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1. The physical observations that lead to quantitative physical
theory are " pointer-readings." The observational data consist of
statements to the effect that, when one given set of pointers are
incident on certain scale divisions, then another set of pointers are
incident on such and such scale divisions. " Pointers " and " scale
divisions " are here used in a generalised sense. The question arises
as to how it is possible on the basis of a collection of incidence
relations of this sort to build up a quantitative theory i.e. one
involving the concept of measurement. I t must be noted that until
this is done any numbers associated with scale divisions serve merely
as labels.

I t is the object of the present note to draw an analogy with the
procedure followed in projective pure geometry, which seems to
answer this question in principle. This geometry starts from proposi-
tions of incidence and, by the well-known process involving the defini-
tion of an Absolute Conic or Quadric, can be put into metrical terms.
Probably it is generally believed that this type of process provides a
foundation also for the introduction of measurement into physics.
But, so far as the writer is aware, the only attempt that has been
made to follow out such an idea in detail, starting from postulates
about what may be regarded as the most elementary physical observa-
tions, is that of Robb1. His work, however, does not follow a route
analogous to the standard one of projective geometry, but proceeds
by way of an earlier introduction of parallelism and congruence.

Now should it be the case that an acceptable set of physical
postulates were found to be exactly analogous to the axioms of
projective geometry, we could take over into physics the whole pro-
cedure of the latter theory to show how measurement is introduced.

1 A. A. Robb, Geometry of Time and Space (2nd ed., 1936). Possibly the work of
A. N. Whitehead (Principle of Belativity, 1922) should also be regarded as starting from
"projective" foundations and including a treatment of the present problem. How-
ever, in his work this problem is not isolated from others concerning the foundations of
physics.
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212 W. H. M'CEEA

Actually no currently accepted set of physical postulates does fulfil
this condition. But those of Milne's "Kinematical Relativity1" come
near to doing so. It is worth while to show how a slight modification
of Milne's assumptions will in fact give postulates of the required sort.
For the claim of kinematical relativity is that it yields a model
universe which reproduces the characteristics of the actual universe
sufficiently closely for us to assert that, if we understand how, for
example, " gravitation " arises in the model universe, then we under-
stand in principle how it arises in the actual universe. Similarly, if
we see how " measurement " arises in a model universe conforming to
the modified assumptions, then we may claim to understand in
principle how it arises in the actual universe.

We shall find too that the geometrical representation, even
though not entirely that appropriate to kinematical relativity, does
show why certain types of result should emerge at various stages of
that theory.

2. Postulates of kinemalical relativity. It is necessary briefly to recall
Milne's assumptions; we do so first for the case of a single spatial
dimension (W. S. §§ 27-35). He postulates the existence of a set of
fundamental observers in relative motion in this space. They are
supposed to observe each other and explore the space by the emission
and reception of light-signals at instants recorded by clocks with
which they are equipped (W. S. §9 et seq). It is assumed that light-
signals travel in each of two possible senses, say " northwards " and
" southwards," in the space, and that each signal possesses some recog-
nisable individuality. Each observer will divide all other observers
into two classes, those which he sees " north " of himself and those
which he sees " south " of himself, and he is allowed to assume that
any signal he emits northwards is seen once, and once only, by each
observer north of himself, and similarly for signals and observers in
the opposite sense.

These assumptions do not appear in quite these forms in Milne's
treatment, but they, and others to be discussed are clearly implied.
The last one, for example, corresponds to the fact that in W. S. §27
Milne assumes that the quantities there called t'2, t'3, t4 all exist and
are unique.

It is not essential to the theory to assume that the signals
originate at particular observers, and it is more convenient to suppose

1 E. A. Milne, Relativity, Gravitation, and World-Structure (Oxford, 1935), to be
referred to as W, S.
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that there is an infinite number of signals passing in both senses, and
that an observer can make use of these ready-made signals. He
might employ a shutter to impress upon them the Morse code
suggested by Milne (W. S. p. 27). We then assume that any two
opposite signals meet once and once only. The meet of two such
signals we shall call an event.

