v2αj , we compute

Resv2αj−αiF (α1, . . . , αr)

=
1

v−2 − 1

[∏
l 6=i
l 6=j

ζ

(
αl
αj

)
· Resv2αj−αiζ

(
αi
αj

)
·
(∑
l 6=i
l 6=j

αl + v2αj

)

−
∏
l 6=i
l 6=j

ζ

(
v2αj
αl

)
· Resv2αj−αiζ

(
αi
αj

)
·
(∑
l 6=i
l 6=j

αl + αj

)]

+
∏
l 6=i
l 6=j

ζ

(
v2αj
αl

)
· Resv2αj−αiζ

(
αi
αj

)
v2αj .

Using the relation

ζ

(
v2αj
αl

)
= ζ

(
αl
αj

)
,

we can simplify this to

Resv2αj−αi F (α1, . . . , αr) =
∏
l 6=i
l 6=j

ζ

(
αl
αj

)
· Resv2αj−αiζ

(
αi
αj

)
·
{
v2αj − αj
v−2 − 1

− v2αj

}
= 0,

as desired. Upon combining all the information we have on the function F (α1, . . . , αr), we see
that necessarily F (α1, . . . , αr) = α1 + · · ·+ α+ r + u for some u ∈ K′. It remains to observe that
(for instance) we have F (1, . . . , 1) = r. So we are done.
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