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Abstract

We derive an evolution equation for the free-surface dynamics of a thin film of a
second-grade fluid over an unsteady stretching sheet using long-wave theory. For the
numerical investigation of the viscoelastic effect on the thin-film dynamics, a finite-
volume approach on a uniform grid with implicit flux discretization is applied. The
present results are in excellent agreement with results available in the literature for a
Newtonian fluid. We observe that the fluid thins faster with the rapid stretching rate of
the sheet, but the second-grade parameter delays the thinning behaviour of the liquid
film.
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1. Introduction

In the context of metal and polymer extrusion, continuous casting, drawing of plastic
sheets, or cable coating, a model reduction of the two-phase Navier–Stokes equations
based on the plane-interface assumption is a well-known technique and it is still a
subject of research. The uniform film thickness assumption in the domain enables a
similarity transformation which reduces the set of partial differential equations to a set
of ordinary differential equations (ODEs). The resulting ODEs are relatively easy to
solve either analytically or numerically. Crane [5] first gave an exact similarity solution
in closed analytic form and numerically solved the steady, two-dimensional, boundary
layer flow problem due to the linear variation of a flat stretching sheet. A reduced
ODE model was developed by Wang [26] for an unsteady thin fluid film lying on an
accelerating stretching surface. Later, Andersson et al. [3] and Liu and Andersson [17]
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extended Wang’s contribution by analysing the associated heat transfer problem. Noor
et al. [19] derived a similar set of ODEs for the nonisothermal magnetohydrodynamics
(MHD) flow of a thin liquid film over an unsteady elastic stretching surface. The
derivation of the self-similar equations for the description of the MHD power-law fluid
over a stretching sheet was given by Andersson et al. [4]. Many recent studies have
focused on the derivation of self-similar boundary layer equations for the unsteady
thin-film flow of a Newtonian [9] and a non-Newtonian fluid [2]. For example, the
analysis for the derivation of the self-similar model for the second-grade fluid flow
over an unsteady stretching sheet was explained by Abbas et al. [1]. The discussion
was later extended for the derivation of a simplified system of ODEs in the boundary
layer assumption framework in the context of thin-film flow of second-grade fluid with
temperature-dependent viscosity [18].

Thus, many of the aforementioned research works are devoted to the development
of models for the study of thin-film flow over a stretching sheet in the boundary layer
approximation framework. The construction of a one-dimensional thin-film equation
of a Newtonian fluid over a stretching sheet with the assumption that the liquid mass is
completely covered by the boundary layer was first studied by Dandapat et al. [6, 7] for
uniform thickness and later by the same authors [8] for the nonplanar film thickness at
the onset of stretching.

Our work focuses on the systematic derivation of the thin-film equation for a
second-grade non-Newtonian fluid over an unsteady stretching sheet, analogous to
that of Santra et al. [24] without the restriction of the plane-interface assumption. One
motivation for this study is the flow of mucus in biological tissues which undergo
expansion or contraction. A particular example is pulmonary alveoli which are covered
with a lining of non-Newtonian fluid [16] and which undergo periodic expansion and
contraction.

The paper is organized as follows. In the next section, the governing equations
for the flow of second-grade fluid over an unsteady stretching sheet are described. In
Section 3, the long-wave approximation for the derivation of the thin-film equation
is presented. The numerical procedure for the solution of the derived equation is
explained in Section 4. In Section 5, we discuss the numerical results and, finally,
Section 6 is devoted to conclusions.

2. Formulation of the problem

We study an unsteady flow of an incompressible, non-Newtonian second-grade
liquid film on a flat elastic sheet as shown in Figure 1. The flow over the elastic
sheet is along the x-direction and the normal to the plane is taken as the z-axis. We
assume that initially the surface of the sheet is at rest having an initial thickness h0,
starts stretching from rest suddenly at t = 0+, and acquires the nonlinear stretching
velocity U(x, t). The gravitational acceleration g is acting vertically downward along
the negative z-direction. We assume that the liquid is nonvolatile and so thin that we
can ignore the effects of evaporation and buoyancy.
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Figure 1. Sketch of flow geometry.

The motion of the second-grade fluid due to the stretching sheet is governed by the
continuity equation of mass flow and the momentum equation:

• continuity equation
∇ · V = 0, (2.1)

• momentum equation

ρ
DV
Dt

= ∇ · τ + ρg, (2.2)

where V(x, z, t) = (u(x, z, t),w(x, z, t)) is the velocity vector at position (x, z) and time t.
The symbol ρ stands for the density of the fluid and τ is the Cauchy stress tensor.

