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On Modules Whose Proper Homomorphic
Images Are of Smaller Cardinality
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Abstract. Let R be a commutative ring with identity, and let M be a unitary module over R. We

call M H-smaller (HS for short) if and only if M is infinite and |M/N| < |M| for every nonzero

submodule N of M. After a brief introduction, we show that there exist nontrivial examples of HS

modules of arbitrarily large cardinality over Noetherian and non-Noetherian domains. We then prove

the following result: suppose M is faithful over R, R is a domain (we will show that we can restrict to

this case without loss of generality), and K is the quotient field of R. If M is HS over R, then R is HS

as a module over itself, R ⊆ M ⊆ K, and there exists a generating set S for M over R with |S| < |R|.
We use this result to generalize a problem posed by Kaplansky and conclude the paper by answering

an open question on Jónsson modules.

1 Introduction

Throughout, all rings are assumed commutative with identity and all modules are

assumed unitary.

Kaplansky posed the problem of showing that Z is the unique infinite abelian

group G with the property that G/H is finite for every nonzero subgroup H of G

(this appears as an exercise in [10]). Jensen and Miller translated this question to

commutative semigroups [9]. They defined an infinite commutative semigroup S to

be homomorphically finite (HF for short) if and only if every proper homomorphic

image of S is finite, and then proceeded to classify all HF commutative semigroups.

Ralph Tucci defined an infinite commutative semigroup S to be H-smaller if and only

if every proper homomorphic image of S has smaller cardinality than S. He showed

that the H-smaller semigroups coincide with the HF semigroups [17].

Chew and Lawn defined a ring R with 1 (not assumed commutative) to be resid-

ually finite provided every proper homomorphic image of R is finite. They proved

various results about such rings [1]. Levitz and Mott extended their results to rings

without identity [12]. Unfortunately, this definition is not unique in the literature.

Orzech and Ribes [16] defined an associative ring R to be residually finite if and only

if for every nonzero x ∈ R, there is a two-sided ideal A of R such that x /∈ A and R/A

is finite (this appears to be the standard definition).

Varadarajan [18] generalized this definition and called an R-module M residually

finite if and only if for any x 6= 0 in M, there exists a submodule N of M (depending

on x) such that x /∈ N and M/N is finite.
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In this paper, we study a variant of the notion considered in [18]. Keeping with

Tucci’s terminology, we define a module M over a ring R to be H-smaller (HS for

short) if and only if M is infinite and |M/N| < |M| for every nonzero submodule

N of M. We begin by constructing nontrivial examples of HS modules over both

Noetherian and non-Noetherian domains. In Section 3, we prove a structure theo-

rem for HS modules (Theorem 3.3 is the principal result of this section). We then

generalize Kaplansky’s problem by replacing Z with an arbitrary infinite module over

an arbitrary ring. We conclude the paper by applying our results to solve an open

problem on Jónsson modules.

2 Examples

We begin by introducing several canonical examples of domains which are HS as

modules over themselves. The verification is easy and is omitted.

Examples 2.1 The following domains are HS as modules over themselves.

• Infinite fields.
• The ring Z of integers.
• The ring F[x], where F is a finite field.

We now investigate the existence of uncountable HS modules over a Noetherian

domain D which is not a field (the case where D is a field being trivial). To simplify

terminology, we will call a domain D an HS domain if and only if D is not a field and

D is HS as a module over itself. Before proceeding, we recall a few results from earlier

papers.

Lemma 2.2 ([11] Lemma 2.1, Theorem 2.6) The following hold.

(i) Suppose that D is a Noetherian integral domain that is not a finite field and let I

be a proper ideal of D. If |D| = ρ and |D/I| = κ, then κ + ℵ0 ≤ ρ ≤ κℵ0 .

(ii) Conversely, let (ρ, κ1, . . . , κn) be a finite sequence of cardinals, where each κi is a

prime power or is infinite and κi + ℵ0 ≤ ρ ≤ κℵ0

i holds for all i. Then there is

a principal ideal domain D (which is not a field) with exactly n maximal ideals

M1, . . . ,Mn such that |D| = ρ and |D/Mi | = κi for all i.