In Milne's theory an observer A assigns, in a prescribed manner,
to any event in the immediate experience of a second observer B an
"epoch" T and a "distance" R. Then a functional relation E=cj>(T)
gives A's description of B's motion. Milne, in his second derivation
of the Lorentz formulae (W. S. § 32) assumes t h a t for the case of
uniform relative motion <jj (T) is a linear function of T, i.e. that the
uniformity of the motion applies to his conventional distance and
epoch. So, leaving aside the question of how A discovers that B is
an observer in uniform motion relative to himself (see W. S. §§ 23-5),
two observations suffice to determine for him the whole career of B.

In the general case of three spatial dimensions Milne's funda-
mental observers are taken to be in uniform motion in this sense. So
it appears that he really postulates the existence of a set of observers
such that any one of the set can determine the whole career of another
by making just two observations on him.

These same postulates may now be stated more formally as
follows:

(i) There are infinitely many events.

(ii) There are infinitely many careers of particles in uniform
relative motion. (Events and careers of particles (or
observers) in uniform, relative motion are now regarded as
indefinable, otherwise than as subjects of these postu-
lates. These particular names are used for the sake of
comparison with Milne's theory; they will now be
temporarily replaced, for brevity, by points and lines
respectively.)

(iii) Through any point there pass infinitely many lines, and
on any line there are infinitely many points.

(iv) Any two distinct points determine a unique line on which
they lie, and any two distinct lines determine a unique
point which lies on both lines.

(v) A light-signal track is a line (in the sense that it satisfies
(iv) and the second part of (iii)); two and only two
signal tracks go through each event.
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There is however a further assumption in Milne's theory. He
supposes that all the careers of particles in uniform relative motion,
but not the light-signal tracks, have one and only one event in
common, i.e. for him the first part of (iii) applies to a single event
and not to any event. This is the one significant difference between
Milne's postulates and those we shall follow here. It is required in
Milne's theory in order to make all pairs of his observers equivalent
in the sense he denotes by A=B. This equivalence is not preserved
in the present work, but the equivalence which Milne denotes by
A=B is preserved, since each of the careers of particles in uniform
relative motion is on the same footing as any other, in regard to the
whole aggregate. Physically this is important as illustrating the fact
that Milne's cosmological principle may be satisfied without his first
kind of equivalence of observers being satisfied.

We note now that (i)-(iv) are just the propositions of incidence
of two-dimensional projective geometry1. We shall add the usual
postulates of order and continuity required to make it a "real
geometry" (Baker, loc. cit. Chapter 2). The analogous postulates are
not given explicitly in Milne's theory, except for events in the
immediate experience of an observer (W. S. § 13), but they are implied
by the fact that he has finally a single real continuum of events.

The resulting two:dimensional space we may call a space-time
plane. It is now clear, without going into details, that corresponding
postulates for the case of three space-dimensions may be written
down, and that these will lead similarly to a space-time four-fold.
The only effective difference from Milne's system will continue to be
that we do not take over his assumption of a common event for all
the observers in uniform relative motion.

3. Metrical expression of the geometry. By the well-known process
the properties of the geometrical system may be expressed in metrical
terms2. Confining attention for the moment to a single space-time
plane belonging to the four-fold the metrical expression is introduced
with the aid of an Absolute Conic, and any conic in the plane may be
selected as the Absolute. In our case we want two particular lines
through each point, the signal tracks, to have a special role. So we
shall take them to be the tangents to the Absolute from, the point in
question. We recall that we are dealing with a real geometry, so the

1 See for example, H. F. Baker, Principles of Geometry I (1929), Chapter I.
2 H. F. Baker, Principles of Geometry II (1930), Chapter 5.
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points to which we direct attention must be the points exterior to a
real Absolute. Then we have as required two and only two tangents
through each of these points. I t is then known that the geometry is
hyperbolic. (Baker, loc. cit.). Reverting to the four-fold, the
corresponding result shows that the metric is expressible in the form

ds2 = k {1 - \h (t2 - x
2 - y 2 - z2)}-2 {dt2 - dx2 - dy2 - dz2}. (1)