The boundary conditions on the stretching sheet at z = 0 are due to no slip and no
penetration on the surface and are given by

u(x, 0, t) = U(x, t) and w(x, 0, t) = 0. (2.3)

At the free surface z = h(x, t), the boundary conditions are due to the balance of stresses
and the kinematic condition:

pa + n̂ · τ · n̂ = −σ(∇ · n̂), (2.4)
n̂ · τ · t̂ = 0 (2.5)

and
ht + uhx = w, (2.6)

where n̂ and t̂ are the unit normal and tangential vectors on the surface, respectively.
Here pa is the atmospheric pressure at the free surface and σ stands for the constant
surface tension of the fluid. The subscripts x and t stand for the partial differential
equation with respect to x and t, respectively.

Following Kalliadasis et al. [15], the kinematic boundary condition equation (2.6)
is obtained by differentiating z − h(x, t) = 0 with respect to t, that is, (D/Dt)(z − h) = 0.
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The initial conditions are

u(x, z, 0) = w(x, z, 0) = 0 and h(x, 0) = h0 + δ(x), (2.7)

where h0 is the characteristic height of the free surface and δ(x) is the small disturbance
to h0.

The Cauchy stress tensor, given by Rivlin and Ericksen [23] for a second-grade
fluid, can be written as

τ = −pI + µA1 + α1A2 + α2A2
1, (2.8)

where p is the pressure, I is the identity tensor, and µ is the coefficient of viscosity.
Here the material constants α1 and α2 are the first and second normal stress
coefficients. The quantities Ai (i = 1, 2) are the Rivlin–Ericksen tensors, which are
defined recursively as

A0 = I, (2.9a)

Ai =
D
Dt

Ai−1 + Ai−1 · (∇V) + (∇V)∗ · Ai−1, (2.9b)

where D/Dt is the material time derivative and the superscript (∗) is used for the
transpose of the matrix ∇V.

The constitutive model equation (2.8) is derived by considering a second-order
approximation of the retardation parameter. Dunn and Fosdick [10] have shown that
this model equation is invariant under transformation and, therefore, the material
constants must meet the restriction

µ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (2.10)

Fluids characterized by these restrictions in equation (2.10) are called second-grade
fluids. The fluid model represented by equation (2.8) with the relationship (2.10)
is compatible with the hydrodynamics. The third relation in equation (2.10) is the
consequence of satisfying the Clausis–Duhem inequality [22] by fluid motion and a
second relation arises due to the assumption that the specific Helmholtz free energy
of the fluid takes its minimum value in equilibrium. Generally, a fluid satisfying the
model equation (2.8) with αi < 0 (i = 1, 2) is named a second-order fluid and, with
αi > 0, is named a second-grade fluid. Although a second-order fluid obeying model
equation (2.8) with α1 < α2, α1 < 0, exhibits unstable solutions [12], the second-order
approximation is valid at low shear rate [11].

We next scale the film thickness with the characteristic height of the flow h = h0h̃
and δ(x) = h0δ̃(x), the coordinates by the characteristic length of the domain (x, z) =

L(x̃, ε z̃), and the velocity (u,w) = (νũ/h0, ενw̃/h0), U = (ν/h0)Ũ, the time t = (h2
0/εν)t̃,

and the pressure p = pa + (ρν2/εh2
0)p̃. Here ε = h0/L is the aspect ratio and ν = µ/ρ is

the kinematic viscosity of the fluid. Using the constitutive relation equation (2.8) with
equations (2.9a) and (2.9b) and the constraint equation (2.10), the nondimensional
form of the governing equations (2.1)–(2.2), after dropping the tilde symbol, in explicit
form are

ux + wz = 0, (2.11)
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ε(ut + uux + wuz) = −px + ε2uxx + uzz + K(ε3uxxt + εuzzt + ε3uuxxx − εuwzzz

+ ε3uxuxx − εuxuzz + ε3wuxxz + εwuzzz − 4ε3wxwzz

− 2ε5wxwxx + ε3uzwxx − εuzwzz + 2εwzuzz) (2.12)

and

ε3(wt + uwx + wwz) = −pz + ε4wxx + ε2wzz + Kε(ε4wxxt + ε2wzzt + ε2uwxzz + ε4uwxxx

+ 2ε4uxwxx + ε2wxuzz − ε
4wxuxx + ε2wwzzz − ε

4wuxxx

+ ε2wzwzz − ε
4wzwxx − 4ε2uzuxx − 2uzuzz) − ε Fr. (2.13)

The dimensional numbers are the viscoelastic parameter K = α1/ρh2
0, which relates to

the first- and second-order normal stress coefficients, and the modified Froude number
Fr = gh3

0/ν
2.

