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In this paper the problem of constructing an arc of minimum length joining
two fixed points: pu p2, in an arbitrary subset: S, of a metric space is considered.
The approach taken is a departure from the classical methods of the calculus of
variations in that it is topological in character, making use of the properties
of sets rather than differential calculus.

The subsequent development requires the following definitions. The metric
distance betwenn two points p, q is denoted as p (p, q) and the open sphere of
radius: a, by Sa(p) = {q\p(j>,q) < a}.

The set: fTa(j>) is the component containing p in Sa(p) n S;

Ta
w<J>) a Ta(p) and T«+1\p) = U Ta(q)> fr = 1,2,-);

.Vc(P) = n Uc+,(p\ where c ^ 0 is a constant.

As an illustrative example of the above definitions one may consider the plane
with the line segment from (1/2, -2/3) to (1/2, 2/3) removed. The sets r$(0) ,
(a = 1,2,3,4) and U^O) are shown in Figure 1.

LEMMA 1. Vc(p) a Vc+X(p) for every x ^ 0.

PROOF. Ta(p) c Tb(j>), a £ b, and therefore T<k\p) c Tb
w(p).

Thus,
00 00

uc\P) — I I 1c/j\P) c I I J(c+»)//i'J — uc + x(P)-

312

https://doi.org/10.1017/S1446788700031529 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031529


[2] Minimal paths in subspaces 313

(0)

Figure 1.

Finally

= n uc+c(p)
e > 0

uc+x+e(P) = vc+x(P).

LEMMA 2. Suppose that {f ; | i = 1,2,---} is a monotone non-increasing
sequence tending to the limit t0, and that q e Vt.(p)for all i; then q e Vta{p).

PROOF. By Lemma 1, since Vtl+X(j>) => Vti(p) for all x > 0 it follows that
q e Vt(p) for all t > t0 since there always exists a tt satisfying t > tt ^ t0. Now
VAP) = n«>ot/«+£(P) and if qeVt(p) then qeUt+c(p), e > 0. Since qeV,(p)
for all f > t0 this implies g e [/,0+1>Q>) ^ Ut0+e(p), for all e > 0. Therefore

? e f l Ut0+l(p) = K,0(p).

LEMMA 3. / / p2 e ^ ( p j , then a ^ p(j>i,p2)-

PROOF. Follows directly from definitions.

Using the notation / for the unit interval, the following definition for an arc
will be used. A set S is an arc with endpoints pu p2 in case there exists a continuous
1 — 1 mapping of/ onto S such that /(0) = plt / (I) = p2. If S = / [ / ] is an arc,
its length is defined as

l(S) = SUP 2 P(/(X,),/(*!+!»
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314 Harold WUlis Milnes and S. K. Hildebrand [3J

where {xt\0 = x0 < xx < ••• < xN = 1} is any partition of / . If l(S) < oo,
then S has finite length; otherwise, the length of S is infinite.

The following theorems indicate some of the relationships between arcs
connecting p1 to p2 and the sets denned earlier.

THEOREM 1. / / A is an arc of length c < oo connecting pv to p2, then

PROOF. For each./ = 1,2, •••.choose points q0 = Pi,q'i,q2,--',Qj-i,Qj = Pi
on A such that the arclength intercepted between successive points is c/j. For any
e > 0, qieT^+cyjiqi-i), (i = 1,2, ••-,;); this implies that q,eTgl,)U(q0),
(i = 1,2,-,j) and thus p2 & qjeT^jipJi (e > 0, j = l,2,-»). Hence:

p2e n T(c%/j(p1) = Uc+£Pl)

and in turn
P2e PI Uc+e(Pi) = Vc(Pl).

REMARK 1. The stronger statement p2eUc{pd cannot be made, as the

example of a straight line of length c with pt and p2 as endpoints shows.

THEOREM 2. / / A is an arc of length c < oo connecting its endpoints

Pi and p2, then every point qeA lies in Va(Pi) n Vc-a(p2) for some O ^ a ^ c .

PROOF. Let the length of the subarc of A from pt to q be a; then, that from q
to p is of length c — a. By Theorem 1, g e FaQ^) and q e Fc_a(p2).