Here k may be any positive constant. A special form is obtained by
replacing ds by ds/\/k and letting k -> 0 ; then (1) is replaced by

ds2 = dt2 - dx2 - dy2 - dz2. (2)

The metric (2) is that of Minkowski space-time, the space-time of
special relativity. Letting k->0 means that we take a degenerate
Absolute, in the case of the four-fold a real sphere in the hyperplane
at infinity, and in the case of any space-time plane a real point-pair1,
/ , J, say.

4. Physical discussion regarding kinematical relativity. In the
case of the space-time plane just mentioned the signal-tracks through
any point are the lines joining that point to / and J. This is just
what we require if, in the case of a single space-dimension, we make
a unique separation of the two senses (§ 2), such that all observers
will agree in labelling any particular light-track as "northward" or
" southward." For then all tracks through / , say, are " northward,"
and all through J are " southward."

In the corresponding case with three space-dimensions we have
seen that we have Minkowski geometry. This is the geometry in
which we pass from any observer to any other observer by the
general Lorentz transformation2, i.e. including where necessary a
change of space-time origin. This is therefore the result we should
have in Milne's theory were observers other than those having an
event in common included, and it is in fact in agreement with the
conclusions of Whitrow3 in regard to such an extension of Milne's
work.

On account of the difference from Milne's own case stated above
(§ 2) the present work does not yield directly the results of his theory.

1 D. M. Y. Sommerville Bepoit of the Australasian Assoc. for the Advancement of
Science, XVII. (1924), 140-153. I am indebted to Professor E. T. Whittaker for this
reference.

2 Throughout the work the velocity of light is taken to be unity.
3 G. J. Whitrow, Proc. London Math. Soc. (2), 41 (1936), 529-543.
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But it naturally suggests at this stage that he should be led to the
geometry in which we pass from one observer to another by the
Lorentz transformation without change of space-time origin. This
actually is his result (W. S. § 36). The metric is given by1

ds2 = F (t2 -x2 — y2 - z2) {dt2 - dx2 — dy2 - dz2}, (3)

where F is an arbitrary function of the argument shown.
A more important conclusion may now be drawn from this

discussion. In obtaining (3) Walker was concerned with establishing
a formal comparison between Milne's system and the expanding
universes of general relativity. He found that the former supplied
a counterpart only of those general relativity systems in which the
spatial section has constant negative curvature (i.e. is a hyperbolic
sub-space), and so concluded, " It is clear that Milne has restricted his
system by assuming the Lorentz transformation" (loc. cit. p. 267).

The geometrical representation shows what is at the basis of this
restriction. For the analysis of the assumptions of kinematical
relativity in § 2 shows that they do not admit such physical
possibilities as that two light-signal tracks should have more than
one event in common, that two observers in uniform relative motion
should have more than one event in common, or that one of these
observers and a signal track should have more than one event in
common. These possibilities are excluded in Milne's work, as
followed also by Whitrow in his papers on related problems, by the
assumptions that the various functions appearing in the analysis are
all single-valued. These assumptions are carried over into the
geometrical representation by taking the axioms of incidence in the
forms we have stated.

The justification for working out the consequences of these
assumptions is that they are the simplest from which to start. There
is no a priori reason to suppose that they apply to the external world,
though much may be learned by comparing their consequences with
observed properties of the external world. However, general
relativity shows that it is possible by a different technique to work
consistently without the restrictions involved in these assumptions.