The boundary condition equations (2.3)–(2.6) can be written in nondimensional
form

at z = 0, u(x, 0, t) = U(x, t), w(x, 0, t) = 0. (2.14)

At the free surface z = h(x, t),

−(ε2h2
x + 1)p + 2ε2(ε2h2

xux − ε
2hxwx − hxuz + wz) + Kε3(2ε2utxh2

x − 2ε2hxwtx

− 2hxutz + 2wtz) + Kε[ε2h2
x(2ε2uuxx + 2ε2wuxz + u2

z − ε
4w2

x) − 2ε2hx

× (ε2uwxx + uuxz + ε2wwxz + wuzz + ε2uxwx − ε
2wxwz + uzwz − uxuz)

+ 2ε2uwxz + 2ε2wwzz + ε4w2
x − u2

z ]

= εS hxx(ε2h2
x + 1)−1/2, (2.15)

(ε2wx + uz)(1 − ε2h2
x) + 2ε2hx(wz − ux)

+ K[(1 − ε2h2
x)(ε3wtx + εutz) + 2ε3hx(wtz − utx)]

+ K[(1 − ε2h2
x)(ε3uwxx + εuuxz + ε3wwxz + εwuzz + ε3uxwx − ε

3wxwz + εuzwz

− εuxuz) + 2εhx(ε2uwxz + ε2wwzz − ε
2uuxx − ε

2wuxz + ε4w2
x − u2

z )]

= 0 (2.16)

and

ht + uhx = w. (2.17)

The symbol S stands for the nondimensional surface tension parameter defined as
S = ε2σh0/ρν

2. The equations (2.15) and (2.16) are obtained after using the expression
for the unit normal vector n̂ = (−hx/

√
1 + h2

x, 1/
√

1 + h2
x) and the unit tangent vector

t̂ = (1/
√

1 + h2
x, hx/

√
1 + h2

x). The initial conditions (2.7) in dimensionless form read
as

u = 0, w = 0, and h(x, 0) = 1 + δ(x).
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3. Long-wave approximation

The derivation of the one-dimensional thin-film equation is based on long-wave
theory. Thereby, the asymptotic expansions in zeroth, first, and second order yield the
necessary evolution equation of the film height for the second-grade fluid model. The
stated asymptotic analysis uses the techniques of Santra et al. [24], but extends it to
incorporate the complex rheological effects. Clearly, the smaller the value of ε, the
better the approximation, but lubrication theory has been known to produce accurate
results even in a parameter range arguably outside its validity window [20].

To obtain the equation of the thin film from the underlying problem, the
regular power series expansion in aspect ratio ε is set up for the flow variables.
Accordingly [24],

(u,w, p) = (u0,w0, p0) + ε(u1,w1, p1) + ε2(u2,w2, p2) + · · · . (3.1)

As per the scaling, the viscoelastic parameter K and the Froude number Fr are of order
O(1), and the surface tension parameter S is of order O(ε2). Substituting equation (3.1)
in the nondimensional equations (2.11)–(2.17) and equating the coefficient of εn,
n = 0, 1, 2, we get solutions to problems of the following orders.

3.1. Zeroth order The leading order equations are

∂u0

∂x
+
∂w0

∂z
= 0, (3.2)

−
∂p0

∂x
+
∂2u0

∂z2 = 0, (3.3)

and
∂p0

∂z
= 0. (3.4)

The boundary conditions are

at z = 0 : u0 = U(x, t), w0 = 0, (3.5)

and at z = h(x, t) : p0 = 0,
∂u0

∂z
= 0. (3.6)

Using the stream function ψ0 = U(x, t)z, the solution of the zeroth-order problem
(equations (3.2)–(3.6)) is

u0 = U(x, t), w0 = −z Ux(x, t), and p0 = 0. (3.7)

3.2. First order The first-order problem reads

∂u1

∂x
+
∂w1

∂z
= 0, (3.8)

∂u0

∂t
+ u0

∂u0

∂x
+ w0

∂u0

∂z
= −

∂p1

∂x
+
∂2u1

∂z2 + K
(
∂3u0

∂t∂z2 − u0
∂3w0

∂z3 −
∂u0

∂x
∂2u0

∂z2

+ w0
∂3u0

∂z3 −
∂u0

∂z
∂2w0

∂z2 + 2
∂w0

∂z
∂2u0

∂z2

)
, (3.9)
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and

−
∂p1

∂z
+ K

[
−2

∂u0

∂z
∂2u0

∂z2

]
− Fr = 0. (3.10)

