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In this paper, we analyse the instability of a thin-film suspension of micro-swimmers
subjected to an attractant gradient. The imposed attractant gradient introduces a
preferential swimming direction for the swimmers, resulting in an anisotropic orientation
field. By modelling the swimmers as force dipoles, the study by Kasyap & Koch (Phys.
Rev. Lett., vol. 108, issue 3, 2012, 038101, J. Fluid Mech., vol. 741, 2014, pp. 619-657)
found an instability arising from the coupling between the active stress associated with
an anisotropic orientation field and perturbations to the swimmer density field. In this
work we begin by presenting a stability analysis that calculates the modification of this
instability in the presence of an interface. We then detail the presence of a new mode
of instability that arises solely from the deformation of the interface mediated by the
active stress in the suspension. The resulting hydrodynamic instabilities in the system
are observed to be sensitive to the direction of the attractant gradient relative to the
interface. Furthermore, we show that the coupling between the two modes involving a
jump in interfacial viscous stresses and normal stress differences within the suspension
allows for an instability to manifest in a suspension of chemotactic pullers, previously
thought to be unconditionally stable. We then use a long-wave theory to write down a
set of nonlinear equations governing the film evolution. The numerical solution of the
system using the long-wave theory aids in explaining the mechanism associated with the
instability in addition to validating the predictions from the linear stability theory.
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1. Introduction

Theoretical and experimental investigations have revealed the existence of flow
instabilities in active suspensions of fluids (Ramaswamy 2010; Koch & Subramanian
2011). Unlike passive particles in fluids, active suspensions contain motile organisms
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Figure 1. A qualitative picture of the dipole hydrodynamic field of (a) pusher type swimmer such as E. coli
or B. subtilis and (b) puller type swimmer such as the algae C. reinhardtii.

capable of individual motion. The cell body of each swimmer contains one or more
flagella or cilia which act like motors and churn the surrounding fluid to generate a
propulsive force. The Reynolds number for a swimmer such as Escherichia coli, which
is approximately 7 wm long, in an aqueous medium with a swimming speed of 30 um s~

is ~O(10™%). The negligible magnitude of inertial forces associated with the swimmer
requires that the propulsive force generated by the rotating flagella or cilia be balanced by
the drag on the cell body (Berg 2008). The motion of a slender micro-swimmer through
the fluid thus creates a hydrodynamic disturbance field similar to a force dipole on length
scales much larger than the individual swimmer (Spagnolie & Lauga 2012). The cell
structure, the number of flagella or cilia on the cell body and their arrangement collectively
dictate the structure of the flow field around an individual swimmer.

The dipole hydrodynamic disturbance field is also observed in other bacteria
such as Bacillus subtilis and in algae like Chlamydomonas reinhardtii. The far-field
hydrodynamics of certain swimmers such as E. coli and B. subtilis involves drawing in
fluid from the sides and expelling it along the longitudinal axis connecting the head and
tail (figure 1a). They are hence classified as pusher-type swimmers due to the extensile
nature of the resulting flow. In the case of C. reinhardtii, the synchronous beating of
the twin flagella results in an inverse effect, wherein the fluid is drawn in parallel to the
cell body and expelled along the sides of the swimmer (Guasto, Johnson & Gollub 2010;
Garcia, Rafai& Peyla 2013), as shown in figure 1(b). These swimmers are in turn termed
as pullers, due to the contractile flow field that they generate through their motility. The
difference in the sign of the dipole associated with the swimmer aids in classifying them as
pusher- and puller-type swimmers. The magnitude of the dipole disturbance field created
varies based on the cell structure and swimming speed of the organism.

Swimmers tend to travel along fairly straight paths for long intervals of time, punctuated
with short intervals involving a sudden change in their orientation. The sudden change
is a consequence of one or more of the rotating flagella or cilia undergoing a switch
in the direction of rotation. The resulting sharp change in orientation of the swimmer
is due to the entire bundle of flagella or cilia coming undone and the swimmer itself
coming to a momentary stop. This phenomenon is termed as tumbling (Berg 2008) and
is a characteristic of some micro-swimmers which allows them to sample the surrounding
fluid searching for sustenance. For long times this run—tumble behaviour of the bacterium
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is reminiscent of a random walk and gives rise to a diffusivity that is purely athermal in
nature. Experiments by Rivero er al. (1989) and Chen, Ford & Cummings (2003) have
revealed the preferential swimming of these organisms in a nutrient-rich medium, wherein
the organism biases its random-walk by reducing its tumbling frequency when swimming
along the attractant gradient. The work by Kalinin et al. (2009) has further revealed that
the magnitude of the preferential swimming velocity is dependent on the gradient of the
logarithmic attractant concentration.