REMARK 2. The following example shows that Va{p^) n Fc_a(p2) does not
always reduce to a unique point even when there is a unique minimizing arc
joining px to p2. The space is the plane referred to polar coordinates where the
set r < 1, (0 ^ 0 < 7t), r ^ 1, (TI ^ 0 < 27i) has been removed, FV3/2(2,7r)
n K/3+(3/2)V3(250) consists of two points.

REMARK 3. The set Vc(p) need not be closed relative to the space. As an
example let the space consist of the line segments (0,0) to (1,0); (0,1/2) to (0,1);
and (l/n,0) to (1/n, 1), n = 1,2, — . Then F2(l,0) does not contain the line
segment (0,1/2) to (0,1).

REMARK 4. The set Vc(p) need not be connected. As an example let
Pi = (0,1), p2 = (2,0). The space, Figure 2, consists of the line joining pt to
(2,1) and p2 to (0,0) as well as a number of zig-zag lines each of length 10 joining
the first of these segments to the second. The first such zig-zag line joins (1/4,0)
to (1/4,1) and lies entirely in the rectangle bounded above and below by the two
line segments, and on the sides by the verticals through x = 0 and x = 1/2.
The second zig-zag line joins (9/8,0) to (9/8,1) and lies in the verticals through
x = 1, x = 5/4. In general, the nth zig-zag line, (n = 0,1,-) joins ((2n+3-7)/2n+2,0)
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Pl

Figure 2.

to ((2"+3-7)/2n+2,l) and lies in the rectangle bounded above and below by the
horizontal line segments, and on the sides by the verticals through x = (2n -1)/2"~ \
x = (2"+2-3)/2n + 1. For this example V^ip,) consists of the upper horizontal line
segment, a portion of each zig-zag line of length 3 - (2" + 3 - 7)/2"+2 connected
to this line segment, and the point p2. The point p2 is not connected to the rest
of V3(pi).

To better understand the subsequent discussions, one may observe that on
the surface of a sphere the distance between two points can be defined in two
obvious ways: as the straight-line distance in the metric £ ( 3 ) from one of the
points to the other, or, as the distance along the great circle minimal paths joining
the two points. In this example, both are metrics. However, if the original space
is a disconnected subset of £(3), only the former is a metric as the minimal arc
length functional will not be defined for any pair of points not arcwise connected.
The purpose in defining the Vc{p) is to permit the definition of the function:

Pz) = inf{c\p2eVc(Pi)}

which will be seen to be closely allied to the minimal arc length functional and
also to have essentially the properties of a metric wherever it is defined as a
finite number.

THEOREM 3. (a) a{j>up2) ^ 0 and <j(pup2) = 0 if and only if Pl = p2;
(b) a{pup2) = <T(P2,PI) when either quantity is defined;
(c) if a(pu p2) and a(p2, p3) are defined, then

PROOF, (a) Since pl e VJ^J for all a > 0 it follows at once from the defini-
tion of a that ffCPi.^j) = 0. Also, it follows from the definition that a{pup2) > 0,
if Pi¥=j2. (b) Let e>a(pltp2). Since p2e Vc(pt) = nc>o tfe+.(Pi) =
n«>onj=i r ( S , w (p i ) it follows p2eTtflt)IJ(p]L) for all e and ;.

Choose 8, j arbitrarily; we will show that Pi e T(
(/|£)/J(p2). With st = \e

choose jx such that (c + s1)ljl < e/2; and j t = nj where n is some integer.
By the definition of TCc+tlWl(q) and T(