This feature may be illustrated by Einstein's static universe.
There the analogues of Milne's fundamental observers are observers
fixed in the static coordinate system, and it is easily found that a
light-track may go " round the universe " any number of times, and

1 A. G. Walker, Monthly Notices, R.A.S., 95(1935;, 263-9.

https://doi.org/10.1017/S0013091500002546 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002546


GEOMETRICAL FOUNDATIONS OF CERTAIN RELATIVITY THEORIES 217

encounter one of these observers every time. Or again two light-
tracks may leave a particular observer at one event and, going round
the universe by different ways, meet again at a later event in the
observer's experience. It does not matter at the moment if, as is
probably the case, these particular phenomena do not occur in the
actual universe. The point is that such possibilities are not, as in
kinematical relativity, necessarily excluded from the theoretical
system by the initial assumptions.

There is however further a high probability that phenomena of
this general character can occur in local gravitational fields in the
actual universe. For it is a result of observation that light rays are
bent in passing near the sun. So one should expect that it would be
possible to have a body so massive that rays from a point source
passing on opposite sides of the body would be bent sufficiently to
meet again at some other point, i.e. the light-tracks would have more
than one event in common. This would correspond to the "lens-
like " action of a gravitational field recently discussed by Einstein1.
At any rate such an effect could not be investigated theoretically by
a system like kinematical relativity starts with the implicit assumption
it is impossible.

The general relativity expanding universes which Walker finds
to be without counterparts in kinematical relativity are ones which
allow some of the general possibilities just discussed. It is not of
course implied that, were the restrictions mentioned removed from
kinematical relativity, it would necessarily lead to the same model
universes as general relativity. For, apart from this question, the
treatments of dynamics and gravitation in the two theories are
different.

5. The space-time derived from the postulates. We now observe that
the metric (1) gives the space-time of the de Sitter universe. Also it
can be verified that the lines in the initial projective geometry are
the geodesies in its metrical representation, as we expect from the
method of introducing the metric. So we have derived the usual
" kinematical" properties of this universe from a simple set of pure
incidence relations. That this should be possible could indeed have
been inferred from the known result that the de Sitter space-time
admits an Absolute2.

1 A. Einstein, Science, 84 (1936), 506.
2 See, for example, Sommerville, loc. cit.
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We have also derived in a similar way the Minkowski space-
time (2). The only " kinematical " difference between the de Sitter
and Minkowski space-times is that in the latter, as we have seen, all
the observers in a single space-dimension can agree in assigning a
"northward" and "southward" sense to it. We may notice also
that (1) and (2) are special cases of the form (3) given by kinematical
relativity.

A remark must be inserted about the usual exclusion of velocities
greater than the velocity of light. It is most conveniently treated
after the dynamics of the system has been introduced. But even if
we exclude velocities greater than the velocity of light on the ground
that they would make it possible for events to be observed before the
cause producing them, we are introducing an additional postulate in
the denial of this possibility. In Milne's derivation of the Lorentz
transformation (PP. S. §32) he appears arbitrarily to restrict the
relative velocity of the observers to be less than the velocity of light.

6. Universe with one space-dimension. In considering a single space-
time plane at the beginning of § 3 we explicitly took it to belong to
the space-time fourfold, thus implying that the postulates for more
than two dimensions (i.e. more than one space-dimension) were
assumed. This was necessary, for it is well-known (Baker, op. cit., I,
p. 120) that the propositions of incidence in a plane only are not
sufficient to permit the proof of Desargues's theorem, and thence the
development of the subsequent theory leading to the definition of the
Absolute.

To follow out the consequences of the assumptions for a single
space-dimension only, from the standpoint of this paper, we should
require to use the non-Desarguesian geometry of the plane. However,
such a geometry does not appear to have been developed in a form
suited to this application. So we shall merely note that this
geometry is necessarily less restricted than that resulting from the
addition of the propositions of incidence for more dimensions.
This circumstance should show itself in Milne's work, and this is
precisely what we find. For in the case of a single space-dimension
Milne finds what he calls the generalised Lorentz transformations
(W. S. p. 41), given in his notation (putting c = 1) by

T' + X' = p12 (T + X), T'-X' = p21(T-X), (4)

where p12 (T + X) is an arbitrary function of T + X, and p21 is the
function inverse to p12. He later finds (W. S. p. 51) that an attempt
to extend directly to more dimensions the derivation which leads to
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(4) results in inconsistent equations. So the case of more dimensions
is more restricted in this respect, as we were led to anticipate. Thus
we see in principle why Milne should have obtained generalised
Lorentz formulae for one space-dimension, but did not obtain them
in other cases.

