Exploratory dietary patterns: a systematic review of methods applied in pan-European studies and of validation studies

Franziska Jannasch1,2*, Fiona Riordan3, Lene F. Andersen4 and Matthias B. Schulze1,2

1Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rügen, 14558 Nuthe-Teltow, Germany
2German Center for Diabetes Research (DZD), 85764 Neuperlach, Germany
3Department of Epidemiology and Public Health, University College Cork, Cork T12 K8AF, Republic of Ireland
4Department of Nutrition, University of Oslo, 0372 Oslo, Norway

(Submitted 2 January 2018 – Final revision received 11 May 2018 – Accepted 6 June 2018 – First published online 1 August 2018)

Abstract

Besides a priori approaches, using previous knowledge about food characteristics, exploratory dietary pattern (DP) methods, using data at hand, are commonly applied. This systematic literature review aimed to identify exploratory methods on DP in pan-European studies and to inform the development of the DEterminants of Diet and Physical Activity (DEDIPAC) toolbox of methods suitable for use in future European studies. The search was conducted in three databases on prospective studies in healthy, free-living people across the whole life span. To identify validated DP methods, an additional search without regional restrictions was conducted. Studies including at least two European countries were retained. The search resulted in six pan-European studies applying principal component/factor analysis (PC/FA) (n 5) or cluster analysis (n 2). The criteria to retain PC/factors ranged from the application of the eigenvalue >1 criterion, the scree plot and/or the interpretability criterion. Furthermore, seven validation studies were identified: DP, derived by PC/FA (n 6) or reduced rank regression (RRR) (n 1) were compared using dietary information from FFQ (n 6) or dietary history (n 1) as study instrument and dietary records (n 6) or 24-h dietary recalls (n 1) as reference. The correlation coefficients for the derived DP ranged from modest to high. To conclude, PC/FA was predominantly applied using the eigenvalue criterion and scree plot to retain DP, but a better description of the applied criteria is highly recommended to enable a standardised application of the method. Research gaps were identified for the methods cluster analysis and RRR, as well as for validation studies on DP.

Key words: Systematic literature reviews: Exploratory dietary pattern methods: Dietary patterns: Pan-European studies: DEterminants of Diet and Physical Activity knowledge hub: Validation

As people naturally eat a combination of many different foods, the association between single dietary factors and chronic disease risk can be difficult to determine and interpret. Therefore, methods to investigate dietary patterns associated with morbidity and mortality have gained increasing interest as a complementary approach in nutrition science. Several systematic literature reviews (SLR) have summarised evidence from studies that investigate the association of dietary patterns with chronic disease risk – for example CVD or type 2 diabetes. Alongside a priori approaches, which use preliminary knowledge about the detriment or benefit of certain foods for a health outcome, exploratory approaches – using data at hand without any previous hypothesis – have been commonly applied to derive dietary patterns. Examples for exploratory approaches are factor analysis and principal component analysis (PCA), which use the covariance matrix of the food groups to reduce the dimensionality from a high number of food groups to few patterns of food consumption. While principal components are linear combinations of the observed variables, factors derived by factor analysis can be understood as latent constructs. Another exploratory approach is cluster analysis, which groups participants with similar dietary habits instead of correlated food groups. Contrary to factor analysis and PCA, where study participants can belong to more than one factor or principal component, cluster analysis groups participants into mutually exclusive, non-overlapping clusters. The mixed approaches, reduced rank regression (RRR) and partial least square method, also use the covariance matrix of the food groups and combine this with previous knowledge about nutrients or biomarkers, which are involved in the development of a certain health outcome.

In comparison with a priori indices, which are applicable across different study populations, exploratory approaches

Abbreviations: EPIC, European Prospective Investigation into Cancer and Nutrition; PCA, principal component analysis; RRR, reduced rank regression; SLR, systematic literature review.

*Corresponding author: F. Jannasch, fax +49 33200 88 2437, email franziska.jannasch@dife.de
result in population-specific dietary patterns, because these methods are exclusively based on data at hand. In particular, in investigations including different populations with likely differences in culinary habits, as can be expected, for example, in pan-European investigations, the population specificity of exploratory dietary patterns constitutes a challenging task, because differences in food intake distributions lead to heterogeneous dietary pattern compositions. With regard to methodological considerations, exploratory approaches require several decisions to come to a final solution of factors or clusters, and partially subjective decisions cannot be ruled out.