(/'|.)ei)/j.l(p1) there is a sequence of points
{Pi = «i>42, •••,€,•, + ! = p2) such that qv+l 6 T(c+£l)/;i(g0), (u = 1,2, •••J1).
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We define q'k+1 s qJl+l-kn (k = 0,1, •••,;) and note that q\ s p2, q'J+1 ss pt.
Since p(qk,q'k+i) ^ n{c + ej/jx, therefore g*+ 1eSn ( <.+ e i ) / y i (^) = S(c+e/2)/J(q'k).
Also,

so that:

and similarly

(a = 0,1, - , n). Thus r(c+8l)//.J(^-1 + 1_,n+a) c S<c+tW(«0 and using the property
of connected sets that if qv is in the component of qv+i and qv-lt then ql>^1 is the
component of ^re+1 it follows that T(c+ei)/Jl(qJl + 1-kn+x) <= r ( r + i ) / /?i) and in
particular Tic+tlh.Jl(q'k+1) c T^+e)/j(q'k). Therefore

as stated.
By the preceding paragraph pl e T(l

J+e)/j(p2) for all e, j and therefore
Pi e f l / U ^ . y / p a ) = t W ^ ) for all e; or Pl e f)t>0 Uc+e(p2) = Vc(p2), so
that (r(p2,Pi) ^ c. Therefore o{p2,Pi) ^ inf{c|/>2 e F^!)} = c{pup2). The
argument may be reversed to show that <?(pi,p2) ^ G^PDPI)-

(c) It is a trivial matter to show from the definitions that if p2 e
P3 e ^,(^2) then p3 e ^+4(i»i) and from this

P2) + a{p2,p3).

LEMMA 4. If a(pup2) is defined, then p(Pi,p2) S

PROOF. For every e > 0, p2€K(Pi,P2)+e(Pi)'> therefore by Lemma 3,
u Pz) = ff(PuPi) + e a°d the statement follows.

The definitions introduced previously may now be related to the problem
of constructing the path of minimal length joining two points pu p2 in the space S.
For any value of the number a, 0 g a 5S o{pup2), define

C(a) = Fa(Pl) n ^ . ^ . . ( ^

and set up the correspondence /?: [0,1] -> \Jae[o,a(Pl,P!)^(a) such that J?(x)
s COTO?!,^)*) for xe [0 , l ] . It should be observed that for any given x,
C(a(pl,p2)x) may be a null set, a singleton set, or a set consisting of more than
one point; and that if R(x) is singleton for each x e [0,1] then it is a single-
valued function.

THEOREM 4. / / reR(x) then a{pur) +p(r,p2) = ff(pup2).

PROOF. There is a value a, 0 g a g ff(p1,j)2) such that reVa(pj)

https://doi.org/10.1017/S1446788700031529 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031529


[6] Minimal paths in subspaces 317

n Kr(p,,p2)-«(JP2)- B y definition <r(pur) ^ a and <x(p2,r) ^ a{pup2) - a. By

Theorem 3(b), ff(p2> 0 = o(r, £2)- Therefore:

ff(Pi»»0 + o(r,p2) g a + GfjPuPi) - a = o{pup2).

Thus, <T(p!,r) + a{r,p2) = a(p1}p2), by Theorem 3 (c).

THEOREM 5. If R{x) is an arc joining px to p2 then Z(7?(x)) = o{pup2).

PROOF. Let 0 = x0 < xx < x2 < ••• < xN = 1 be any partition of [0,1]

and rt = R{x^, (i = 0 , l , - , N ) . Then /(R(x)) = sup{1(}Sf^1 p(r,,ri+1); but by
Lemma 4 and Theorem 4,

ti-l N-l
2 p(r , - , r j + 1)^ 2 cr(r;,r;+1) = <r(ro,rw) = a{pup2)

i=O i=0

so that l(R(x)) g ^ ( P L P J ) . By Theorem 1, p2eVc(Pi) when c = l(R(x)) and
therefore by definition a{pup2) ^ /(R(x)). Thus, a{pup2) =

In order to simplify the statement of the next theorem we introduce the

following definition. A subset of a metric space will be said to be boundedly

sequentially compact (BSC) in case every bounded infinite sequence in the set

has a limit point which is also in the set. It is to be noted that in the following

theorem this condition is applied to the original metric space, and not necessarily

on the arbitrary subset S contained within the space.

THEOREM 6. Let the comprehending metric space E, be BSC. / / R(x) is a

singleton set for each x e [ 0 , 1 ] and R: [0 ,1 ] -> S is a closed function from

[0 ,1] into E, then R{x), 0 ^ x ^ 1 describes a minimizing path from pt to p2

in S which is unique up to parametric representation.