The boundary conditions are

at z = 0, u1 = 0, w1 = 0, (3.11)

and, at the free surface z = h(x, t),

−p1 − K
(
∂u0

∂z

)2
= S hxx (3.12)

and

∂u1

∂z
+ K

(
∂2u0

∂t∂z
+ u0

∂2u0

∂x∂z
+ w0

∂2u0

∂z2 +
∂u0

∂z
∂w0

∂z
−
∂u0

∂x
∂u0

∂z
− 2hx

(
∂u0

∂z

)2)
= 0. (3.13)

Equations (3.12) and (3.13) are obtained by considering ε terms after expansion from
equations (2.15) and (2.16).

Using the solution (equation (3.7)) of the zeroth-order problem, the solution of the
first-order problem (equations (3.8)–(3.13)) for the velocity and pressure is

u1 = f (x, t)
(z2

2
− hz

)
, (3.14)

w1 = −
z3

6
fx(x, t) +

z2

2
(h f (x, t))x, (3.15)

p1 = Fr(h − z) − S hxx. (3.16)

For brevity, we introduce the notation f (x, t) = Ut + UUx + Fr hx − S hxxx.

3.3. Second order The equations for the second-order problem are

∂u2

∂x
+
∂w2

∂z
= 0, (3.17)

∂u1

∂t
+ u0

∂u1

∂x
+ u1

∂u0

∂x
+ w0

∂u1

∂z
+ w1

∂u0

∂z

= −
∂p2

∂x
+
∂2u0

∂x2 +
∂2u2

∂z2 + K
(
∂3u1

∂t∂z2 − u0
∂3w1

∂z3

− u1
∂3w0

∂z3 −
∂u0

∂x
∂2u1

∂z2 −
∂u1

∂x
∂2u0

∂z2 + w0
∂3u1

∂z3

+ w1
∂3u0

∂z3 −
∂u0

∂z
∂2w1

∂z2 −
∂u1

∂z
∂2w0

∂z2

+ 2
∂w0

∂z
∂2u1

∂z2 + 2
∂w1

∂z
∂2u0

∂z2

)
, (3.18)

and

−
∂p2

∂z
+
∂2w0

∂z2 + K
[
−2

∂u0

∂z
∂2u1

∂z2 − 2
∂u1

∂z
∂2u0

∂z2

]
= 0. (3.19)
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The boundary conditions are

at z = 0, u2 = 0, w2 = 0, (3.20)

and, at z = h(x, t),

−p2 + 2
(
− hx

∂u0

∂z
+
∂w0

∂z

)
+ K

(
− 2

∂u0

∂z
∂u1

∂z

)
= 0, (3.21)

∂w0

∂x
+
∂u2

∂z
− h2

x
∂u0

∂z
+ 2hx

(
∂w0

∂z
−
∂u0

∂x

)
+ K

[
∂2u1

∂t∂z
+ u0

∂2u1

∂x∂z

+ u1
∂2u0

∂x∂z
+ w0

∂2u1

∂z2 + w1
∂2u0

∂z2 +
∂u0

∂z
∂w1

∂z
+
∂u1

∂z
∂w0

∂z

−
∂u0

∂x
∂u1

∂z
−
∂u1

∂x
∂u0

∂z
+ 2hx

(
−2

∂u0

∂z
∂u1

∂z

)]
= 0. (3.22)

Using the results of the zeroth order (equation (3.7)) and first order (equations (3.14)–
(3.16)), the solution of the second-order problem (equations (3.17)–(3.22)) satisfies

u2 =

( z4

24
−

h3z
6

)
g1(x, t) +

(z3

6
−

h2z
2

)
g2(x, t) +

(z2

2
− hz

)
g3(x, t)

+ z[Uxxh + 4Uxhx + K f (ht + Uhx + Uxh)],

w2 =

(
−

z5

120
+

h3z2

12

)
∂g1

∂x
+

z2h2hx

4
g1 +

(
−

z4

24
+

h2z2

4

)
∂g2

∂x

+
z2hhx

2
g2 +

(
−

z3

6
+

hz2

2

)
∂g3

∂x
+

z2

2
hxg3

−
z2

2
∂

∂x
[Uxxh + 4Uxhx + K f (ht + Uhx + Uxh)], and

p2 = −2Ux,

where g1(x, t) = ft + U fx − Ux f , g2(x, t) = −(ht + Uhx) f − h ft − Uh fx, and g3(x, t) =

−3Uxx − K( ft + U fx − 3Ux f ).