Proof (ii) when n = 1 (see [11] for further details). Let κ be either a prime power

or infinite and suppose that κ + ℵ0 ≤ ρ ≤ κℵ0 . Let F be a field of cardinality κ, and

let F[[t]] be the ring of formal power series over F in the variable t . The underlying

set of F[[t]] is the set of all functions from ω into F, whence |F[[t]]| = κℵ0 . The

quotient field of F[[t]] is the field F((t)) of formal Laurent series in the variable t .

There is a field K of cardinality ρ such that F(t) ⊆ K ⊆ F((t)) for any ρ satisfying

|F(t)| = κ + ℵ0 ≤ ρ ≤ κℵ0
= |F((t))|. Note that F[[t]] is a discrete valuation ring

(DVR) on F((t)), K ⊆ F((t)), and F[[t]]∩K is not a field (since t is not invertible). It

follows that F[[t]] ∩ K is a DVR on K (whence also has cardinality ρ) with maximal

ideal M = (t)∩K. Clearly, F maps injectively into (F[[t]]∩K)/M and (F[[t]]∩K)/M

maps injectively into F[[t]]/(t) ∼
= F. It follows that |(F[[t]] ∩ K)/M| = κ and the

proof is complete.
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Lemma 2.3 ([14, Lemma 3]) Let R be a ring and I be a finitely generated ideal of R.

Then

(i) if R/I is finite, then R/In is finite for every positive integer n;

(ii) if R/I has infinite cardinality κ, then R/In has cardinality κ for every positive

integer n.

We now characterize the cardinals ρ for which there exists a Noetherian HS do-

main D of cardinality ρ.

Proposition 2.4 Let ρ be an infinite cardinal. There exists a Noetherian HS domain

D of cardinality ρ if and only if there exists a cardinal κ such that 1 < κ < ρ ≤ κℵ0 .

Proof Let ρ be an infinite cardinal. Suppose first that D is a Noetherian HS domain

of cardinality ρ. Let I be a nonzero proper ideal of D. Then 1 < |D/I| := κ < ρ.

It follows from Lemma 2.2(i) that ρ ≤ κℵ0 . Conversely, suppose that κ satisfies

1 < κ < ρ ≤ κℵ0 . By Lemma 2.2(ii), there is a DVR D with maximal ideal J such

that |D| = ρ and |D/ J| ≤ κ (if κ is finite but not a power of a prime, simply note that

2 ≤ κ and apply (ii)). It is well known that every nonzero ideal of D is a power of J.

Thus it follows from Lemma 2.3 that |D/I| < |D| for every nonzero ideal I of D.

Remark 2.5 It is a well known consequence of König’s theorem that κ < κcf κ for

every infinite κ (cfκ denotes the cofinality of κ). In particular, if κ has countable co-

finality, then κ < κℵ0 . It follows that there are Noetherian HS domains of arbitrarily

large cardinality. Proposition 2.4 also shows that there are independence issues asso-

ciated with cardinalities of Noetherian HS domains. For instance, it is undecidable in

ZFC whether there exists a Noetherian HS domain D of size ℵ2. Note that if CH fails,

then ℵ2 ≤ 2ℵ0 . Thus 1 < 2 < ℵ2 ≤ 2ℵ0 and there exists a Noetherian HS domain of

size ℵ2 by Proposition 2.4. On the other hand, suppose that GCH holds. Note that if

κ < ℵ2, then κ ≤ ℵ1. Thus κℵ0 ≤ (ℵ1)ℵ0
= (2ℵ0 )ℵ0

= 2ℵ0
= ℵ1 < ℵ2 and hence

there can be no Noetherian HS domain of size ℵ2.

We now explore the question of the existence of HS domains D that are not

Noetherian. We will show that, unlike in the Noetherian case, such domains ex-

ist of every uncountable cardinality (it will follow from a later theorem that every

countable HS domain is Noetherian). We begin with a simple lemma.