So far, to our knowledge, no systematic investigation of methodological characteristics of exploratory dietary pattern approaches related to investigations in the context of multi-centre or multi-country studies has been conducted. In the Framework of the Joint Programming Initiative 'A Healthy Diet for a Healthy Life' within the EU Committee, the DEterminants of DIet and Physical ACtivity (DEDIPAC) Knowledge Hub has been developed. This was a European transdisciplinary research network programme, which aimed to realise a more effective promotion of healthy diets and physical activity. Therefore, it aimed to identify state-of-the-art methods, enabling future cross-country interventions and policies\(^{(10)}\). Within this framework, this systematic literature review specifically aimed to identify and compare (validated, if possible) exploratory dietary pattern methods, which were conducted in pan-European studies in order to deduce recommendations for such analyses in pan-European settings and beyond and to identify potential research gaps.

Methods

Data sources and study selection

A detailed plan for the conduction of the systematic review of pan-European studies was established in advance, and the respective protocol for the SLR can be accessed from PROSPERO (CRD42014014318). A systematic literature search was conducted in the databases MEDLINE, Web of Science and Embase, which encompassed search terms covering different thematic areas. The first area was described by terms that depict dietary habits or patterns. These were linked to the second area of a posteriori statistical methods. Terms for a priori methods were also included in the search to identify studies that might have applied several dietary pattern approaches. As one aim was to detect pan-European studies, which means that they were conducted in more than two European countries, the search included the names of European countries, as well as terms that addressed the multi-country aspect. The language was restricted to English. To ensure the inclusion of studies whose focus was on humans, animal studies were excluded. Owing to the relatively recent application of the a posteriori approaches on nutrition data, the search was limited to literature published between 1 January 1990 and 15 January 2018. Details of the search strategy can be found in the online Supplementary Table S1.

The screening of titles and abstracts of the identified articles was conducted by F. J. and F. R. independently. If doubts occurred, which could not be resolved, the article was retained for the next screening step. Any disagreement during the final full-text review stage was resolved through discussion of the articles concerned. No exclusions were made regarding any age group, sex, socio-economic status or ethnicity, but the study populations were required to be free-living and healthy. In addition, no restriction was set to the study design. Additionally, reference lists of the identified articles and reviews, which seemed to be relevant, were screened for a comprehensive overview. No ‘grey literature’ – that is conference papers or unpublished manuscripts – were included in this SLR. In case of the DIETSCAN study and European Prospective Investigation into Cancer and Nutrition (EPIC)-Elderly\(^{(11,12)}\), which were identified several times\(^{(13-15)}\), the publications with the most detailed dietary pattern method\(^{(11,13)}\) were retained for further consideration.

Data extraction and quality assessment

Data extraction was done by one reviewer and confirmed by a second reviewer. An excel sheet, which captured all relevant information to answer the research question, was developed and included the following data: title, author, year, name and design of the study, countries and their contributing sample size and follow-up time. Details of the study population were also extracted: for example, sex, age, ethnicity, socio-economic status and educational level. The dietary assessment method, the statistical method to derive dietary patterns, the pattern label and variation between the derived dietary patterns. As this SLR aims to give an overview. No grey literature – that is conference papers or unpublished manuscripts – were included in this SLR.

As the search was not limited to a distinct health outcome, quality assessment tools such as the SIGN checklist (developed by Scottish Intercollegiate Guidelines Network) were not applicable. A more general quality assessment was developed, which included five questions and a formula to calculate a score. Possible answers were scored as follows: ‘yes’ (2 points), ‘partially’ (1 point), if at least some information was provided, ‘no’ (0 points) (online Supplementary Table S2):

1. Is the design evident to answer our study question?
2. Are the subject characteristics sufficiently described?
3. Is the method of diet assessment described?
4. Is the diet pattern method well defined and are the details of assessment reported?
5. Is some estimate of variance reported for the dietary patterns?

\[
\text{Summary score} = \frac{(\text{number of yes } \times 2) + (\text{number of partial } \times 1)}{10} \text{ (total possible sum)}.
\]

Additional search for validation studies

Notwithstanding the PROSPERO protocol, an additional search strategy (online Supplementary Table S3) was developed and the search was conducted on 1st July 2016 in the databases Medline and Web of Science to identify studies that validated dietary patterns, because none of the identified studies according to the main aim of the SLR focused on the validation of the derived dietary patterns. As this SLR aims to give an
overview of methodological considerations of exploratory statistical approaches, the additional search was not limited to pan-European studies.

Results
Description of the included studies
The initial search identified 2816 articles, which resulted in 2554 articles after removing all duplicates. Titles and abstracts were screened regarding the inclusion criteria, and the full-text screening comprised twenty articles (Fig. 1), which resulted in five articles being retained\(^{(11,16–19)}\). On the basis of the reference screening of the remaining articles, one additional publication\(^{(13)}\) was included for data extraction, resulting in a total of six final articles.