The preferential swimming along the attractant gradient plays a crucial role in dictating
the instability of an active suspension. For example, in the experiments by Dombrowski
et al. (2004) and Tuval et al. (2005) involving bioconvection is a sessile drop, the aerotactic
bacterium B. subtilis exhibits a preferential swimming towards the oxygen-rich interface.
The observed large-scale coherence is attributed to the hydrodynamic interactions
associated with the swimmer motility influenced by the interplay between aerotaxis and
buoyancy. Tuval et al. (2005) have gone on to showcase the formation of a hydrodynamic
vortex that aids in transporting oxygen from the interface into the drop through numerical
simulations by modelling the interplay between aerotaxis and buoyancy effects using
the Keller—Segel equations (Keller & Segel 1970). The simulations and experiments
from Tuval er al. (2005) are of particular interest, as they yield valuable information
pertaining to the orientation distribution of swimmers within the drop through the
computed attractant field. Sokolov et al. (2009) performed experiments on thin liquid films
containing suspensions of the aerotactic B. subtilis to determine a critical film thickness for
the onset of collective motion. As a consequence of the preferential swimming, a clustering
near the oxygen-rich interface resulting in the development of depletion layers is seen in
both Tuval et al. (2005) and Sokolov et al. (2009).

Simha & Ramaswamy (2002) derived the hydrodynamic equations for a collection of
self-propelled particles using general continuum principles and obtained an expression
for the active stress — proportional to a dyadic product involving the orientational
order parameter field. The continuum level modelling of an active suspension has been
attempted by Saintillan & Shelley (2008) and Subramanian & Koch (2009) by using
a Smoluchowski-type equation to describe the evolution of a probability distribution
function £2 (x, p, t), at a position x and orientation p of an active particle, associated with
the instantaneous micro-structure of the suspension. The active stress in a suspension of
swimmers was modelled by drawing motivation from the formulation given by Pedley &
Kessler (1990), by building on the earlier studies on suspensions of passive anisotropic
microstructures (Batchelor 1970; Hinch & Leal 1972). Subsequent works involving
nonlinear simulations and stability calculations in the long-wave regime by Saintillan
& Shelley (2013) have revealed the coupling between the active stresses within the
suspension and the orientation field of the swimmer. Lushi, Goldstein & Shelley (2012)
introduced an attractant within the system with its concentration field governed by an
advection—diffusion equation. The linear stability of such a system was probed and the
nonlinear evolution equations were solved with the inclusion of the effect of local gradients
in attractant concentration on the orientation distribution of the swimmers. The more
recent work by Lushi (2016) further accounts for the correlations associated with tumbling
events of swimmers and probes the effects of anisotropy of the swimmer orientation field.

Motivated by the instability observed in the experiment performed by Sokolov et al.
(2009) involving B. subtilis in a suspended thin film, Kasyap & Koch (2012) presented
the formulation for an active stress-driven instability with an imposed attractant gradient.
They showed through a long-wave stability calculation that the preferential swimming
along the attractant gradient results in an anisotropy in the active stress that drives an
instability in a suspension of pusher-type swimmers. The subsequent work by Kasyap &
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Koch (2014) further probes the stability characteristics in the finite wavenumber regime.
We have recently extended the work by Kasyap & Koch (2014) by considering the effects
of auto-chemotaxis Murugan & Roy (2022), wherein the evolution of the attractant field is
dictated by effects of convection, diffusion and attractant secretion by the swimmers. We
found that the self-signalling among swimmers through the secretion of an attractant is
capable of generating an instability in a suspension of pullers, contrary to the calculation
by Kasyap & Koch (2012, 2014) wherein it is shown that suspensions of pullers are
unconditionally stable.