Lemma 2.6 Let M be an infinite module over the ring R. Then M is HS over R if and

only if |M/(m)| < |M| for every nonzero m ∈ M.

Proof If M is HS, then |M/(m)| < |M| holds for every nonzero m ∈ M by defi-

nition. Conversely, suppose |M/(m)| < |M| for every nonzero m ∈ M. Let N be

an arbitrary nonzero submodule of M and pick any nonzero n ∈ N. Now simply

observe that |M/N| ≤ |M/(n)| < |M|.

In what follows, κ will remain an arbitrary, but fixed, uncountable cardinal. Our

construction will proceed roughly as follows. First we will show that there exists a

torsion-free totally ordered abelian group G of cardinality κ such that the interval

(0, g) := {x ∈ G : 0 < x < g} has cardinality less than κ for every g > 0. We then
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consider the canonical valuation v on the quotient field K of the group ring F2[G]

into G. Let V be the valuation ring associated with v. We will show that V is an HS

domain. We begin with the following lemma. We remark that the group constructed

below appears explicitly in [5], though a different result is obtained there.

Lemma 2.7 There exists a torsion-free totally ordered abelian group G of cardinality

κ such that for every g > 0 in G, (0, g) := {x ∈ G : 0 < x < g} has cardinality less

than κ.

Proof Let G :=
⊕

κ Z denote the direct sum of κ copies of Z. Clearly G is a torsion-

free abelian group of cardinality κ. We will equip G with the reverse lexicographic

order. The details follow. Each nonzero (gi) ∈ G has but finitely many nonzero

coordinates. In other words, the set {i ∈ κ : gi 6= 0} is finite. Let j be the largest

element of {i ∈ κ : gi 6= 0}. We define (gi) to be positive if and only if g j > 0. Let

P be the collection of positive elements of G. One checks easily that P is closed under

addition and {P, {0},−P} forms a partition of G. Thus the order < on G defined by

x < y if and only if y − x ∈ P is total and respects addition. Let g > 0 be arbitrary.

We show that |(0, g)| < κ = |G|. Let g := (gi) and let j ∈ κ be the largest nonzero

coordinate of g (hence g j > 0). Now let h := (hi) ∈ (0, g) be arbitrary, and let j ′

be the largest nonzero coordinate of h. Since h is positive, h j ′ > 0. But g − h > 0,

and thus j ′ ≤ j. It follows that the interval (0, g) may be mapped injectively into
⊕

i∈ j+1 Z. Since κ is a cardinal, κ is a limit ordinal, and hence j + 1 ∈ κ. Thus

| j + 1| < κ, and it follows easily that |
⊕

i∈ j+1 Z| < κ. Finally, we conclude that

|(0, g)| < κ and the proof is complete.

Theorem 2.8 There exists an HS valuation domain V of cardinality κ.

Proof Let G be a torsion-free totally ordered abelian group of cardinality κ such

that |[0, g]| < κ for every g > 0 in G (guaranteed by Lemma 2.7). Let S denote the

subsemigroup of G consisting of the non-negative elements of G, and let F2[S] denote

the semigroup ring of S over F2. Note that every nonzero element of D := F2[S] may

be written uniquely in the form

(2.1) xg1 + xg2 + · · · + xgn ,

where g1 < g2 < · · · < gn. Whenever we express an element of D as in (2.1), we will

assume that g1 < g2 < · · · < gn.

We now define a map v : D → G ∪ {∞} by v(xg1 + xg2 + · · · + xgn ) := g1 and

v(0) := ∞ (recall that g + ∞ := ∞ + g := ∞ and g < ∞ for every g ∈ G). Let

K be the quotient field of D. It follows (from [3, Proposition 18.1], for example)

that v may be extended to a valuation on K by setting v(a/b) = v(a) − v(b). We let

V = {α ∈ K : v(α) ≥ 0} be the valuation ring of v. Recall that u ∈ V is a unit if and

only if v(u) = 0. Clearly V is not a field and V has cardinality κ. We now prove that

V is HS.
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Claim If α ∈ V is nonzero, then |V/(α)| < |V | = κ.