The main characteristics of the included studies are described in Table 1. The number of included European countries ranged from four\(^{(13)}\) to twelve\(^{(17)}\). The number of participants ranged from small studies with 807 participants\(^{(16)}\) to larger studies with 107 673 participants\(^{(13)}\). One study investigated dietary patterns in children\(^{(19)}\), two studies in participants aged over 60 or 70 years (EPIC-Elderly\(^{(11)}\) and SENECA\(^{(16)}\)), whereas the other studies\(^{(13,17,18)}\) investigated dietary patterns in adults aged between 35 and 76 years. Information about the socio-economic status of participants was reported in one included publication\(^{(17)}\) and education as an important characteristic of the study population was described in two publications\(^{(11,17)}\). In the INTERHEART study\(^{(17)}\), education was considered as part of the socio-economic status.

The exploratory approaches used to generate dietary patterns in the identified pan-European studies were limited to two. Factor analysis\(^{(17,18)}\) or PCA\(^{(11,13,19)}\) was applied in five studies (Table 2), whereas cluster analysis was applied in two studies\(^{(11,14)}\) (Table 3). For those studies that applied factor analysis or PCA, the number of identified patterns ranged from one pattern in the Seven Countries Study\(^{(18)}\) and EPIC-Elderly\(^{(11)}\) to seven patterns in the DIETSCAN study\(^{(13)}\). Labels were given to patterns according to the food groups that characterised the patterns – for example, the ‘pork, processed meat and potatoes’ pattern or ‘(salad) vegetables’ pattern in the DIETSCAN study\(^{(13)}\) or the ‘plant-based’ dietary pattern in the EPIC-Elderly study\(^{(11)}\). Another approach to labelling the patterns involved description of regional dietary habits such as the ‘oriental’ or ‘western’ pattern in the INTERHEART study\(^{(17)}\). In the Identification and prevention of Dietary- and lifestyle-induced health Effects In Children and infantS (IDFICs) study\(^{(19)}\), the pattern labels were a mixture of eating behaviour (snacking), food groups characterising the pattern (vegetables and whole meal) and macronutrients (protein and water). The Seven Countries Study\(^{(18)}\) did not use any label for the single derived pattern. In the SENECA study, where exclusively snack food was considered, five clusters were labelled with regard to food groups that characterised them\(^{(16)}\). In EPIC-Elderly, three

Fig. 1. Flow diagram of the article screening process. SLR, systematic literature review.
<table>
<thead>
<tr>
<th>Author/Study (year)</th>
<th>Study design</th>
<th>Population</th>
<th>Countries</th>
<th>Age</th>
<th>Ethnicity</th>
<th>SES</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balder/DIETSCAN project including: ATBC, NLCS, SMC, ORDET (2003)</td>
<td>ATBC: randomised placebo-controlled intervention study; NLCS: prospective cohort study; SMC: population-based mammography screening; ORDET: prospective cohort study</td>
<td>ATBC: 27,111 men; NLCS: 3123 (1525 men and 1598 women); SMC: 66,651 women; ORDET: 10,798 women</td>
<td>Finland, The Netherlands, Sweden, Italy</td>
<td>ATBC: 50–69 years; NLCS: 55–69 years; SMC: 40–76 years; ORDET: 35–69 years</td>
<td>No information</td>
<td>No information</td>
<td>No information</td>
</tr>
<tr>
<td>Bamia/EPIC-Elderly study (2005)</td>
<td>Prospective cohort study</td>
<td>74,807 from all EPIC cohorts except Norway (too young)</td>
<td>UK, Germany, The Netherlands, Spain, France, Denmark, Sweden, Greece, Italy, France, Italy, The Netherlands, Switzerland, Poland</td>
<td>≥60 years</td>
<td>No information</td>
<td>No information</td>
<td>Level of educational achievement: no/primary school technical school secondary school university degree</td>
</tr>
<tr>
<td>Havemann-Nies/ SENECA (1998)</td>
<td>Survey from 1993</td>
<td>379 men and 428 women</td>
<td>France, Italy, The Netherlands, Sweden, Switzerland, Poland, Denmark, Greece, Italy, France, Italy, The Netherlands, Switzerland, Poland, Portugal, Spain, Sweden, UK</td>
<td>Born between 1913 and 1918</td>
<td>No information</td>
<td>No information</td>
<td>No information</td>
</tr>
<tr>
<td>Iqbal/INTERHEART study (2008)</td>
<td>Case-control study</td>
<td>Total: 12,461 incident cases of AMI; 14,637 controls free of any heart disease (no information about individual contribution)</td>
<td>52 countries around the world (for Europe including): Croatia, Czech Republic, Germany, Greece, Hungary, Italy, The Netherlands, Poland, Portugal, Spain, Sweden, UK</td>
<td>No information</td>
<td>No information</td>
<td>SES by household income (range 1–5) and education (no education, grades 1–6, grades 9–12, trade school, university/college)</td>
<td>Education included in SES</td>
</tr>
<tr>
<td>Menotti/Seven Countries Study (1999)</td>
<td>Prospective cohort study</td>
<td>12,763 men in total</td>
<td>Finland, Italy, Greece (Former Yugoslavia), Japan, USA, Serbia, The Netherlands</td>
<td>40–59 years at baseline</td>
<td>No information</td>
<td>No information</td>
<td>No information</td>
</tr>
<tr>
<td>Paía/IDEFICS (2013)</td>
<td>Prospective cohort study</td>
<td>9,427 in total: 1521 Italy; 1251 Estonia; 1049 Cyprus; 1111 Belgium; 1358 Sweden; 1010 Germany; 991 Hungary; 991 Italy</td>
<td>Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain, Sweden</td>
<td>2–9 years</td>
<td>No information</td>
<td>No information</td>
<td>No information</td>
</tr>
</tbody>
</table>

