REMARK ON THE TRICOMI EQUATION

TADATO MATSUZAWA

§ 1. As an application of the Carleman-type estimation Hörmander [4], p. 221, has proved the following:
A solution (distribution) of the Tricomi equation
\[\frac{\partial^2 u}{\partial t^2} + t \frac{\partial^2 u}{\partial x^2} = 0 \]
in an open set \(\Omega \) in \(\mathbb{R}^{2} \) belongs to \(C^{\infty}(\Omega) \) if it is in \(C^{\infty}(\Omega_{-}) \) where
\(\Omega_{-} = \{(x, t); (x, t) \in \Omega, t < 0\} \).

In this note we shall consider the same problem for the inhomogeneous Tricomi equation
\[\frac{\partial^2 u}{\partial t^2} + t \frac{\partial^2 u}{\partial x^2} = f(x, t) \]
in a different manner. The existence of the solution in the generalized sense is well known. Furthermore we shall consider the propagation of analyticity. More precisely, the solution \(u \) is analytic in \(\Omega \) if it is analytic in \(\Omega_{-} \) and if \(f(x, t) \) is analytic in \(\Omega \) (Theorem 3.1). We shall use the results of [2] and [5] in the proof.

§ 2. The following theorem is obtained from the results of Berezin [2].

Theorem 2.1. Consider the following (backward) Cauchy problem:
\[(2.1) \quad u_{tt} + tu_{xx} = f(x, t) \quad \text{in } \mathcal{D}, \]
\[(2.2) \quad u(x, 0) = \varphi(x), \quad u_{t}(x, 0) = \psi(x) \quad \text{in } a \leq x \leq b \]
where \(\mathcal{D} \) denotes a domain in the region \(t < 0 \) bounded by characteristics passing through \((a, 0)\) and \((b, 0)\), \((a < b)\). Assume \(f(x, t) \) and \(f_{x}(x, t) \) are continuous in \(\mathcal{D} \) and the initial data \(\varphi(x), \psi(x) \) are thrice continuously differentiable in \([a, b]\). Then there exists one and only one solution

Received April 21, 1972.
$u(x,t)$ of the problem (2.1), (2.2) having continuous second derivatives in \bar{D}. Furthermore, if $f(x,t)$ and $\psi(x), \varphi(x)$ are infinitely differentiable in \bar{D} and in $[a, b]$ respectively, then the solution $u(x,t)$ is an infinitely differentiable function in \bar{D}.

By virtue of Theorem 2.1 it is shown that there exists a fundamental solution $E(x,t)$ for the backward Cauchy problem for the equation $Lu = u_{tt} + tu_{xx} = 0$. That is, there exists a distribution $E(x,t)$ in the region $t \leq 0$ such that

\begin{align}
LE &= E_{tt} + tE_{xx} = 0 \quad \text{for } t < 0, \\
E(x,0) &= 0, \quad E_t(x,0) = \delta_x.
\end{align}

In fact, take $f(x,t) = 0, \varphi(x) = 0$ and

$$
\psi(x) = \begin{cases} 0 & x < 0 \\ x^t/4! & x \geq 0 \end{cases}
$$

in Theorem 2.1. Then there exists a solution $v(x,t)$ for the problem (2.1), (2.2) with these data having second continuous derivatives in the region $t \leq 0$. The desired fundamental solution is given by

$$
E(x,t) = \frac{\partial}{\partial x^t}v(x,t) \quad t \leq 0,
$$

where differentiation in x is interpreted in the sense of distributions. By Theorem 2.1 and (2.5) we have

\begin{align}
\text{supp. } E(x,t) &\subset \{(x,t); -\frac{3}{2}(-t)^{3/2} \leq x \leq \frac{3}{2}(-t)^{3/2}, t \leq 0\}, \\
E(\cdot, t) &\in C([-T, 0]; \mathcal{D}'(R_x)), \\
E_t(\cdot, t) &\in C([-T, 0]; \mathcal{D}'(R_x))
\end{align}

for any $T > 0$, where $\mathcal{D}'(R_x)$ denotes the space of distributions in R_x.