Proof of Claim If α is a unit, the result is patent. Thus we assume α is a nonzero

nonunit. Hence v(α) := g > 0 and g ∈ G. Recall that |[0, g]| < κ. We now let R

denote the elements of V whose exponents are contained in [0, g]. Formally, we have

R :=
{ xa1 + xa2 + · · · + xan

xb1 + xb2 + · · · + xbm
∈ V : 0 ≤ ai , b j ≤ g

}

.

Note that |R| < κ. It suffices to show that R is a complete set of coset representatives

for V (mod α). Let β ∈ V be arbitrary. Note that there exists r ∈ R such that

(α) + β = (α) + r if and only if there exists r ∈ R such that β − r ∈ (α) if and

only if there exists r ∈ R such that β−r
α ∈ V if and only if there exists r ∈ R such

that v(β − r) ≥ v(α) = g. If β = 0, choose r := xg . Thus we assume that β 6= 0.

Let β := xg1 +xg2 +···+xgn

xh1 +xh2 +···+xhm
. Since β ∈ V , it follows by definition that v(β) ≥ 0. Hence

g1 ≥ h1 and we may factor out xh1 from the numerator and denominator. So without

loss of generality, we may assume β has the form

β =

xg1 + xg2 + · · · + xgn

1 + xh1 + · · · + xhm
, 0 ≤ g1 < g2 < · · · < gn, 0 < h1 < h2 < · · · < hm.

If each gi , h j satisfies 0 ≤ gi , h j ≤ g, then β ∈ R, and we may choose r := β. Thus

we assume that at least one gi or h j is larger than g. Note that v(β) = g1. If g1 > g,

then we may choose r = 0. Thus we assume that g1 ≤ g. Let i, 1 ≤ i ≤ n be largest

such that gi ≤ g and let j, 0 ≤ j ≤ m be largest such that h j ≤ g. Let r := xg1 +···+xgi

1+···+x
h j

.

Note that as v(r) = g1, we have r ∈ V . It follows that r ∈ R. We will be done if we

can show that v(β − r) ≥ g. Simple algebra (obtaining a common denominator and

cancelling) yields

β − r =
(1 + · · · + xh j )(xgi+1 + · · · + xgn ) − (xg1 + · · · + xgi )(xh j+1 + · · · + xhm )

(1 + · · · + xh j )(1 + xh1 + xh2 + · · · + xhm )
.

Note that upon multiplying out in the numerator, each exponent is larger than g.

Upon multiplying out in the denominator, one still has a constant term of 1 = x0.

Thus v(β − r) > g and the proof of the claim is complete.

It now follows from Lemma 2.6 that V is an HS domain.

Remark 2.9 One can extract even more information from the previous proof. By

allowing g to vary over the nonnegative elements of G, it is possible to obtain intervals

[0, g] of any nonzero cardinality λ < κ. Thus there exist residue rings of V of finite

cardinality as well as residue rings of cardinality λ for any infinite λ < κ. This

contrasts sharply with the Noetherian case (recall Lemma 2.2(i)).

3 A Structure Theorem

Our objective in this section is to present some results on the structure of general HS

modules. We begin with a lemma that collects some basic facts about these modules.
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Lemma 3.1 Let R be a ring, M an HS module over R, and let N be a nonzero sub-

module of M. Then the following hold:

(i) |N| = |M|;
(ii) |M| ≤ |R|;
(iii) N is an HS module.

Proof We assume that M is an HS module over the ring R and that N is a nonzero

submodule of M.

(i) Suppose by way of contradiction that |N| < |M|. Since M is infinite, |M/N| =
|M|, contradicting that M is HS.

(ii) If |M| > |R|, then choose any nonzero m ∈ M. Clearly |(m)| < |M|, and we

have a contradiction to (i).

(iii) Let K be a nonzero submodule of N. Then N/K is a submodule of M/K.

Since M is HS, it follows that |N/K| ≤ |M/K| < |M| = |N| (the last equality holds

by (i)).