The ubiquitous nature of collective behaviour such as biofilm formation and swarming,
along with their increased relevance near interfaces has drawn much attention to confined
active matter suspensions. The work by Angelini ez al. (2009) involving B. subtilis revealed
the formation of surfactant waves which aid in the spreading of the bacterial film. Seminara
et al. (2012) showed through experiments and theory that the presence of water-consuming
extra-cellular matrix (ECM), typically seen in bio-films, creates an osmotic flux resulting
in the inflow of water from the agar substrate which drives the film spreading. Both studies
eliminate the possibility of the swimmer motility contributing to the film spreading. On
the other hand, Sankararaman & Ramaswamy (2009) have formulated the flow dynamics
for a thin film of polar self-propelled particles to showcase the instability arising as a
consequence of the coupling between the active stress originating from the swimmer
motility, the polarity and the free interface. Joanny & Ramaswamy (2012) described the
spreading of an active droplet driven by stresses generated by the self-propelled particles
contained within the drop. In both cases, the shape of the interface plays the role of
setting up the inhomogeneities in the orientation field which results in the generation of
an active stress that aids the droplet or film spreading. More recently, Alonso-Matilla &
Saintillan (2019) showcased an instability associated with the interface in a polar active
film containing a suspension of pushers.

The literature on swarming and biofilm modelling is quite extensive and various
approaches have been used to model the physics of the system. The papers by Seminara
et al. (2012) and Trinschek, John & Thiele (2016) depict the spreading of a film forced
by osmotic gradients that develop due to the presence of the ECM seen in biofilms.
Tam et al. (2019) proposed a model with contributions to the stress arising from the
non-divergence free nature of the velocity field due to the effects of cell proliferation and
death. Bees et al. (2000, 2002) modelled the spreading as a consequence of wetting, with
the inclusion of van der Waals forces, which also mathematically serves to regularize the
singularity that forms at a no-slip boundary. Fauvart et al. (2012) showed through both
theory and experiments the swarming behaviour of Pseudomonas aeruginosa driven by
surface forces. The recent work by Kotian et al. (2020) includes the effects of van der
Waals forces, in addition to solving an evolution equation for the swimmer density field
and accounting for its effects on the surfactant concentration field. Kotian er al. (2020)
wrote down a free energy functional pertaining to the long-range van der Waals forces
and the surface forces generated by the Marangoni stresses in the system. Subsequent
minimization of the free energy functional, to generate the governing equations of the
system, has also been done by Trinschek et al. (2017), with an added contribution to
the free energy arising from the mixing of solute and solvent phases. Trinschek, John
& Thiele (2018) has also explored the combined effects of both surface forces and wetting
on the phenomenon of spreading. The recent study by Srinivasan, Kaplan & Mahadevan
(2019) explores the physics of both swarming and biofilm propagation. They show that the
swarming behaviour is prominently driven by capillarity and relies on wetting agents to
generate an osmotic flux, while biofilm propagation relies on the osmotic flux generated
by the ECM.
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Attractant gradient

Figure 2. Schematic of the thin-film problem with an attractant gradient pointed towards the interface. The
swimmers bias their random walk so as to align their mean swimming orientation along the gradient. The
velocity field within the film is represented as # = (u, w). The normal and tangential unit vectors associated
with the interface are represented by 7 and 7.

The current work aims to explore the coupled physics of the active stresses present in
a suspension of swimmers and the effect of having a free interface through the use of
a continuum formulation. By formulating the problem of a thin-film flow driven by the
active stresses in the system, we are particularly interested in the evolution of the free
interface in response to the active stress in the system. We predict that the anisotropy in
the active stress, that results from the imposed attractant gradient, would create a jump in
viscous stress at the interface that drives a localized shear flow. In addition, by drawing
motivation from the rich literature on the long-wave nonlinear evolution of thin films (Oron
& Rosenau 1994; Oron, Davis & Bankoff 1997; Craster & Matar 2009), using a long-wave
lubrication theory we wish to write down a coupled set of nonlinear equations governing
the film evolution driven by the active stresses in the system.

