Precessional Constant Determined from Optical Astrometry

M. Miyamoto

National Astronomical Observatory, Mitaka, Tokyo 181, Japan

We have analyzed proper motions of about $30000 \mathrm{~K}-\mathrm{M}$ giants chosen from the astrometric catalogue ACRS Part 1 (Corbin and Urban 1991). To avoid localized velocity fields, these K-M giants are chosen from the heliocentric distance interval $0.5-1.0 \mathrm{kpc}$. Starting from the initial trial of the luni-solar precessional correction $\Delta p \sim-0^{\prime \prime} .3 / c y$, we have found that the motion of stars are well expressed in terms of the Oort constants for the K-M giants. After confirming that the K-M giants are in a steady-state, we have applied the velocity-field model of the plane-parallel galactic rotation with non-zero Oort constants. Then, we have found a rational set of the corrections to the FK5 system: $\Delta p=-0^{\prime \prime} .27 \pm 0^{\prime \prime} .03 / \mathrm{cy}$ and $\Delta e+\Delta \lambda=-0^{\prime \prime} .12 \pm 0^{\prime \prime} .03 / \mathrm{cy}$, as is shown in Table 1 (Miyamoto and Sôma 1993). In consequence, the FK5 system is still rotating.

TABLE I
Kinematic Parameters Derived from Proper Motions Given by ACRS Part 1

Kinematic Parameters	Least Squares Method K-M Giants $\|z\| \leq 0.5 \mathrm{kpc}$	Maximum Likelihood Method K-M Giants $\|z\|<1.0 \mathrm{kpc}$	Least Squares Method Young Stars $0.5 \mathrm{kpc} \leq r \leq 3.0 \mathrm{kpc}$
$\Delta p\left({ }^{\prime \prime} / \mathrm{cy}\right)$	-0.267 ± 0.028	-0.214 ± 0.022	-0.27 (given)
$\Delta e+\Delta \lambda\left({ }^{\prime \prime} / \mathrm{cy}\right)$	-0.116 ± 0.026	-0.075 ± 0.037	-0.12 (given)
$S_{1}(\mathrm{~km} / \mathrm{s})$	$+13.6 \pm 0.3$	$+13.4 \pm 0.31$	$+8.7 \pm 0.8$
$S_{2}(\mathrm{~km} / \mathrm{s})$	$+23.3 \pm 0.3$	$+20.3 \pm 0.38$	$+15.9 \pm 0.8$
$S_{3}(\mathrm{~km} / \mathrm{s})$	$+11.9 \pm 0.3$	$+12.2 \pm 0.22$	$+9.1 \pm 0.7$
$S_{\text {total }}(\mathrm{km} / \mathrm{s})$	29.5	26.7	20.3
$A=D_{12}^{+}$("/cy)	$+0.263 \pm 0.012$	$+0.243 \pm 0.011$	$+0.285 \pm 0.019$
$B=D_{21}^{-1}\left({ }^{\prime \prime} / \mathrm{cy}\right)$	-0.176 ± 0.010	-0.193 ± 0.010	-0.260 ± 0.015
$V_{\theta}(\mathrm{km} / \mathrm{s})$	-177.1 ± 6.2	-175.7 ± 6.0	-219.9 ± 9.8
D_{13}^{+}	0	0	-0.059 ± 0.011
D_{13}^{-}	0	0	$+0.059 \pm 0.011$
D_{23}^{+}	0	0	$+0.039 \pm 0.010$
D_{32}^{-}	0	0	$+0.039 \pm 0.010$
$D_{z z}\left(\mathrm{~km} / \mathrm{s} / \mathrm{kpc}^{2}\right)$	-	15.6 ± 2.2	-
$\sigma_{R}(\mathrm{~km} / \mathrm{s})$	-	$+31.3 \pm 0.4$	-
$\sigma_{\theta}(\mathrm{km} / \mathrm{s})$	-	$+25.2 \pm 0.5$	-
$\sigma_{z}(\mathrm{~km} / \mathrm{s})$	-	$+21.2 \pm 0.5$	-
$\epsilon_{\mu a}\left({ }^{\prime \prime} / \mathrm{cy}\right)$	\cdots	0.56 ± 0.02	-
$\epsilon_{\mu \delta}\left({ }^{\prime \prime} / \mathrm{cy}\right)$	-	0.52 ± 0.02	-
total number adopted	20292	22629	1892

References

Corbin, T.E. and Urban, S.E. (1991) Astrographic Catalogue Reference Stars (ACRS), U.S. Naval Observatory.
Miyamoto, M. and Sôma, M. (1993) AJ, 105, 691. L9.