Furthermore, by using the partial hypoellipticity of the Tricomi operator L in t (cf. [4], §§2.2, 4.3), we have the following.

Corollary 2.1. Let Ω be an open set in R^3_x, such that $\{(x,0); a < x < b\} \subset \Omega$. If $u \in \mathcal{D}'(\Omega)$ satisfies

\begin{align}
Lu &= u_{tt} + tu_{xx} = 0 \quad \text{in } \Omega, \\
u &= 0 \quad \text{in } \Omega_+ = \{(x,t); (x,t) \in \Omega, t > 0\}.
\end{align}
Then \(u = 0 \) in \(\Omega_+ \cap (\bar{D} \cup \Omega) \) where \(D \) denotes a domain in the region \(t < 0 \) bounded by characteristics passing through \((a,0)\) and \((b,0)\).

For the proof we apply Theorem 2.1 by regularizing \(u \) with respect to \(x \).

§3. Let \(\Omega \) be an open set in \(\mathbb{R}^2 \) which intersects \(x \)-axis.

Theorem 3.1. Let \(u = u(x,t) \in \mathcal{D}'(\Omega) \) be a solution of the equation

\[
Lu = u_{tt} + tu_{xx} = f(x,t) \quad \text{in } \Omega
\]

with \(f \in C^\infty(\Omega) \). Then \(u \in C^\infty(\Omega) \) if it is in \(C^\infty(\Omega_-) \) where \(\Omega_- = \{(x,t); (x,t) \in \Omega, t < 0\} \). Furthermore, \(u \) is an analytic function in \(\Omega \) if it is analytic in \(\Omega_- \) and if \(f(x,t) \) is analytic in \(\Omega \).

We shall prove this theorem in several steps. First we shall show that \(u(x,0) \in C^\infty \{x; (x,0) \in \Omega\} \).

Assume \(\{(x,0); 0 \leq x \leq b\} \subset \Omega, (0 < b) \). If we take \(T > 0 \) sufficiently small then the closed domain \(\bar{D} \) bounded by \(\{(x,0); 0 \leq x \leq b\} \), characteristics passing through \((0,0)\) and \((b,0)\) and \(\{(x,-T); -\infty < x < +\infty\} \) is contained in \(\Omega \cap \{(x,t); t \leq 0\} \). Let \(u(x,t) \) and \(f(x,t) \) be functions given in Theorem 3.1 and \(b, T \) be sufficiently small, then by the usual way (cf. [3]) we have

\[
u(x,0) = \int E_t(x-y, -T)u(y, -T)dy - \int E(x-y, -T)u_t(y, -T)dy
\]

\[-\int_{-T \leq \tau \leq 0} E(x-y, \tau)f(y, \tau)d\tau, \quad 0 < x < b,
\]

where the integral is taken in the sense of distributions. We note that there exists \(u(x,0) = \lim_{t \to 0} u(\cdot, t) \) in \(\mathcal{D}'(0 < x < b) \) by the partial hypoellipticity of \(L \) in \(t \) (cf. [4], §4). The formula (3.2) is justified because of the assumptions for \(u, f \) and the properties of \(E(x,t) \): (2.6), (2.7), (2.8). Thus we have proved that \(u(x,0) \in C^\infty(0, b) \), and hence

\[
u(x,0) \in C^\infty \{x; (x,0) \in \Omega\}.
\]

Similarly, if \(u \) and \(f \) are analytic in \(\Omega_- \) and \(\Omega \) respectively, then we see that \(u(x,0) \) is analytic in \(\{x; (x,0) \in \Omega\} \). We omit the detail.

In the next section we shall show that

\[
u \in C^\infty(\Omega \cap \{(x,t); t \geq 0\})
\]
from which we see that \(u(x,0) \) and \(u_t(x,0) \) are in \(C^\infty(x; (x,0) \in \Omega) \). Then, applying Theorem 2.1 and Corollary 2.1, we have

\[
(3.4) \quad u \in C^\infty(\Omega \cap \{(x,t); t \leq 0\}).
\]

By (3.3), (3.4) and noting that the form of the equation is \(u_{tt} + tu_{xx} = f \) in \(\Omega \) we have \(u \in C^\infty(\Omega) \) by the usual method of calculation (cf. § 4).