3.4. Thin-film equation Using the kinematic boundary condition, the free-surface
evolution equation can be obtained as

∂h
∂t

+
∂

∂x
F(h) = 0, (3.23)

where

F(h) = Uh − ε
h3 f
3

+ ε2
[
−3h5

40
( ft + U fx − Ux f ) −

5h4

24
(−ht f − h ft − Uh fx − Uhx f )

−
h3

3
(−3Uxx − K ft − KU fx + 3KUx f )

+
h2

2
(Uxxh + 4Uxhx + K f ht + K f Uhx + K f Uxh)

]
and f (x, t) = Ut + UUx + Fr hx − S hxxx.
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Figure 2. Typical grid used for finite-volume discretizations. The bold black dots and dashed vertical lines
represent the nodal points and the cell faces, respectively. The symbol Ui stands for the stretching sheet
velocity at the centre of the ith cell and ∆xi is the grid size of the cell [xi−1/2, xi+1/2].

The closure of the thin-film equation requires the boundary condition for the film
height. At the origin, we apply the symmetric boundary condition, that is, hx = 0,
hxxx = 0, and hxxxx = 0 and, at the other end of the domain, we assume that the same
sheet stretching rate continues beyond the computed domain. We also assume that the
gradient of the free surface extends out of the computational domain. These boundary
conditions are consistent with those mentioned by Santra et al. [24]. Finally, the model
equation is supported by the initial condition h(x, 0) = 1 + δ(x).

4. Numerical procedure
Many kinds of numerical methods such as a combination of the Euler method and

the Newton–Kantorovich method were presented in the recent past [13, 24] for this
kind of nonlinear convection–diffusion equation. In this paper, we follow the finite-
volume method on a uniform grid system with implicit flux discretization as described
by Panda et al. [21] and Sellier and Panda [25].

As shown in Figure 2, we discretized the fluid domain using a uniform grid.
The variables like film thickness h and stretching velocity U are located at the cell
centres. Let the flow domain [0, L] be discretized into N equal size grid cells of size
∆xi = L/N and define xi = ∆xi/2 + (i − 1)∆xi, i = 1, 2, . . . , N, so that xi is the centre
of the cell. Since the sizes of the grids are uniform, we denote ∆x instead of ∆xi. The
edges of the cell i are then located at xi−1/2 = xi − ∆xi/2 and xi+1/2 = xi + ∆xi/2. The
numerical solution is evaluated at the discrete time levels tn, n = 0, 1, 2, . . . with time
step ∆tn+1 = tn+1 − tn. The film thickness h is approximated over the cell [xi−1/2, xi+1/2]
in order to get the discretized equation. The approximation of the cell average of the
solution over the grid cell is

hn
i ∼ h(xi, tn) =

1
∆xi

∫ xi+1/2

xi−1/2

h(x, tn) dx.

From the given solution hn
i , the solution at the next time step tn+1 is obtained by

integrating equation (3.23) over the space and time intervals [xi−1/2, xi+1/2] × [tn, tn+1],
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which gives the discretized equation

(hn+1
i − hn

i )∆xi + (Fn+1
i+1/2 − Fn+1

i−1/2)∆tn+1 = 0 (4.1)

for nodes i = 1, 2, . . . ,N, where the discrete flux function Fn+1
i+1/2 = F(xi+1/2, tn+1).

For the internal nodes, the face values are evaluated using linear interpolation from
nodal values and the gradients at the cell faces are evaluated using central differences.

Similarly, the second-, third-, and fourth-order derivatives are discretized as

hxx(xi+1/2, tn+1) =
1

∆x2 (hn+1
i+1 − 2hn+1

i + hn+1
i−1 ) + O(∆x),

hxxx(xi+1/2, tn+1) =
1

∆x3 (hn+1
i+2 − 3hn+1

i+1 + 3hn+1
i − hn+1

i−1 ) + O(∆x2),

hxxxx(xi+1/2, tn+1) =
1

∆x4 (hn+1
i+3 − 4hn+1

i+2 + 6hn+1
i+1 − 4hn+1

i + hn+1
i−1 ) + O(∆x).