In passing it is worth noticing a short way of deriving (4) in
Milne's theory. He chooses (W. S. p. 29) to define epoch T and
distance X as though the velocity of light-signals were always constant
and equal to c. So the light tracks are given by T ± X/c=constant.
This must apply for all observers, and in his theory these observers
agree in the sense (" northward " or " southward ") of any signal.
Therefore a track T + X/c = k, for observer A using T, X coordinates,
must be described as a track T' + X'/c = k', for observer B using T'r
X' coordinates, where k is any constant and k' a constant depending
on k. So the transformation from {T, X) to (T', X') must be such
that the combination T -\- X/c transforms into some function of
T' + X'/c. Similarly T — X/c must transform into some function of
T' — X'/c. So the transformation must give relations of the form
(putting c = 1)

T' + X'=f(T + X), T'-X' = g(T-X). (5)

But for any determination of the functions / , g these two equations
must determine the transformation completely.

Now let X = B, the distance of B from A as determined by A;
then X' = 0, and we have from (5)

f(T + R)=g(T-R)(=T'), (6)

giving A's description of B's motion. Again, let — X' = R', the
distance of A from B as determined by B (the negative sign occurring
since the X, X' coordinates are measured in the same sense while the
distances R, R' will be measured in opposite senses); then X = 0, and
we have from (5)

f-i(T'-R') = g-1(T'+ R')(=T), (7)

giving B's description of A's motion.'
If then A = B according to Milne's requirement (W. S. p. 24)

the descriptions given by (6), (7) must be identical. This is the
case if

g-1 (x) = / (x), so that f'1 (x) = g (x),
when (5) becomes

T' + X' =f(T + X), T' -X' =f~1(T -X). (8)

https://doi.org/10.1017/S0013091500002546 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002546


220 W. H. M'CRBA

We have now satisfied all Milne's requirements, so the function / is
arbitrary as far as they are concerned, and equations (8) reproduce
Milne's equations (4).

The discussion of the one dimensional universe is here mainly of
negative character as showing how properties deduced for it are not
necessarily capable of extension to more dimensions.

7. Note on a transformation used by Milne. The coordinates x, y, z, I
in (1), (2) are orthogonal non-homogeneous cartesian coordinates.
Corresponding generalised polar coordinates 'U, %, 8, <j> are given by

sin 8cos<f>, 2/=cCsinh X sin dsin<f>, z=:Csinhxcos 6, t=eUooBhx-

These are the natural coordinates to employ if, as in kinematical
relativity, we consider only a set of fundamental observers in uniform
relative motion having a unique event in common. For then we
take this event as origin, and the world-line of any one of these
observers is given by constant values of x> 8> </>• The coordinate 'C
then measures interval, or proper-time, from the origin along the
world-line. A given value 'UQ of 'C specifies equivalent events in the
history of all these observers, so that 'C may be called the cosmic time
of the system. These coordinates were introduced from this point
of view by Kermack and M'Crea1.

If we then make the further transformation from fTtOT given by

r = <G0log(tC/'Co) + eGo, (10)

the coordinate T is Milne's dynamical time2 corresponding to the
cosmic epoch 'CQ. It is advisable to keep clear the distinction between
the transformation to cosmic time, and the subsequent trans-
formation to dynamical time which is shown by Milne to give his
dynamical equations a more familiar form. For then we avoid an
apparent difference in this last step between his " non-relativistic"3

and " relativistic"4 treatments.

1 Kermack and M'Crea, Monthly Notices, B.A.S., 93 (1933), 522.
2 Milne, Proc. Boy. Soe., A., 158 (1937), 177.
3 Milne, loc. cit.
* Milne, Proc. Roy. Soc., A., 159 (1937), 171.
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