In the analytic case, from the assumption the \(u(x,0) \) is analytic in \(\{x; (x,0) \in \Omega\} \) we shall show, in the next section, \(u = u(x,t) \) is analytic in \(\Omega \cap \{(x,t); t \geq 0\} \) from where we have \(u(x,0), u_t(x,0) \) are analytic in \(\{x; (x,0) \in \Omega\} \). Then by Cauchy-Kowalevski theorem and Corollary 2.1, \(u \) is analytic in a neighbourhood of the \(x \)-axis contained in \(\Omega \). On the other hand, \(u \) is analytic in \(\Omega_+ = \{(x,t) \in \Omega, t > 0\} \) because it is a solution of an elliptic equation in \(\Omega_+ \). Thus \(u \) is analytic in \(\Omega \).

§ 4. It remains for us to prove the regularity property of the solution \(u \) in \(\Omega \cap \{(x,t); t \geq 0\} \).

Theorem 4.1. Let \(f \in C^\infty(\Omega) \) (\(\in C^\omega(\Omega) \)) and \(u \in \mathcal{D}'(\Omega) \) such that

\[
(4.1) \quad Lu = u_{tt} + tu_{xx} = f(x,t) \quad \text{in } \Omega,
\]

\[
(4.2) \quad u(x,0) = \psi(x) \in C^\infty(x; (x,0) \in \Omega) \quad (\in C^\omega(x; (x,0) \in \Omega)).
\]

Then we have \(u \in C^\infty(\Omega \cap \{(x,t); t \geq 0\}) \) (\(\in C^\omega(\Omega \cap \{(x,t); t \geq 0\}) \)). Here \(C^\omega \) denotes the set of analytic functions.

To prove this theorem we use the method employed in [5], §§ 5, 6. We note that it is sufficient to prove the case \(u(x,0) = \psi(x) = 0 \). First we prepare the following theorem which is derived by a direct computation. Take \(G = (a < x < b) \times [0, T) \) such that \(G \subset \Omega \) and introduce the notation:

\[
(4.3) \quad \|v\|_{\mathcal{S}(G)}^2 = \sum_{j=0}^2 \|D^jv\|_{L^2(G)}^2 + \|t^{1/2}v_{xt}\|_{L^2(G)} + \|t^{1/2}v_{xx}\|_{L^2(G)}^2 + \|tv_{xx}\|_{L^2(G)}^2.
\]

(\(\mathcal{S}(G) \)) is a Hilbert space with the norm \(\|\cdot\|_{\mathcal{S}(G)} \).

Theorem 4.2 (cf. [5], Theorem 4.2). There exists a constant \(C > 0 \) such that

\[
(4.4) \quad \|v\|_{\mathcal{S}(G)} \leq C\|Lv\|_{L^2(G)}
\]

for all \(v \in \mathcal{S}(G) \) with \(\text{supp. } v \subset G \) and \(v(x,0) = 0 \).
Suppose \(f(x,t) \in C^\infty(\Omega) \), then by the partial hypoellipticity of \(L \) in \(t \) (cf. [4], § 4.3) we conclude that for any \(r \geq 2 \) there exists a number \(\beta = \beta(u,r) \) such that
\[
\zeta u \in H_{(r,\beta)}(G) = H_{(r,\beta)}(R^2)|_G
\]
for any \(\zeta = \zeta(x,t) \in C^\infty(G) \). For the notation \(H_{(r,\beta)}(R^2) \), we refer to [4], § 2.5.