The above derivative expressions are valid for the internal nodes i = 3 to N − 3, and
we need different expressions for the higher order derivatives for the nodes present
at the positions i = 1, 2 and i = N − 2, N − 1, and i = N. For the boundary node, for
example, at i = 1, we have the following approximations of the derivatives:

hxxx(x1+1/2, tn+1) =
1

∆x3 (hn+1
3 − 3hn+1

2 + 3hn+1
1 − hn+1

0 ) + O(∆x2),

hxxxx(x1+1/2, tn+1) =
1

∆x4 (hn+1
4 − 4hn+1

3 + 6hn+1
2 − 4hn+1

1 + hn+1
0 ) + O(∆x).

In order to compute h0, we introduce the ghost cell i = 0, which is located just outside
the domain. The boundary condition is used to fill these cells with values h0 and
based on the values hi in the interior cells. Similarly, we approximate the higher order
derivatives of h at the other boundary nodes incorporating the information on boundary
conditions and using the interpolated value of h at the boundary.

The values of the function U and its derivative are known at the control volume
centre. The time-derivative term which appears in flux due to the second-grade fluid
properties is approximated with first-order forward difference.

Equation (4.1) describes an implicit time-discretization scheme. Since the
governing equation is nonlinear, a system of nonlinear algebraic equations needs to
be solved at each time step. We use fsolve in MATLAB for this purpose. We start
the simulation with given initial film thickness 1 + δ(x) with time step ∆t = 0.01 and
spatial resolution ∆x = 0.05. Convergence is usually achieved in less than 20 iterations
and the convergence criterion is that the norm of the residuals should be less than 10−7.

5. Result analysis

5.1. Steady stretching surface To demonstrate the successful implementation of
the proposed finite-volume scheme, the numerical results obtained with the proposed
algorithm are first compared to those obtained by Santra et al. [24] for the steady
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Figure 3. Various steady stretching velocities U against x.

stretching profile, that is, U(x, t) = U(x). For this benchmark case, we consider here
the four different types of stretching velocity profiles proposed by Santra et al. [24] to
allow direct comparison in the Newtonian cases:

Case I (linear) U(x) = 0.1x,
Case II (nonmonotonic) U(x) = 0.92542(−0.535261 + 0.05x + e−0.025(x−5)2

),
Case III (parabolic concave) U(x) = 0.6(0.1x + 0.01x2),
Case IV (parabolic convex) U(x) = 0.75[1 − (0.1x − 1)2].

(5.1)
The equations (5.1) are plotted in Figure 3. In the following the free surfaces are
analysed for different stretching velocity profiles.

The effect of the stretching velocity distribution on film height at different times
is shown in Figure 4 with ε = 0.1, S = 0.1, Fr = 0.1, and K = 0 with initial thickness
h(x, 0) = 1 + δ(x) = 1 − x2/130. The parameters and the initial condition are chosen
for the direct comparison with the work of Santra et al. [24].

The left upper panel (Figure 4) illustrates the free-surface profile for the linear
stretching velocity given by equation (5.1) (Case I). The initial deformation of
the free surface is advected downstream by the stretching velocity and, with the
advancement of time, the profile becomes flatter. The upper right panel corresponds to
the nonmonotonic stretching velocity profile (equation (5.1), Case II) which shows the
increase of film height at large spatial value x. Because the stretching rate decreases
for large x, as a result, the fluid that comes from upstream loses its momentum. The
lower left panel illustrates the height of the thin film for a given parabolic concave
profile. Note that the higher stretching velocity is responsible for making the thin film
thinner at large x whereas the opposite effect can be observed in the lower right panel
that shows the effect of a parabolic convex stretching profile on the free surface of the
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Figure 4. Free-surface profile at different times for different stretching velocity distributions as given by
equations (5.1) with S = 0.1, F = 0.1, ε = 0.1, and h(x, 0) = 1 − x2/130.

flow. These results comply well with the discussion by Santra et al. [24] and validate
the implementation of the finite-volume scheme.

The approach outlined above results in a free surface of the thin-film solution for
the given mesh ∆x = 0.05. Although it validates implementation and compares well
with the available literature solution, we need to make sure that the solution is also
independent of mesh and time resolution. In order to study the sensitivity of the
solution to discretization parameters, we have plotted the film thickness profile against
the distance of the stretching sheet for different grid sizes (left-hand panel of Figure 5).

