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TREE SELF-EMBEDDINGS 

BY 

DAVID ROSS 

ABSTRACT. Elementary proofs are given of the following two 
statements: (1) Every infinite tree of height at most to properly 
embeds into itself. (2) There is a tree of height o> + 1 that does not 
properly embed into itself. 

0. Introduction. Simple proofs are given of the following two statements: 
(1) Every infinite tree of height at most œ properly embeds into itself 
(2) There is a tree of height co + 1 that does not properly embed into itself. 
While statement (1) is an immediate consequence of a difficult theorem of 

Nash-Williams [3, 4, 2], this special case is of independent interest, and can be 
proved as an elementary consequence of Kruskal's embedding theorem [5]. 

1. Definitions. A tree is a strict partial order (T, < ) such that for every 
x G T, {y e T: y ^ x } is well ordered by < . It will be convenient to assume 
that every tree has a least element rT. 

The height of x e Tis the order type of {y ^ T: y ^ x). The height ofT is the 
supremum of the heights of elements of T. For x e T, T{x) = {y <E T\ y ^ x} , 
s(x) = {y > x if* < z = J then z = >>}, S^OO = {y e S(x): T(y) infinite}, 
and Sf(x) = S(x) - S^x). 

A branch of T is a maximal linearly ordered subset of T. Note that if T has 
height co, every infinite branch can be written [xn\ n e N} with x0 = rT and 
*,7+i G S'oo^). An essential antichain of T is a subset G of {x e 71: 7"(x) is 
infinite} with the property that for every x =£ y e G, neither x e 7X_y) 
nor j e T(x). Observe that sup{ ||G||: G an essential antichain of T] ^ 
SUP{ H^oX*) ll: * e ^}> where ||^ || is the cardinality of A. 

For K, W subsets of trees, say that V embeds in JV, V => W, if for some 
injection 0: V —» ^ , and every JC, _y e K, x < j> if and only if 0(x) < 0(y). Say 
that Vproperly embeds in W, V =>0 W, provided V => W for some proper subset 
W of W. 
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2. Results. 

LEMMA 1. (Kruskal) If {Tn: n & N} is a sequence of finite trees then 7/ => Tj 
for some i < j . 

LEMMA 2. If {Tn: n G N} is a sequence of finite trees, then for some N G N 
tf«d a// « i? N, E(n) = {i ¥= n: Tn => 7]} /s infinite. 

PROOF. Else without loss of generality E(n) is finite for all n. By Lemma 1, 
{«:£"(«) = <j>} is finite. Since for every n with £"(«) ¥= <f>, Tn=> Tt for some / with 
E(i) = <j>, every Tn embeds in one of a finite number of finite trees, so there are 
only finitely many trees in {Tn: n G N}, giving a contradiction. 

LEMMA 3. If [Tn: n G N} is a sequence of finite trees, then there is a nontrivial 
increasing \p:N —> N such that for all n G N, Tn =» 7i(„). 

PROOF. Take N as in Lemma 2. For n ^ N put ^(«) = «. For n > N, define 
\p(n) inductively so that \p(n + 1) is the least i > \p(n) with Tn+X => Tt. 

REMARK. In lemmas 1-3 the injections Tt =̂> T- may be defined in such a way 
that the least element of Tt is taken to the least element of Tj. 

LEMMA 4. Suppose Tis a tree of height at most w , i e T, {xn: n G N} Q S(X), 

and W =»0 W, where W = UnT(xn). Then T =>0 T. 

PROOF. Let 6W\ W—> Wbe a proper embedding, and let 0:T—> 7 b e 0W on W 
and the identity on T — W. It suffices to show that 6 is order preserving. Let y, 
z G T with y < z. There are three cases. 

CASE 1. y, z G T - W. Then 0(y) = y < z = 0(z). 

CASE 2. y, z G W. Then flQ/) = 0w(y) < 0w{z) = 0(z). 

CASE 3. ;> G T - JF, z G W. Then z G r(jcA?) for some w, and 0(j>) = 
^ ^ x < *„,(*„) ^ ^(z) = 0(z). 

THEOREM 1. If T is an infinite tree of height at most œ then T =>0 T. 

PROOF. There are several cases. 