Note that either (i) or (ii) above easily yields the following generalization of Ka-

plansky’s problem (also observed by Tucci). If G is any infinite abelian group such

that |G/H| < |G| for every nonzero subgroup H of G, then G ∼
= Z.

The following proposition will form the cornerstone of the proof of the main re-

sult of this section.

Proposition 3.2 Suppose that M is an HS R-module. Then the following hold.

(i) Ann(m) is a prime ideal of R for every nonzero m ∈ M.

(ii) The set {Ann(m) : m ∈ M} is linearly ordered by inclusion.

(iii) Ann(M) = Ann(m) for any nonzero m ∈ M.

(iv) Ann(M) is a prime ideal of R.

Proof We prove each of these in succession.

(i) Suppose by way of contradiction that there exists some nonzero m ∈ M for

which Ann(m) is not prime. Then there exist x, y ∈ R such that xy ∈ Ann(m) but

x /∈ Ann(m) and y /∈ Ann(m). It is easy to see that this implies Ann(m) ( Ann(xm).

Define ϕ : (m) → (xm) by ϕ(rm) := rxm. Let K be the kernel of this map. Since

Ann(m) ( Ann(xm), it follows that K is nonzero. By Lemma 3.1(iii), (m) is HS.

Thus |(m)/K| < |(m)|. But as (m)/K ∼
= (xm), we obtain |(xm)| < |(m)| and we

have a contradiction to Lemma 3.1(i).

(ii) Suppose by way of contradiction that there exist elements m and n in M with

Ann(m) = P and Ann(n) = Q, but P * Q and Q * P. Let p ∈ P−Q and q ∈ Q−P.

Note that pq ∈ Ann(m + n). Since Ann(m + n) is prime (by (i)), we may assume that

p ∈ Ann(m + n). Thus p(m + n) = 0. However, since p ∈ Ann(m), it follows that

pn = 0. Hence p ∈ Ann(n) = Q, which is a contradiction.

(iii) Clearly, it suffices to show that Ann(m) = Ann(n) for any nonzero n,m ∈ M.

Again, we suppose not. Then by (ii), there exist nonzero m, n ∈ M with Ann(m) (
Ann(n). Hence the map ϕ : (m) → (n) defined by ϕ(rm) := (rn) is well defined.

As in (i), if K is the kernel of this map, then K 6= {0}. By Lemma 3.1(iii), (m) is

HS. Thus |(m)/K| < |(m)|. But as (m)/K ∼
= (n), we have |(n)| < |(m)|. This is a

contradiction to Lemma 3.1(i).
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(iv) This is immediate from (i) and (iii).

Thus by modding out the annihilator, there is no loss of generality in restricting

our study to faithful modules over a domain. We now prove our main result.

Theorem 3.3 Let D be a domain with quotient field K and let M be a faithful module

over D. Consider the following conditions.

(i) D is HS as a module over itself.

(ii) D ⊆ M ⊆ K (up to isomorphism).

(iii) There is a generating set S for M over D with |S| < |D|.
(iv) |M/D| < |D|.

If M is an HS D-module, then conditions (i)–(iv) hold. Conversely, if conditions (i), (ii),

and (iv) hold, then M is HS over D.

Proof Let D be a domain with quotient field K and suppose that M is a faithful HS

module over D.

(i) Let m be an arbitrary nonzero element of M. By Proposition 3.2(iii),

Ann(M) = Ann(m). Since M is faithful, it follows that Ann(m) = {0} and thus

M is torsion-free. This implies that (m) ∼= D, and it follows from Lemma 3.1(iii) that

D is HS as a module over itself. This establishes (i).

(ii) Since M is torsion-free, it suffices to show that M has rank one over D. Suppose

by way of contradiction that x, y ∈ M are distinct and linearly independent over D.

Then clearly this implies that D ⊕ D is a submodule of M, whence D ⊕ D is an HS

module by Lemma 3.1(iii). However, |(D ⊕ D)/D| = |D| = |D ⊕ D|, and this is a

contradiction.