The stretching profile, Case I with ε = 0.1, F = 0.1, S = 0.1, and δ(x) = 1 − x2/130,
was used for the simulation. It can be seen that within the grid size range ∆x ∈
{0.15, 0.1, 0.05} the solution is independent of the mesh resolution. The right-hand
panel of Figure 5 also shows the results of calculation of different time steps. It can be
observed that the computations are independent of the time steps. In the computation
of the following results a grid size ∆x = 0.1 and a time step ∆t = 0.05 are chosen.

The success of the results for a small value of ε = 0.1 in Figure 4 motivated us to
check whether the second-order-term contribution will be small compared to the first-
order term. We try the solution for a large value of ε = 0.3 for two reasons: (i) to see
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Figure 5. Mesh and time independent study: left: film thickness profile for different grid sizes with time
step ∆t = 0.05, right: film thickness profile for different time steps with grid size ∆x = 0.1.

Figure 6. Solution of the free-surface profile at different orders of asymptotic solutions with S = 1.0,
Fr = 1.0, U = x, h(x, t = 0) = 1 + 0.1e−(x/0.25)2/2 at fixed time t = 1, left: film thickness profile for ε = 0.3,
right: film thickness profile for ε = 0.1.

any contribution of the second-order correction term to the first-order solution for the
Newtonian case; (ii) the interest in the study is to explore the non-Newtonian effects
on the free surface of the thin-film flow, which appears at the second order in the
asymptotic expansion. The effect of the second-order term is shown in Figure 6.

The left-hand panel shows free-surface distributions for ε = 0.3, and the right-hand
panel is for ε = 0.1. The linear stretching velocity profile U = x is considered for this
purpose, and the free-surface profiles for various values of K are plotted at a fixed time
t = 1 (nondimensional). For the initial film thickness, a Gaussian profile is considered,
that is,

h(x, t = 0) = 1 + δ(x) = 1 + 0.1e−(x/0.25)2/2 (5.2)

to have small initial deformation. The value 0.25 in equation (5.2) represents the width
of a Gaussian profile, and 0.1 is the depth of the hill in the initial thickness. The
results confirm that the second-order correction term has a negligible effect on the
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Figure 7. Variation of film height with x for different values of K with S = 1.0, Fr = 1.0, ε = 0.3, U = x,
and h(x, t = 0) = 1 + 0.1e−(x/0.25)2/2.

solution of the Newtonian (K = 0) thin-film equation. But, the effect of the second-
grade Newtonian parameter is apparent for the nonzero values of K and ε = 0.3. It can
be observed that the film thins slowly for the larger value of K. This is due to the fact
that the second-grade parameter exerted resistance to the flow.

To see more clearly the influence of the viscoelastic parameter K on the film height
at the different times, the thin-film height is shown in Figure 7. It is clear from this
figure that the presence of the second-grade non-Newtonian parameter delays the
thinning of the film. This is consistent with the work of Hayat et al. [14], who have
shown that the presence of viscoelasticity decreases the draining rate for Couette flow
with a free boundary.

In Figure 8, the calculated thin-film height at the origin, that is, h(x = 0, t),
for the different values of the second-grade parameter K is plotted against time
t (nondimensional). This figure clearly shows the type of behaviour observed in
Figure 7. As the time increases the film height at the origin h(x = 0, t) decreases, and
stress build-up effects are seen due to the presence of the second-grade parameter.

We explore next the effect of the stretching velocity U and the effect of the second-
grade non-Newtonian parameter K on the free-surface profile. Using a linear stretching
velocity, that is, U = ηx, where η ∈ [0.1, 1], the effect of K on the free-surface profile
is discussed. In order to do that, we need to define a clear measure

E(t) =
1
2

∫
D

(hsg − hn)2 dx, (5.3)

where hsg is the second-grade fluid solution, hn is the corresponding Newtonian
solution (K = 0), and D is the flow domain. The left-hand panel of Figure 9 shows the
measure function E computed from equation (5.3) as a function of time t for U = ηx,
where η = 0.1. Clearly, the larger the values of K, the greater the difference (relative to
the case K = 0), because of the additional stresses the fluid needs to overcome flow. For
U = ηx, where η = 1.0, the rapid stretching of the film will result in the rapid build-up
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Figure 8. Effect of K on the variation of free surface at the origin for the stretching velocity U = x with
S = 1.0, Fr = 1.0, ε = 0.3, and h(x, t = 0) = 1 + 0.1e−(x/0.25)2/2.

Figure 9. Error plot with S = 1.0, Fr = 1.0, ε = 0.3, and initial profile equation (5.2), left: error plot for
U = ηx (η = 0.1), right: error plot for U = ηx (η = 1.0).

of stresses. The faster the stretching, the higher the stress build-up. These stresses will
relax over time and, finally, the difference E decreases (right-hand panel of Figure 9).