For a real number \(s \) we define an operator \(T_s \):
\[
\tilde{T}_s \psi(x,t) = (1 + |\xi|^2)^{\alpha} \hat{\psi}(\xi, t),
\]
where \(\psi \in \mathscr{S}'(R^2_{x,t} \cap \{ t \geq 0 \}) \) and \(\hat{\psi}(\xi, t) \) denotes the partial Fourier transformation of \(\psi \) with respect to \(x \). (cf. [4], § 1.7.)

For any \(x_0 \in (a,b) \) take \(\zeta \in C^\infty(G) \) such that \(\zeta(x_0,0) \neq 0 \) and
\[
\frac{\partial \zeta}{\partial t}(x,t) = 0 \quad \text{if} \quad (x,t) \in G, \quad 0 \leq t \leq \frac{T}{2}.
\]

Then by (4.5) we have
\[
\varphi T_s \zeta u \in \mathcal{S}(G)
\]
for any \(\varphi \in C^\infty(G) \). Starting with (4.6), by using the estimate (4.4) we can easily show that \(\varphi T_s \zeta u \in \mathcal{S}(G) \) for any \(s \) and \(\varphi \in C^\infty(G) \) from where we have \(\varphi D^s_x u \in \mathcal{S}(G), j = 0,1,2, \ldots \). And rewriting the form of the equation \(u_{tt} = -tu_{xx} + f \), we have \(\varphi D^j_x D^s_t u \in L^2(G), 0 \leq r, j < \infty \). Then we have \(u \in C^\infty(G) \), from where we have \(u \in C^\infty(G) \).

Next we consider the case where \(f \in C^\infty(G) \) and \(u(x,0) = 0 \). In this case we have \(u \in C^\infty(G) \) by the above result. To obtain the analyticity of \(u \) in \(\Omega \cap \{ (x,t); t \geq 0 \} \), we have to estimate precisely the successive derivatives of \(u \). We can pursue the manner employed in [6], § 6 where the analyticity of the solutions of the equations \(u_{tt} + t^{2k}u_{xx} = f, k = 0,1,2, \ldots \), was proved. In the following we shall give an outline of the reasoning.

Introduce the notations:
\[
G_* = (a + \varepsilon < x < b - \varepsilon) \times [0 \leq t < T], \quad 0 < \varepsilon < \min \left(\frac{b - a}{2}, \frac{T}{2} \right),
\]
\[
G_*^* = G_* \setminus (a + \varepsilon < x < b - \varepsilon) \times \left[0 \leq t < \frac{T}{2} \right],
\]
\[
N_\psi(v) = \| v \|_{L^2(G_\psi)}, \quad N^*\psi(v) = \| v \|_{L^2(G_*^*)}.
\]
LEMMA 4.1 (cf. [4], ch. 1). Let \(\varepsilon, \varepsilon_1 \) be positive numbers with \(0 < \varepsilon + \varepsilon_1 < \text{Min} ((b - a)/2, T/2) \). Then there exists functions \(\psi = \psi_{\varepsilon, \varepsilon_1} \in C^*(G_{\varepsilon}) \) such that \(\psi = \psi_{\varepsilon, \varepsilon_1} \equiv 1 \) on \(G_{\varepsilon, \varepsilon_1} \) and

\[
\text{Max} |D_{x}D_{\tau}^{j}\psi| \leq C_{j+r, \varepsilon} \varepsilon^{-(j+r)} \quad 0 \leq j + r \leq 2
\]

\[
D_{\tau}\psi \equiv 0 \quad \text{on} \quad (a + \varepsilon_1, b - \varepsilon_1) \times \left[0, \frac{T}{2} \right].
\]

LEMMA 4.2 (cf. [6], Lemma 6.2). There exists a constant \(C > 0 \) such that

\[
\sum_{j=0}^{3} \varepsilon^j N_{\varepsilon, \varepsilon_1}(D_{x}^j v) + \sum_{j=0}^{3} \varepsilon^j N_{\varepsilon, \varepsilon_1}(tD_{x}^j v) + N_{\varepsilon, \varepsilon_1}(v)
\]

\[
+ \varepsilon N_{\varepsilon, \varepsilon_1}(D_x v) + \varepsilon^2 N_{\varepsilon, \varepsilon_1}(D_x D_x v)
\]

\[
\leq C(\varepsilon^2 N_{\varepsilon_1}(Lv) + \sum_{j=0}^{3} \varepsilon^j N_{\varepsilon_1}(tD_{x}^j v) + N_{\varepsilon_1}(v) + \varepsilon N_{\varepsilon_1}(D_x v))
\]

for all \(v \in C^\infty(G) \) and \(v(x, 0) = 0 \). The constant \(C \) does not depend on \(\varepsilon, \varepsilon_1 \) under the condition mentioned previously.