(iii) Let m ∈ M be nonzero. Then |M/(m)| < |M| = |D|. Let S be a complete set

of coset representatives for M(mod m). It is easy to check that M = (S,m). Clearly

|S ∪ {m}| < |D| and (iii) is established.

(iv) This follows easily from (ii) and the fact that M is HS.

Conversely, suppose that conditions (i), (ii), and (iv) are satisfied. We will show

that M is HS. Suppose that N is a nonzero submodule of M. Note that by the iso-

morphism theorems, we have

(3.1) (M/(N ∩ D))/(D/(N ∩ D)) ∼= M/D.

Since N is nonzero and N ⊆ K, it follows that N ∩D is a nonzero ideal of D. Since D

is HS over itself, it follows that

(3.2) |D/(N ∩ D)| < |D|.

By (iii), |M/D| < |D|. This fact, along with (3.1) and (3.2), implies that

|M/(N ∩ D)| < |D|.

Now simply note that N ∩ D ⊆ N. Thus

|M/N| ≤ |M/(N ∩ D)| < |D| = |M|.
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We easily obtain the following corollary.

Corollary 3.4 Suppose D is an uncountable principal ideal domain of cardinality ρ
with exactly n maximal ideals J1, J2, . . . , Jn. Suppose further that |D/ Ji | < |D| for

1 ≤ i ≤ n. If K is the quotient field of D, then the HS modules over D are precisely (up

to isomorphism) the D-modules lying between D and K (note that such domains D exist

by Lemma 2.2(ii)).

Proof We suppose that D is an uncountable principal ideal domain of cardinality ρ
with exactly n maximal ideals J1, J2, . . . , Jn and |D/ Ji | < |D| for 1 ≤ i ≤ n. Let K be

the quotient field of D. We first show that D is HS as a module over itself. For each i,

let Ji = (pi). If x ∈ D is nonzero, then x = upk1

1 pk2

2 · · · pkn
n for some unit u and some

non-negative integers k1, k2, . . . , kn. Thus (x) = (pk1

1 )(pk2

2 ) · · · (pkn
n ), and we have

D/(x) = D/(pk1

1 )(pk2

2 ) · · · (pkn
n ) ∼= D/(p1)k1 ⊕ D/(p2)k2 · · · ⊕ D/(pn)kn .

It now follows easily from Lemma 2.3 that |D/(x)| < |D|, and thus D is HS as a

module over itself.

By Theorem 3.3, it suffices to show that |K/D| < |D| to finish the proof. The

following is well-known.

K/D ∼
= C(p∞

1 ) ⊕C(p∞
2 ) ⊕ · · · ⊕C(p∞

n ),

where each C(p∞
i ) = lim

−→
D/(pi)

k. Lemma 2.3 now implies that |K/D| < |D| and

therefore |M/D| < |D| for any D-module M with D ⊆ M ⊆ K.

In what follows, we will have plenty to say about what happens if D is countable.

4 A Generalization of Kaplansky’s Problem

We begin by giving the canonical solution to Kaplansky’s problem [10]. Show that

if G is an infinite abelian group with the property that G/H is finite for all nonzero

subgroups H of G, then G ∼
= Z.

Solution Assume that G is as stated. Let g ∈ G be nonzero. It is easy to see that

G = (g,X), where X is a complete set of coset representatives for G/(g). Since G/(g)

is finite, it follows that G is finitely generated. Thus by the fundamental theorem of

finitely generated abelian groups, G is a finite direct sum of cyclic groups. Since G

is infinite, at least one summand must be isomorphic to Z. There can be no other

summands, lest Z be an infinite proper homomorphic image of G. Thus G ∼
= Z.

We now replace Z with an arbitrary module M over an arbitrary ring R. We will

use Jensen and Miller’s terminology and call a module M homomorphically finite (HF

for short) if and only if M is infinite but M/N is finite for all nonzero submodules

N of M. We will now give a complete description of these modules, significantly

generalizing Kaplansky’s problem above. We first recall the following result of Chew

and Lawn.
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Lemma 4.1 ([1, Corollary 2.4]) Let R be a commutative ring. Then every nonzero

ideal I of R is of finite index in R if and only if every nonzero prime ideal of R is finitely

generated and of finite index in R.