5.2. Unsteady stretching surface This section describes the dynamics of free-
surface flow of a viscoelastic fluid over an unsteady stretching sheet. We consider
that the surface velocity of the stretching sheet is unsteady [1]. The flow of the liquid
film is caused by the stretching of the elastic surface at z = 0 and the sheet moves in
the positive x-direction with the velocity

U(x, t) =
bx

1 − αt
, (5.4)

where b and α are positive constants. The effective stretching rate b/(1 − αt) increases
with time, since α > 0. It may be further noted that 1 − αt > 0, so the analysis is valid
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Figure 10. Effects of (K, α) on the free-surface profile with initial profile equation (5.2) and S = 1.0,
Fr = 1.0, ε = 0.3, b = 1.0, and at fixed time t = 0.5.

only for the time t < 1/α. This means that, the smaller the value of α, the longer the
time required to stretch the sheet.

With the given unsteady surface velocity equation (5.4), the free-surface profile of
the viscoelastic fluid is given in Figure 10 for different values of α and the viscoelastic
parameter K. For high values of K, the viscoelastic stresses relax more slowly,
that is, they provide a resistance to the flow over a longer period of time: hence,
the slower thinning rate observed for K = 10 compared to K = 1. The free surface
becomes thinner with the smaller value of the viscoelastic parameter. The effect of
K is much more prominent at the origin of the sheet when α = 0.5, that is, for rapid
stretching. This unsteady stretching results can be compared with the steady stretching
sheet results given in Figure 7. The free-surface profile for unsteady stretching sheets
exhibits similar fashions to those for the steady stretching sheet. It is also clear that the
viscoelastic effect is similar for both the cases.

The velocity u as a function of z at different time levels with variations of α and K
with b = 1.0, S = 1.0, F = 1.0, and ε = 0.3 is plotted for x = 2 and x = 7 in Figure 11
(upper panel) and Figure 12 (upper panel), respectively. The corresponding thin-film
profiles are given in Figure 13. The velocity profile at the fixed small value of α = 0.1,
for which the time required to stretch the sheet is more, is given in the left upper panel
of Figure 11. It is clear from the figure (upper panel) that the velocity is maximum at
the sheet and then decreases, and attains a minimum value at the top for the second-
grade parameter K = 1. A similar pattern is observed for α = 0.5 (right upper panel
of Figure 11), where the time required to stretch the sheet is less. We observe that the
velocity is higher for the higher values of K and the stress is also higher (lower panel
of Figure 11).

The fluid velocity far away from the origin, that is, at x = 7, is higher in contrast
to the results for the velocity at x = 2. In all cases, the value of the shear stress profile
is higher close to the sheet and then approaches zero near the free surface due to the
imposed boundary condition.
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Figure 11. Effect of (α,K, t) on the velocity profile and shear stress against z at fixed x = 2 with S = 1.0,
F = 1.0, ε = 0.3, and b = 1.0, upper left: velocity profile at α = 0.1, upper right: velocity profile at α = 0.5,
lower left: stress profile at α = 0.1, lower right: stress profile at α = 0.5.

6. Conclusion

In this work, we presented the long-wave theory for the derivation of a thin-film
equation of a second-grade fluid over steady and unsteady stretching sheets. The model
is an extension to the existing approaches, which only dealt with Newtonian fluids.
Note that the Newtonian case is recovered by setting the second-grade parameter K
to zero. We have developed a finite-volume code which is able to solve the highly
nonlinear governing equations. The correct implementation of the numerical method
is verified in the Newtonian case by comparing our results to those obtained by Santra
et al. [24]. We observe that the presence of the second-grade parameter delays the
thinning of the film over the steady as well as the unsteady stretching sheet. The
numerical scheme was successfully tested for time-step and mesh convergence. The
developed model shows that the viscoelastic effect only becomes prominent as a
second-order correction. This is an important conclusion, which gives an indication
of when such effect may be relevant to consider or not. We have also shown that the
effect of viscoelasticity is to delay the thinning rate in accordance with an earlier work
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Figure 12. Same as mentioned in the caption of Figure 11 but at x = 7.

Figure 13. Corresponding free-surface profile, left: for α = 0.1, right: for α = 0.5.

of Hayat et al. [14], who only considered the fixed boundary case. This may have
important physiological implications for the flow of the thin mucus layer which lines
biological tissues.
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