PROOF. We will first show that R(x) is continuous. Suppose that t0 were a

point of discontinuity of R(x). There exists a sequence {xt\i = 1,2,•••} with

xf -»• t0 for which R(xt) does not converge to R(t0). A subsequence xi7- = tj,

j = 1,2, ••• either monotonically increasing or decreasing to t0 can be extracted

from { x j . Assume the former, as the proof in the latter case is analogous.

Consider the values R(tj). Each is contained in Fty(Pi) c S^O^) and is

therefore bounded. The sequence {i?(f0)} is bounded and must have a limit point

in E. Suppose P # -R('o) is such a limit point. Extract from {tj} a subsequence:

tjk = sk,k = 1,2, ••• such that R(sk) -+ P.

Two cases are to be considered: Case (i), there exists an interval [a , f0] such

that R(x) i= P for any x e [ a , *„]; Case (ii), there exists a sequence of points

fli ^ «2 = a3 = •" s u c n t n a t at ~* *o a n d R(ai) = P for all i.
Case (i): Since sk f t0, from some point on, ske[a, f 0 ] . Since R(x) is a

closed function and .R(st) -> P , there must be a point y e [a, t 0 ] such that R{y) = P .

This is a contradiction.
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Case (if): Since R(a) = P and (1 - at) ^ (1 - a2) ig (1 - a3) ^ ••• and
(1 — a) -> (1 — f0), and, moreover, PeV1-a.(p2), i = 1,2, ••• it follows from
Lemma 2 that PeV^t0(p2). Also, P e K . , ^ ) c F , ^ ) . Therefore PeKJpO
n F1_/0(p2)- By the singleton hypothesis P cannot be different from R(t0). This is
a contradiction.

The conclusion is therefore that any limit point of the sequence {R(tj)} is
R(t0). Hence R(x) is continuous at x = t0, and thus on 0 ^ x | 1.

R(l) = Voip fa,) n F0O2) is singleton, and since F0(p2) = p2 it follows
J?(l) = p2. Similarly R(0) = pt. Continuity and single-valuedness of R(x) show
that R(x) describes an arc with endpoints pup2.

By Theorem 5, l(R{x)) = a(pup2). Suppose F(x), 0 ^ x ^ 1 were an arc
with endpoints P!,p2 of length d S ^(Pi,Pi)- If d < ^(PuPi) t n e n PasFjO'j)
by Theorem 2, contradicting o(pup2) = inf{c\p2eVc(p,)}. If d = a{pup2),
let ^ be any point of F(x), 0 ^ x :g 1. Applying Theorem 2, suppose a is any
value such that q e Fo(p1) n Fo(P:1,2)_0(p2). Again by Theorem 2, let g' be the
point of R(x) such that q' e Fo(p!) n Fo(pi>P2)_a(p2)- By the hypotheses of this
theorem q = q'. Thus, F(x) differs from R(x) at most by the parametric represen-
tation of the same pointset.

For the following theorem we generalize the previous notations for C(a)
and R(x)to:

C(a;quq2) s Va(qi) O Ko(,1>M)_.(«2) 0 ^ a ^ ff(«i,4j)

R(x;quq2) = CCxff^!,^);^!,^) 0 ^ x g, 1

where quq2eS.

THEOREM 7. / / /or euery pair of points quq2eS for which a(q1,q2) is
defined, R{x;quq2) is nonempty and BSC (0 ̂  x ^ 1), f/ien every pair of
points pup2eS for which a(pup2) is defined .is connected by a minimizing
arc in S.