Theorem 4.2 Let D be a domain (which is not a field) with quotient field K and let

M be a faithful module over D. Then M is HF if and only if the following hold.

(i) D is a one-dimensional Noetherian domain with all residue fields finite.

(ii) D ⊆ M ⊆ K.

(iii) M is finitely generated over D.

Proof Let D be a domain (which is not a field) with quotient field K and let M be

a faithful module over D. Assume first that M is HF. It follows from the proof of

Theorem 3.3(i) that D is HF as a module over itself. Lemma 4.1 (along with Cohen’s

theorem) implies that D is Noetherian. If P is any nonzero prime ideal of D, then

as D/P is finite, it follows that D/P is a field. Hence P is maximal. Thus (i) holds.

Condition (ii) is the same as Theorem 3.3(ii). As for (iii), let m ∈ M be nonzero.

Then M/(m) is finite. If S is a complete set of coset representatives for M mod (m),

then as we have seen, M = (S,m). Hence M is finitely generated.

Conversely, suppose that conditions (i)–(iii) above are satisfied. It follows from

Lemma 4.1 that D is HF as a module over itself. Since M is finitely generated and

D ⊆ M ⊆ K, it follows that there exists some nonzero d ∈ D such that dM ⊆ D. But

note that M ∼
= dM, and thus M is isomorphic to a submodule of D. It now follows

from Lemma 3.1(iii) that M is HF.

Remark 4.3 Theorem 4.2 and Lemma 2.2(i) imply that if M is HF over D, then

|D| = |M| ≤ 2ℵ0 . Note also that if D is a countably infinite domain and M is HS

over D, then it follows from Lemma 3.1 that M is also countable. Thus M is HF and

we obtain a description of the HS modules over an arbitrary countable ring. Recall,

however, that if M is an HF module over D, D need not be countable (as F2[[t]]

witnesses).

5 An Application to Jónsson Modules

In the final section, we use the results of this paper to solve an open problem on

Jónsson modules. We begin with a brief introduction to initiate the reader.

In universal algebra, an algebra is a pair (X, F) consisting of a set X and a collection

F of operations on X (there is no restriction placed on the arity of these operations).

In case F is countable and all operations have finite arity, then (X, F) is called a Jónsson

algebra provided each proper subalgebra of X has smaller cardinality than X. Such

algebras are of particular interest to set theorists. In set theory, a cardinal κ is said

to be a Jónsson cardinal provided there is no Jónsson algebra of cardinality κ. Many

papers have been written on this topic; we refer the reader to [2] for an excellent

survey of these algebras.

In the early 1980’s, Robert Gilmer and William Heinzer translated these notions to

the realm of commutative algebra. In [8], they defined an infinite module M over a

commutative ring R with identity to be a Jónsson module provided every proper sub-

module of M has smaller cardinality than M. They applied and extended their results
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in several subsequent papers [4, 6, 7]. Oman continued this study [13–15]. These

papers contain most (if not all) of what is currently known on Jónsson modules, and

we refer the reader to them for background.

It is not hard to see that there exist Jónsson modules of every infinite cardinality.

Indeed, let F be an arbitrary infinite field and consider F as a module over itself. The

only proper submodule of F is {0}, whence F is trivially a Jónsson module over itself.

More generally, if R is a ring and J is a maximal ideal of infinite index, then R/ J is a

Jónsson module over R. Of course, such examples are not very interesting. Gilmer

and Heinzer proved [8, Proposition 2.5] that if M is a Jónsson module over R, then

the annihilator of M in R is a prime ideal of R. Thus there is no loss of generality

in considering only faithful Jónsson modules over an integral domain. It is also not

hard to show that if F is an infinite field, then the only Jónsson module over F is F

itself. Thus we restrict our focus to faithful Jónsson modules over a domain D which

is not a field.