CASE 1. For some x G 7, S Ax) is infinite. Let {xn: n G N} Q Sr(x), and put 
Tn = T(xn). Take \p:N —> N from Lemma 3, properly embed U„Tn into itself by 
embedding Tn into 7^w), and apply Lemma 4. 

CASE 2. For some branch {xn\ n G N} of T9 and some iV G N, SooC-*/) == 

{x / + 1} whenever / i^ JV. Let rw = T(xN+n) — T(xN^_n^]) for n G N; evidently 
each r,7 is finite. Apply Lemma 3 as in Case 1 to properly embed UuTn into 
itself, and as in Lemma 4 extend this embedding to all of T. 

CASE 3. Otherwise. Induct on a = sup{ ||G||: G an essential antichain of T). 
Clearly a > 0. If a is finite then a = ||G|| for some essential antichain G of T. 
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Let x0 e G. Since (G — {x0} ) U S^XQ) is an essential antichain, S^XQ) = 
{x}} for some x}. Similarly, S^x^) = {x2} for some x2. Continue to obtain a 
sequence [xn: n e N} with S^Cx,,) = { ^ + , } . The result follows by Case 2. 

Suppose then that a is infinite. By induction and the hypothesis that Case 1 
fails, assume that for every x e T with T(x) infinite, a = sup{ ||G||: G an 
essential antichain of T(x) }, and Sy(jc) is finite. In particular, | |S(A:) || ^ a for 
every x ^ T. Consider two cases. 

CASE 3a. HS'(JC) || < a for every x e T. For every x with T(JC) infinite, and 
every 8 < a, there is an essential antichain GÔ(JC) of 7\x) with cardinality 8. 
Define 6:T—> Tinductively as follows. Put 0(rT) = y for some y > rT with r ( ^ ) 
infinite. Once 0(x) is defined with T(0(x) ) infinite, let 8 = \\S(x) \\ < a, and 
define 0 on S(x) to be an injection of S(x) into G8(6(x) ). It is easy to verify that 
6 is a proper embedding of T into itself. 

CASE 3b. Otherwise. Without loss of generality (by Lemma 4), for every x 
with T(x) infinite there is a y e T(JC) with H S ^ J O II = \\S(y) || = a. In 
particular, for every x with T(x) infinite there is an essential antichain Ga(x) of 
T(x) with cardinality a. Proceed as in Case 3a, substituting Ga(0(x) ) for 
G8(0(x) ) in the construction of 0. The theorem is proved. 

The next result shows that Theorem 1 is in some sense the best possible. 

THEOREM 2. There is a tree T of height co + 1 such that T ^ 0 T. 

PROOF. There is a unique (up to isomorphism) tree V of height co such that 
\\S(x) || = 2 for every JC e V. Let B be the set of branches of V. Extend the 
order < on V to V U B by putting x < b whenever x ^ b ^ B. If W Q B is 
nonempty then V U If is a tree of height co + 1. 

Let O be the set of nontrivial embeddings of V into itself. (Note that proper 
embeddings are nontrivial, but not necessarily vice versa). Every \p e 0 extends 
uniquely to an embedding xp of V U B, where \p(b) = {y e V: y < \p(x) for 
some x <E /?}. Since | |F | | = S0, ||<&|| ^ c (the cardinality of the continuum), so 
$ can be enumerated (with repetition if necessary) by $ = {\pa: a < c}. 
Observe that Ba = [b e B:\pa(b) ¥= b) has cardinality c. 

Cardinality considerations make it possible to inductively define disjoint 
subsets {pa: a < c] and {qa: a < c} of B such that qa = ^aiPa)'^ indeed, 
take pa ^ Ba - ( {<?,: / < a} U { ^ " V A ) : * < «} ) and put qa = $a(pa). Put 
T = V U {pa: a < c}. 

Suppose (for a contradiction) that \p properly embeds T into itself. It is easy 
to verify that \p must take V into V and T — V into r — V. Moreover, if \p is the 
identity on V then it must be the identity on T — V. Since \p is proper, it is not 
the identity on V, so \p = \pa for some a. But then \p(pa) = ^a(Pa) = Qa & T, a 
contradiction. 
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REMARK. The tree T in Theorem 2 is rigid in the sense of ( [1], 4.22). 
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