SES, socio-economic status; DIETSCAN, Dietary Patterns and Cancer; ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study; NLCS, Netherlands Cohort Study; SMC, Swedish Mammography Cohort; ORDET, Hormones and Diet in the Etiology of Breast Cancer Risk; EPIC, European Prospective Investigation into Cancer and Nutrition; AMI, acute myocardial infarction; IDEFICS, Identification and prevention of Dietary- and lifestyle-induced health Effects In Children and Infants.
<table>
<thead>
<tr>
<th>Author/study (year)</th>
<th>Diet assessment instrument</th>
<th>Details of diet assessment instrument</th>
<th>Reported DP method</th>
<th>Details of DP method</th>
<th>Label of DP</th>
<th>Variation of DP across regions/countries</th>
<th>Reliability/validity (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balder/DIETSCAN project including: ATBC NLCS SMC ORDET (2003)</td>
<td>Country-specific validated dietary instruments</td>
<td>Aggregation of the four FFQ data to 51 common food groups (including also country-specific foods)</td>
<td>Exploratory factor analysis</td>
<td>Sensitivity analyses; decision for extraction: eigenvalue > 1 and scree plot; dichotomised variables with >75 % non-users (non-user = 0, user = 1); no transformations to enhance linearity or normality; no exclusion of outliers, because of intensive data cleaning; factor loadings > 0.55 considered</td>
<td>Factors labelled: (salad) vegetables; pork, processed meat, potatoes; cooked vegetables; alcohol; sweet and/or savoury snacks; brown/white bread substitution; others</td>
<td>Vegetables and meat pattern for all NLCS men: cooked vegetables, sweet/savoury snacks, bread substitution</td>
<td>No internal validity via several sensitivity analyses</td>
</tr>
<tr>
<td>Bamia/EPIC-Elderly study (2005)</td>
<td>Country-specific dietary self-reported or interviewer-administered questionnaires</td>
<td>22 condensed energy-adjusted food groups (residual method); validated questionnaires</td>
<td>PCA</td>
<td>Number of PC retained by three criteria: eigenvalue exceeding 1, scree plot, interpretability of each component</td>
<td>Plant-based DP</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Iqbal/INTERHEART study (2008)</td>
<td>19-item qualitative food group frequency questionnaire (already condensed food items)</td>
<td>Generic questionnaire to be applicable in multiple countries; no portion size, only frequency; standardised in consumption per day</td>
<td>Exploratory factor analysis</td>
<td>Rotated orthogonally; retain factors with eigenvalue > 1; scree test, factor interpretability (not the percentage of variance)</td>
<td>Oriental pattern: tofu and soy and other sauces; Western pattern: fried food, salty snacks, and meat intake; prudent pattern: fruit and vegetable intake 1 factor score</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Menotti/Seven Countries Study (1999)</td>
<td>7-d record (14 of 16) 1 d record (USA) 4 d record (Japan)</td>
<td>18 food groups classified in all cohorts: bread, cereals, potatoes, vegetables, legumes, fruits, sugar, oils, butter, meat, fish, eggs, margarine – iard, milk, cheese, pastries, alcohol, and ‘other’; some analyses run on combinations of the 18 food groups: ‘vegetables foods’, ‘animal foods’, ‘sweets’</td>
<td>Factor analysis</td>
<td>No information</td>
<td>Highest factor score and highest risk for CHD: east and west Finland, the Netherlands, Serbia; lowest factor and lowest risk for CHD: Italy and Greece</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Paia/IDEFICS (2013)</td>
<td>CEHQ</td>
<td>Reproducible and validated; completed by parents or other caregivers (asks about consumption in preceding month)</td>
<td>PCA</td>
<td>Kaiser–Meyer–Olkin sampling adequacy was > 0.6, which supports use of PCA; criteria for retained DP: eigenvalue, scree plot, factor interpretability, factor loadings > 0.2 considered; for stability, also DP from the follow-up sample assessed; simplified DP (food variables with high loadings were standardised and summed)</td>
<td>Component 1 (Snacking) Component 2 (sweet and fat) Component 3 (vegetables and wholemeal) Component 4 (protein and water)</td>
<td>No information</td>
<td>Reliability assessed by generating DP in the subgroup of the follow-up participants and comparing it with the original DP</td>
</tr>
</tbody>
</table>