Oman characterized the countable faithful Jónsson modules over a domain [14].

We recall this result below.

Proposition 5.1 ([14, theorem 2]) Let D be a domain with quotient field K, and

suppose that M is a countably infinite faithful D-module. Then M is a Jónsson module

if and only if one of the following holds.

(i) D is a field and M ∼
= D.

(ii) There is a discrete valuation overring V of D with finite residue field such that M

is a homomorphic image of K/V .

The question of the existence of an uncountable faithful Jónsson module over a

domain D that is not a field appears in [13–15]. We use the results of this paper to

prove that such modules exist of every infinite cardinality. The following proposition

gives a certain duality between a subclass of HS modules and Jónsson modules.

Proposition 5.2 Let V be a valuation domain with quotient field K. If K/V is a

Jónsson module over V , then V is an HS domain. Conversely, if V is an HS domain and

if |K/V | = |V |, then K/V is a Jónsson module over V .

Proof Let V be a valuation domain with quotient field K. Suppose first that K/V is a

Jónsson module over V . Then by definition, K/V is infinite and hence V is not a field.

Let v ∈ V be nonzero. It is easy to check that V/(v) ∼
= V/v mod V (here V/v de-

notes the fractional ideal {x/v : x ∈ V}). As V/v mod V is a proper submodule of

K/V and K/V is Jónsson, we obtain |V/(v)| < |K/V | ≤ |V |. Lemma 2.6 implies that

V is an HS domain. Conversely, suppose that V is an HS domain and |K/V | = |V |.
We will show that K/V is a Jónsson module. Since K/V is uniserial (the submod-

ules are linearly ordered by inclusion), it suffices to show that every cyclic submodule

of K/V has smaller cardinality than K/V (since K/V is uniserial, every proper sub-

module of K/V is contained in a cyclic submodule). Consider a cyclic module (x)

where x ∈ K. If x ∈ V , then (x) = {0} and we are done. Thus suppose x /∈ V . Then

1/x ∈ V . As above, V/(1/x) ∼
= (x). Since V is HS, |V/(1/x)| < |V | = |K/V |. It

follows that |(x)| < |K/V | and the proof is complete.
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Remark 5.3 We cannot dispense with the assumption that |K/V | = |V | in the

second part of Proposition 5.2. To see this, consider the HS domain V := Q[[t]],

and let K be the quotient field of V . As we saw in the proof of Corollary 3.4,

K/V ∼
= lim

−→
V/(t)n. It follows from Lemma 2.3 that each V/(t)n is countable, and

thus K/V is countable. Note that Q embeds properly into K/V via the map

q 7→ V +
q
t
, and thus K/V is not a Jónsson module over V .

We now prove the existence of Jónsson modules of any uncountable cardinality,

solving an open problem from the literature.

Corollary 5.4 Let κ be an uncountable cardinal. There exists a valuation domain V

of cardinality κ with quotient field K such that K/V is a (faithful) Jónsson module over

V of cardinality κ.

Proof By Proposition 5.2, it suffices to show that the valuation domain V con-

structed in the proof of Theorem 2.8 satisfies |K/V | = |V |. Consider any distinct

positive g and h in G. We claim that 1/xg and 1/xh are distinct mod V . Suppose not.

Then 1/xg − 1/xh ∈ V . But then (xh − xg)/xg+h ∈ V . However, v((xh − xg)/xg+h) <
0, and this is a contradiction.

We end the paper with an analog to Corollary 3.4.

Corollary 5.5 Let V be a valuation domain with quotient field K and suppose that

K/V is a Jónsson module over V . If M is a V -module such that V ⊆ M ( K, then M is

HS over V .

Proof Assume that V is a valuation domain with quotient field K and that K/V is a

Jónsson module over V . By Proposition 5.2, V is an HS domain. Now suppose that

V ⊆ M ( K. Then M/V is a proper submodule of K/V . Since K/V is Jónsson,

|M/V | < |K/V | ≤ |V |. It follows from Theorem 3.3 that M is HS over V .
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