PROOF: For x = 0,1 choose p(x) = pup2 respectively, and for x = 1/2
choose p(x) to be any point of R(\j2;pup2). For x = (2k + l)/2" + 1 choose
p(x) any point of R(l/2;p(/c/2"), p((k + l)/2"), k = 0,1, - , ( 2 n - 1); n = 1,2, - .
Let j> be any other value of the parameter, and for a given n let k be that integer
for which fc/2" < y < (k + l)/2\ Since a(p(kl2K), p((k + l)/2") is defined, con-
sider R)2"y — k; p)kl2"), p((k + l)/2")) and choose a point ra in this non-empty
subset. We note that rneR(2ny - k; p(kj2n), p((k + l)/2") c /*(>>,p(0),p(l))
and since the latter is BSC it contains at least one limit point for the sequence
{rn}. This we designate as P(y). The limit point is unique for if P'(y) were a
second limit point then, p(P(y), P'(y)) = t > 0. Since the R(2"y - k, pikl2"),
p((k + l)/2") n = 1,2, ••• is a nested sequence when k is defined as above for
each n, and each set is itself BSC, it follows that P(y) and P'(y) are elements of
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R(2"y - k; p(k/2"), p((k + l)/2")). But R(2"y - k; p(k/2"), p((k + l)/2"))
c S1/2n(p(kl2n)) for all n, and its associated k. When n is sufficiently large, the
diameter of the sphere is 1/2""1 and is less than t.

To prove continuity, suppose {*„} -»• j>, and let £ > 0. Select any x e {xn}
such t h a t | x — , y | < 8 / \2a{pup2). There exists a <5l9 0 < 5^ < el\2a(p1,p2),
such that if k,n satisfy \kj2n - x\ < 8t then p(p(kl2"),p(x)) < e/4; also, there
exists a <52, 0 < <52 < e/12ff(p1>p2)

 s u c n th a t if ^'>»' satisfy |fe'/2" — y | < <52

then p(p{k'j2n'),p{y)) < e/4. We note

<jn jnf =

_k
2"

fc'
2"'

and

P{p{kj2"\p(k'l2")) ^ = e/4.

Therefore, for | x — y | < sj\2a{pup2) we have:

' ' 3e/4.

Thus, we see that />(x) is an arc in S joining px to p2.
To prove minimality we observe that p(x) is a singleton subset of R(x;p1,p2)

for each 0 ^ x ^ 1. Applying the same arguments to p(x) as were used in the
proofs of Theorems 4 and 5 it follows that l(p(x)) = p(Pi,p2). Suppose F(x),
0 ^ x ^ 1 were an arc with endpoints Pi,p2 of length d. If d < a{pup2) then
p2 g Vd(Pi) by Theorem 2, contradicting a(pu p2) = inf {c | p2 e

COROLLARY: Under the conditions of the previous theorem there exists
a unique minimizing arc up to parametric representation joining pt to p2 if
and only if R(x;pup2) is a singleton set for every value of x on I.

PROOF. We have seen that p(x), 0 ^ x ^ 1, is a minimizing arc joining
Pi to p2. If F(y) were a second minimizing arc, let it be referred to arc length
measured from px as parameter. Let x = ylo(pup2). By Theorem 1, F(xo(pup2))
is an element of both V^^^Pt) and Va_x)a(pt,P2)(p2) and consequently of
R(x; Pu p2)- But p(x)eR(x; pu p2). Thus if R(x; pu p2) is singleton p(x)
= F(xa(pup2y); and conversely if p(x) differs from F{xa{pup2)) for any value
of x, then R(x;pup2) is not singleton for that value of x.

In conclusion, we make the following remarks. The conditions of Theorem 7
give sufficient conditions for S to be a globally geodesic space — that is to say,
a space in which every pair of points are arcwise connected by arcs of finite
minimal length. For if qu q2 are two points of S which are not arcwise connected,
then ff(<h, q2) is not defined. If they are connected only by arcs of unbounded
length, again a(qi,q2) is undefined. If there is a plurality of minimizing arcs
joining qt to q2 then R{x;quq2) is not singleton for some value of x. Finally,
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when R(x;q1,q2) is more than singleton and the other hypotheses are also
satisfied, then q1 and q2 are conjugate points in the sense that they are joined by
more than one arc of equal minimal length.

Regrettably, it may be noted that the conditions are not necessary as the
example of an open hemisphere in E( 3 ) together with two antipodal points qlt q2

adjoined on the boundary shows. Here qt and q2 are joined by a family of great
circle minimizing arcs on the hemisphere but R(x; qt, q2) is not BSC for
0 < x < 1.
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