DIETSCAN, Dietary Patterns and Cancer; ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study; NLCS, Netherlands Cohort Study; SMC, Swedish Mammography Cohort; ORDET, Hormones and Diet in the Etiology of Breast Cancer Risk; EPIC, European Prospective Investigation into Cancer and Nutrition; IDEFICS, Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants; CEHQ, Children’s Eating Habits Questionnaire.
Table 3. Overview of the studies using cluster analysis to derive dietary patterns (DP)

<table>
<thead>
<tr>
<th>Author/study (year)</th>
<th>Diet assessment instrument</th>
<th>Details of diet assessment instrument</th>
<th>Reported DP method</th>
<th>Details of DP method</th>
<th>Label of DP</th>
<th>Variation of DP across regions/countries</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Havemann-Nies/SENECA (1998)</td>
<td>3-d estimated record and frequency checklist of food groups</td>
<td>By trained personnel; country-specific food composition tables</td>
<td>Cluster analysis</td>
<td>Ward's minimum variance method: number of clusters chosen on the basis of R^2 and the composition of the clusters</td>
<td>‘Light snackers’ ‘Fruit and vegetables’ ‘Snackers’ ‘Sweet drinkers’ ‘Dairy snackers’ ‘Alcohol’ drinkers</td>
<td>Clusters present in all towns; dairy snackers almost all in Culemborg; alcohol drinkers almost all in Haguenau</td>
<td>No</td>
</tr>
<tr>
<td>Bamia/EPIC-Elderly (2005)</td>
<td>Country-specific dietary self-reported or interviewer-administered questionnaires</td>
<td>22 condensed energy-adjusted food groups (residual method); validated questionnaires</td>
<td>Cluster analysis</td>
<td>Ward's minimum variance method: pseudo F, pseudo R, cubic clustering criterion, tree diagram</td>
<td>Cluster A predominant in Italy, Spain and Greece; Cluster B and C fairly distributed in France and northern Europe; Denmark exclusively in Cluster C</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

EPIC, European Prospective Investigation into Cancer and Nutrition.
interpretability of the principal components to decide upon the number of dietary patterns to retain, whereas one study(13) solely used the first two criteria. Menotti \textit{et al.}(18) did not report any criteria. The eigenvalue >1 criterion implies that only those principal components with an eigenvalue >1 will be retained. Considering that the eigenvalue is the amount of variance accounted for by one principal component and each observed food variable contributes one unit of variance to the total variance, principal components with eigenvalues >1 represent a data reduction(6). Nevertheless, with this criterion the number of retained factors can be quite large. Therefore, a plot of the eigenvalues of principal components (scree plot) may help to decide the final number of retained principal components, by visually distinguishing a small number of components, which explain a lot of variance in the food groups, from the residual components, which explain a minor amount of variance(6). Besides these two criteria, investigators frequently took into account the interpretability of identified patterns. Interpretability usually considers the conceptual meaning of an identified principal component, but in terms of dietary patterns it is difficult to adjudicate on a combination of food groups. Furthermore, in the articles, where interpretability was listed as a criterion, no explanations were given as to what was meant by this. Although the retained principal components consisted of all original food groups, cut-offs for the factor loadings of food groups were frequently set to identify those foods that were meaningful contributors to the pattern. This cut-off ranged between factor loadings of 0.20(19) and 0.35(13) in the identified studies. In two articles(11,16), the food groups were energy-adjusted with the residual method, developed by Willett and Stampfer(20), before they were included in the analyses to account for total energy intake.

