A note on the correlation of classes.

By J. M. Whittaker.

(Received 13th January 1927. Read 14th January 1927:)

1. Let R be a $(1-1)$ relation between the members of two similar classes A, B_{1}. It correlates the members of a subclass X of A to the members of a certain subclass Y of B_{1} and thus defines a relation ρ connecting X and Y. It is clear that ρ is a $(1-1)$ relation and that it has the property (M). If $X_{1} \rho Y_{1}, X_{2} \rho Y_{2}$, then $X_{1} \subset X_{2}$ implies $Y_{1} \subset Y_{2}$.

It will be shown that
If $A_{\rho} B_{1} \subset B, B \sigma A_{1} \subset A$, there are subclasses A_{0}, B_{0} of A, B such that $A_{0} \rho B_{0}, B-B_{0} \sigma A-A_{0}$.

The proof consists in making a kind of Dedekind section of the subclasses X, and may be explained as follows.

If X^{\prime} is defined by $X_{\rho} Y, B-Y_{\sigma} X^{\prime}$ we say that X is a U if X, X^{\prime} overlap, and that X is an L if they do not. The subclass A_{0} whose existence we wish to demonstrate is to be such that $A_{0}{ }^{\prime}=A-A_{0}$. i.e. it is to be an L but as nearly as possible a U. Thus we might expect that there will be a largest L and that this will be A_{0}. It is not difficult to prove that this is the case.
2. An immediate consequence of (M) is the following lemma.

If $X_{1} \subset X_{2}$, then $X_{2}{ }^{\prime} \subset X_{1}{ }^{\prime}$.
Let $A_{0}=$ sum of all L 's. ${ }^{1}$ Then in the first place

$$
\begin{equation*}
A_{0} \subset A-A_{0}^{\prime} \tag{1}
\end{equation*}
$$

For by the lemma $A_{0}{ }^{\prime} \subset L^{\prime}$ for every L and so

$$
L \subset A-L^{\prime} \subset A-A_{0}{ }^{\prime}
$$

[^0]Thus $A-A_{0}{ }^{\prime}$ contains every L and so it contains A_{0}. By (1) and the lemma

$$
\left(A-A_{0}{ }^{\prime}\right)\left(A-A_{0}{ }^{\prime}\right)^{\prime} \subset\left(A-A_{0}{ }^{\prime}\right) A_{0}^{\prime}=0
$$

i.e. $A-A_{0}{ }^{\prime}$ is an L and so is contained in A_{0}. But by (1) A_{0} is contained in $A-A_{0}{ }^{\prime}$. Thus

$$
\begin{array}{ll}
& A_{0}=A-A_{0}{ }^{\prime} \\
\text { or } & A_{0}{ }^{\prime}=A-A_{0}
\end{array}
$$

which is the result stated.
3. An immediate corollary is the Schröder-Bernstein theorem.

If A is similar to a part of B and B is similar to a part of A, then A is similar to $B .^{1}$
Again let A, B be simply ordered classes. We deduce that
If A is ordinally similar to a part of B and B is ordinally similar to a part of A, then there is a part A_{0} of A which is ordinally similar to a part B_{0} of B and such that $A-A_{0}$ is ordinally similar to $B-B_{0}$.

That the premisses of this proposition do not necessarily imply that A is ordinally similar to B is illustrated by the following trivial example. A consists of the real numbers in ($0<x \leqslant 1$) together with the rational numbers in ($1 \leqslant x \leqslant 2$), B of the real numbers in $(0 \leqslant y \leqslant 2)$. Then A is not ordinally similar to B, but A is ordinally similar to a part of B by the relation $y=x$, and B is ordinally similar to a part of A by the relation $y=2 x, \quad A_{0}, B_{0}$ are in this case the sets of rational numbers in $(0 \leqslant x \leqslant 2),(0 \leqslant y \leqslant 2)$. These sets are ordinally similar by the first relation, while the set of irrational numbers in A is ordinally similar to the set of irrational numbers in B by the second relation.

[^1]
[^0]: 1 There may be no L 's, but this does not matter since the null class is counted as a subclass of A. It will be noticed that the proof depends only on the fact that ρ, σ are ($1-1$) relations with the property (M), so that the theorem is true for any relations with these properties. Thus it is not necessary that the members of X should be in ($1-1$) relation with those of Y, nor that those subclasses of B to which the subclasses of A are correlated by ρ should be all the subclasses of a certain part B_{1} of B.

[^1]: 1 i.e. if a, b are cardinal numbers, $a \leq b$ and $b \leq a$ together imply $a=b$.