This lemma is obtained by substituting \(\psi_{\varepsilon, \varepsilon_1} v \) in (4.4).

LEMMA 4.3 (cf. [4], ch. 7). Let \(w \) be an analytic function in \(G \). Then there exists a constant \(C > 0 \) such that

\[
\varepsilon^{j+k} N_k(D_x^j D_{\tau}^r w) \leq C^{j+k+1} \quad \text{if} \quad j + r < k,
\]

for all integer \(k \geq 0 \). Conversely, if \(w \in C^\infty(G) \) satisfies (4.9), then \(w \) is analytic in \(G \).

Proof of the analyticity of \(u \) in \(\Omega \cap \{ (x, t); t \geq 0 \} \).

First we shall show that there exists a constant \(B > 0 \) such that, for any \(\varepsilon > 0 \) and for any integer \(l \geq 0 \),

\[
\left(\sum_{r=0}^{3} \varepsilon^{r+j} N_{t_k}(D_{x}^r D_{\tau}^j u) \right) \leq B^{l+1}
\]

\[
\left(\sum_{r=0}^{3} \varepsilon^{r+j} N_{t_k}(t^{2k} D_{x}^r D_{\tau}^j u) \right) \leq B^{l+1}
\]

\[
\left(\sum_{r=0}^{3} \varepsilon^{r+j} N_{t_k}(D_{x}^{r+j} u) \right) \leq B^{l+1}
\]

if \(j < l \).

It we take \(B \) sufficiently large, we have (4.10) for \(l = 1 \) by Lemma 4.2. Next, since \(f(x, t) \) is analytic in \(G \), there exists a constant \(C_0 > 0 \) such that
for \(j = 1, 2, \ldots \) and \(0 < \varepsilon < (b - a)/2 \).

Assuming that (4.10) have been proved for an \(l > 0 \), we shall prove (4.10) for \(l + 1 \). Replacing \(v \) by \(\varepsilon \partial_2 u \) and \(\varepsilon \) by \(\varepsilon \varepsilon \) in (4.8), we see that the terms in the left hand side of (4.10) for the case \(l + 1 \) are smaller than \(5C_2B^{l+1} \) if \(j < l + 1 \). Hence we have (4.10) for \(l + 1 \) if \(5C_2B^{l+1} \leq B^{l+2} \).

This condition is satisfied for all \(l \) if \(B > \max (5C_2, 1) \).

From (4.10) (cf. Lemma 4.3) we obtain

\[
\sum_{r=0}^{j} ||D_iD^j_u||_{L^r(G_{\varepsilon})} \leq C^{l+1}j, \quad j = 0, 1, 2, \ldots
\]

for some constant \(C_1 > 0 \) where \(G_{\varepsilon} = (a + \varepsilon, b - \varepsilon) \times [0, T/2] \) with \(\varepsilon > 0 \) sufficiently small.

To obtain the successive estimates including the derivatives in both \(x \) and \(t \), we rewrite the equation \(Lu = f \) in the form \(D^2_t u = -tD^2_x u + f \).

And using (4.11) by the usual way (cf. [6] for example) we have

\[
||D^2_t D^j u||_{L^r(G_{\varepsilon})} \leq C^{l+r+1}(j + r)^{l+r} \quad 0 \leq j, r < \infty
\]

for some constant \(C_2 > 0 \), from which we have the analyticity of \(u \) in \(G_{\varepsilon} \) by the Sobolev lemma.

REFERENCES

Nagoya University