The second identified exploratory method, namely cluster analysis, was applied in two pan-European studies(11,16). Both studies used the Ward’s minimum variance method but different criteria to derive the final cluster solution. In general, two clustering techniques for deriving dietary patterns can be distinguished: the hierarchical and non-hierarchical clustering. As a hierarchical approach of clustering people according to their dietary habits, the Ward’s minimum variance method was applied in the identified study(16). This is an agglomerative method, starting with each observation as its own cluster and merging together to a larger cluster(21). For that purpose, the ANOVA, retaining only those pairs of clusters with the smallest increase in the error sum of squares, is usually used(22). The number of cluster solutions was chosen based on the proportion of the explained variance of all variance (R^2) of the clusters and on their composition(16).

Validity of dietary patterns

Although the included studies partly assessed the validity of the dietary assessment instrument(11,29) none of the identified pan-European studies has yet investigated the validity of dietary patterns. However, existing attempts at validation, which were not limited to the pan-European context, were identified with an additional systematic literature search (online Supplementary Table S3). Seven studies could be included(25–29) (Table 4). Of these, two studies investigated dietary patterns in adolescents(25,24), whereas adults were investigated in the other five studies(25–29). Six published articles validated dietary patterns derived by factor analysis(23,25,27) or PCA(25,26,29) and one study by RRR(24), respectively. The dietary assessment instruments to measure food intake were predominantly FFQ, which were validated in the majority of studies(23,24,26). In the Japanese study, a diet history questionnaire referring to the previous month was used(29). Dietary records mostly served as validation instruments, but the recording methods differed with regard to the time frame from 3 d(23,24), 4 d(29) to 1 week(26,27). In the study by Ashghari \textit{et al.}(25), the mean of twelve 24-h dietary recalls was applied. The frequency of application ranged from one time(23,24) to four times(29) for dietary records. Dietary patterns derived by PCA/ factor analysis were either retained by using the scree plot(20,29), the eigenvalue and scree plot(24) or all three common criteria (including interpretability as an additional criterion(26,28)). In the study by Khani \textit{et al.}(27), only those principal components with eigenvalues >1 were retained. The authors reported to use the same criteria for deriving the dietary patterns, except for Ambrosini \textit{et al.}, who applied different eigenvalue criteria (>1 for FFQ-derived dietary data, <1 for food record-derived data)(25). The retained dietary patterns resulted in similar numbers and comparable compositions, when patterns derived by the study instrument were validated against patterns derived by the reference instrument (Table 4). The correlation coefficients between the derived scores were modest in all included studies. Ambrosini \textit{et al.}(25) reported higher correlation coefficients if energy-adjusted dietary patterns were used. The percentage of the variance explained in dietary patterns using data from dietary records was higher than from FFQ in two studies(25,27), whereas it was comparable in the study by Okubo \textit{et al.}(29). The dietary patterns derived by RRR using data from an FFQ and from a food record were similar in composition, and modest agreement between the dietary pattern scores was observed(24).

Discussion

Two exploratory dietary pattern approaches were identified in pan-European studies: PCA/factor analysis and cluster analysis. Although factor analysis and PCA are conceptually different, strong similarities in their application using standard statistical software made it, in many cases, unclear as to which method was indeed used by the included studies. We therefore discuss such studies together. In studies that applied PCA/factor analysis to derive dietary patterns, two criteria to select dietary patterns (eigenvalue, scree plot) were commonly applied, whereas the third criterion of interpretability was applied in half of the studies. As the latter criterion was insufficiently described, it highlights the demand for a better reporting of what is exactly meant by ‘interpretability’ to enhance transparency and enable the replication of pattern methods. The described three criteria have also been applied in numerous single-country studies, as summarised in recent comprehensive SLR(3,4). Hence, they appear to be commonly applied methods. As we aimed to deduce recommendations for future methods, the quality of the included studies was investigated to ensure best practice
<table>
<thead>
<tr>
<th>Studies</th>
<th>Population size</th>
<th>Sex/age range</th>
<th>Study instrument/ time frame</th>
<th>Reference instrument/ time frame</th>
<th>Reported dietary pattern method</th>
<th>Correlation</th>
<th>Limits of agreement</th>
<th>Further assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA/FA</td>
<td>Western Australian Pregnancy Cohort (Raine) Study(^{(23)})</td>
<td>Total n 3195 FFQ n 2337 FR n 858</td>
<td>Male and female/ 14 years</td>
<td>212-item FFQ/previous year</td>
<td>1 × FR/3 d</td>
<td>FA</td>
<td>Crude: Healthy: (r = 0.43) Western: (r = 0.27) Energy adjusted:</td>
<td>Healthy: (0.03 (−1.69−1.75)) Western: (−0.03 (−1.89−1.82))</td>
</tr>
<tr>
<td></td>
<td>Tehran Lipid and Glucose Study(^{(25)})</td>
<td>Total n 132 Males n 61 Females n 71</td>
<td>Male and female 20–70 years</td>
<td>168-item FFQ/previous year</td>
<td>12 × dietary recall/ previous 24 h</td>
<td>FA</td>
<td>Crude: Iranian traditional: (r = 0.48) Western: (r = 0.74) Energy adjusted: n.a.</td>
<td>Deattenuated: Iranian traditional: (r = 0.48) Western: (r = 0.75)</td>
</tr>
<tr>
<td></td>
<td>Health Professionals Follow-up study(^{(26)})</td>
<td>Total n 127 Male/40–75 years 131-item FFQ (FFQ1 and FFQ2)/previous year</td>
<td>2 × DR/7 d</td>
<td>PCA</td>
<td>Crude: Prudent: DR v. FFQ1: (r = 0.34) DR v. FFQ2: (r = 0.51) Western: DR v. FFQ1: (r = 0.58) DR v. FFQ2: (r = 0.74) Energy adjusted: n.a.</td>
<td>Deattenuated: Prudent: DR v. FFQ1: (r = 0.45) DR v. FFQ2: (r = 0.52) Western: DR v. FFQ1: (r = 0.58) DR v. FFQ2: (r = 0.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMC(^{(27)}) Validation study n 129, reproducibility study n 212</td>
<td>Female/40–74 years</td>
<td>60-item FFQ/previous year</td>
<td>4 × DR/7 d</td>
<td>FA</td>
<td>Crude: Healthy: (r = 0.47) Western: (r = 0.41) Drinker: (r = 0.73) Energy adjusted: n.a.</td>
<td>Deattenuated: Healthy: (r = 0.59) Western: (r = 0.50) Drinker: (r = 0.85)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japan Public Health Center-based Prospective Study(^{(28)})</td>
<td>Total n 498 Males n 244 Females n 254</td>
<td>Male and female/ 56, 59 years</td>
<td>138-item FFQ/previous year</td>
<td>4 × or 2 × DR/ 28 or 14 d</td>
<td>PCA</td>
<td>Men: Prudent: (r = 0.47) Westernised: (r = 0.32) Traditional: (r = 0.49) Women: Prudent: (r = 0.36) Westernised: (r = 0.56) Traditional: (r = 0.63) Energy-adjusted: n.a.</td>
<td>Deattenuated: Men: (r = 0.59) Women: (r = 0.56) Traditional: (r = 0.63)</td>
</tr>
<tr>
<td></td>
<td>Three areas in Japan: Osaka (urban), Nagano (rural inland) and Tottori (rural coastal)(^{(29)})</td>
<td>Male n 92 Female n 92</td>
<td>Male and female 30–69 years</td>
<td>4 × 145-item DHQ/ previous month</td>
<td>4 × weighed DR/4 d</td>
<td>PCA</td>
<td>Crude: n.a. Energy-adjusted: Women: (r = 0.57) Western: (r = 0.44) Japanese traditional: (r = 0.44)</td>
<td>Women: Healthy: (−1.81−1.81) Western: (−2.22−2.22) Japanese traditional: (−2.08−2.08)</td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>Studies</th>
<th>Population size</th>
<th>Sex/age range</th>
<th>Study instrument/ time frame</th>
<th>Reference instrument/ time frame</th>
<th>Reported dietary pattern method</th>
<th>Correlation</th>
<th>Limits of agreement</th>
<th>Further assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed approaches</td>
<td>Total n 783</td>
<td>Male and female/ 14 years</td>
<td>227-item FFQ/previous year</td>
<td>1 × FR/ 3 d RRR</td>
<td>RRR Crude:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Australian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pregnancy Cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Raine) Study(24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Exploratory dietary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCA, principal component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| analysis; FA, factor analysis; FR, food record; n.a., no analysis; DR, dietary record; SMC, Swedish Mammography Cohort; DHQ, diet history questionnaire; RRR, reduced rank regression.

Exploratory dietary patterns. We developed our own, quality rating system to consider dietary assessment methods. We used a quality rating system that takes into account the quality of the study, including the instrument, study design, and analysis methods. The quality rating system was based on the following criteria:

1. **Study instrument**: The quality of the study instrument was assessed based on the instrument's validity and reliability. Instruments that were validated for use in the target population were rated higher.
2. **Reference instrument**: The quality of the reference instrument was assessed based on its validity and reliability. Instruments that were validated for use in the target population were rated higher.
3. **Reported dietary pattern method**: The quality of the reported dietary pattern method was assessed based on the method's validity and reproducibility. Methods that were validated for use in the target population were rated higher.
4. **Correlation**: The quality of the correlation between the study instrument and the reference instrument was assessed. Correlations that were statistically significant were rated higher.
5. **Limits of agreement**: The quality of the limits of agreement between the study instrument and the reference instrument was assessed. Limits of agreement that were statistically significant were rated higher.
6. **Further assessment**: Additional factors such as the study's sample size, the study's population, and the study's geographic location were also considered.

Overall, the quality rating system was designed to provide a comprehensive assessment of the quality of the dietary assessment methods used in the studies. The quality rating system was used to identify studies that used high-quality dietary assessment methods. This allowed us to focus on studies that were more likely to provide valid and reliable estimates of dietary patterns. The quality rating system was also used to identify areas for improvement in dietary assessment methods.
With regard to the pan-European context, no study has been conducted yet on deriving dietary patterns by RRR. However, this presents quite a challenge, as not only information on food groups needs to be available across several countries but information is also required on specific biomarkers or nutrients, which can be linked to the respective health outcome of interest. Furthermore, results have to be interpreted with caution, because the two steps of deriving disease-specific dietary pattern and relating it to the disease can lead to over-optimistic results if investigated within the same study population. Therefore, it is highly recommended to evaluate the results in an external study population to test for generalisability, as it was done in several existing studies for type 2 diabetes.

As it was already concluded in our previous systematic review, the application of exploratory methods results in population-specific dietary patterns, which were highly heterogeneous across populations. Also in this review, the identified dietary patterns largely differed in their composition and labelling by the authors. To our knowledge, exploratory pattern approaches have not been tested with regard to validity and reliability in the pan-European context so far. However, we identified several validation studies not limited to pan-European studies with an additional search. Summarising from this set of studies, those dietary patterns that were derived by PCA/factor analysis had a rather modest validity when compared with the respective reference instruments. This could be constituted by methodological differences between dietary assessment methods. Although an FFQ better captures episodically eaten foods owing to a longer reported time span, a dietary record usually reports a smaller range of food groups, probably providing excess zero consumption and therefore an underestimation of the usual consumption of certain food groups. However, this is largely depending on the frequency of application and hence on the comprised time span. Consequently, partly different dietary pattern structures, hence lower correlation coefficients, could occur. However, attenuating the validity is not the only concern. If the investigation of the relative validity of dietary patterns was solely restricted to food groups that were assessed in both the study and reference dietary assessment instruments, then it is important to consider that this could potentially result in an overoptimistic validity. Regarding the criteria to retain a certain number of principal components/factors, no standard could be deduced, because the identified studies largely differed in their application of respective criteria. We identified only one study that investigated the relative validity of RRR patterns from an FFQ against a dietary record in adolescents and observed a modest agreement.

Strength of this SLR was the comprehensive search in three distinct databases and an additional reference screening to identify all existing publications, which offered information on dietary patterns in the pan-European context. Nevertheless, it could not be ruled out that we did not identify all relevant approaches. A further strength was the measurement of the quality of the included studies, although no commonly used checklist (e.g. SIGN checklist) was applied. However, we captured several aspects of quality assessment by determining five questions, which were formulated to identify high-quality studies for the specific aim of this SLR.

Conclusion

To conclude, the literature search identified six studies that applied exploratory statistical approaches to derive dietary patterns in the pan-European context. PCA/factor analysis was the predominant approach and the eigenvalue > 1 and scree plot were the most commonly applied criteria to decide upon the number of principal components/factors to retain. Nevertheless, a more detailed description and justification for the applied method (PCA & factor analysis) and criteria, particularly the interpretability criterion, is demanded to ensure a better comparability of the actual applied methods. Clear gaps were identified for cluster analysis that was applied in two studies, where criteria vigorously differed, although both studies reported to use Ward’s minimum variance method. Approaches such as RRR have not yet been applied in pan-European studies. Concluding from an additional search of validation studies, moderately correlated dietary patterns were identified, which did not alter in the number and composition of dietary patterns when PCA/factor analysis was applied on intake data from different dietary assessment instruments. Nevertheless, it is highly recommended to investigate the validity of dietary patterns across countries to ensure a certain generalisability of an identified pattern structure beyond the population it was derived in.

Acknowledgements

The preparation of this paper was supported by the DETERmInants of Diet and Physical ACtivity (DEDIPAC) knowledge hub. This work is supported by the Joint Programming Initiative ‘Healthy Diet for a Healthy Life’. The funding agency supporting this work is Federal Ministry of Education and Research, Germany.

F. J. planned and conducted the review, and drafted and revised the paper. F. R. contributed to the conduction of the review and revised the paper. L. F. A. revised the paper. M. B. S. contributed to the planning, and drafted and revised the paper.

The authors declare that there are no conflicts of interest.

Supplementary material

For supplementary material/s referred to in this article, please visit https://doi.org/10.1017/S0007114518001800

References