In the current study, in § 2 we start by formulating the thin-film problem with an imposed
attractant gradient. The presence of the free interface results in symmetry breaking and
leads to distinctly different stability characteristics for pushers and pullers. In §3 we
present a linear stability theory for the thin-film active suspensions, with the flow within
the film being driven by a combination of the normal stress difference in the suspension,
and the jump in normal and tangential stresses at the interface. We have added elaborate
toy problems that discuss in detail the physics brought in by each of these stresses in
Appendices B, C and D. In § 3.1 we characterize the instability of the coupled system in
the long-wave regime analytically using a regular perturbation expansion. After validating
these results numerically using a finite wavenumber numerical solver, in § 3.2 we probe the
stability of the system in the finite wavenumber regime. Subsequently, in § 4 we formulate
a long-wave theory for the film evolution. A coupled set of nonlinear equations governing
the film height and the gap-integrated number density are solved numerically. Aside from
validating the growth rates of the perturbations from the results obtained in the linear
theory, we use the results from the numerical simulations to further explain the mechanism
of the two modes of instability.

2. Problem formulation

The system under consideration involves a thin film of bacterial suspension subjected to
an attractant gradient aligned along the z-direction, as shown in figure 2. At the continuum
level, the film hydrodynamics is incompressible and governed by the Navier—Stokes
equation

V.eu=0, (2.1)
955 Al1-5
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3
p(a—ltl—i-u-Vu) =—Vp+uViu+V.T5 (2.2)

Here, u is the velocity field, u is the fluid viscosity and T represents the stress on the
fluid arising as a consequence of the hydrodynamic field corresponding to the multitude of
swimmers within the suspension. The active stress T2 can be written as an orientational
average of the stress contribution from each individual swimmer (Subramanian & Koch
2009)
B 2 1

T (x,t) = —Cun UL /.Q(x,p, 1) (pp — 5) dp, 2.3)
where C represents the non-dimensional dipole moment, Uy is the swimming speed of
the organism, L is the length of the swimmer and £2(x, p, t) represents the probability
distribution function associated with finding a swimmer at a location x having an
orientation p. The distribution §2(x, p, ¢) for perfectly isotropic tumbles is governed by
a kinetic equation as given by Subramanian & Koch (2009)

82 , 2 1 [
—-l-V-[(USp—Fu)]—I—V-(p.Q)—I—(———/—dp)=O, (2.4)
ot T 4t T

where 7 is the persistence time associated with the run and tumble motion of an individual
swimmer. At length and time scales much larger than Uyt and 7, assuming uncorrelated
tumbles, the kinetic equation reduces to a balance between swimmers tumbling out and

into a given orientation
2 1 2
——=— | —dp)=0. (2.5)
T 4n T

The above integro-differential equation has been solved by Subramanian, Koch &
Fitzgibbon (2011) through the decomposition of the probability distribution function into a
spatio-temporally varying number density field n(x, #) and an orientation dependent f (p),
2(x,p,t) = n(x, 1) f(p). The functional form of the biphasic tumbling frequency )
as established by Chen et al. (2003) and Rivero et al. (1989) can be linearized in the limit
of weak chemotaxis, characterized by & = x U; G < 1. Here, x is the sensitivity of the
bacterium to the presence of an attractant gradient and G indicates the strength of the
attractant gradient. This linearized form of the biphasic tumbling frequency is used to
arrive at the following expression for f(p):

1 1
E[l%—(p-g—z)f] ifp-g>0,

=19 : (2.6)
H[l_zg] ifp-g<0.

Here, g = gZ and g = £1 dictates the direction of the attractant gradient with respect
to the interface and Z is the unit vector along the vertical direction and points towards
the interface. For films of sufficiently small thicknesses, the dynamics of the attractant
transport is diffusion dominated and gives rise to a linear variation of the attractant across
the film gap (as shown in Appendix A of Kasyap & Koch 2014). This gives rise to a
constant value of the attractant gradient within the domain. The distribution function can
be used to determine the active-stress tensor which is related to the single particle stresslet
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(S) (Batchelor 1970)

- -
-3 0 0

T8 =nS, where S = —%MUSLzé 0 _% 0. (2.7
2
0 0 2

Taking a zeroth moment of the kinetic equation (2.4), yields an advection—diffusion
equation for the conservation of the density field n(x, #)

on
ot

where Uy = % U & is the mean velocity of the swimmer along the attractant gradient and
D is the athermal diffusivity arising from the run and tumble motion of the swimmers.
The velocity field pertaining to the fluid flow within the film is represented by u = (u, w)
(see figure 2). Detailed derivations of the above continuum equations can be found in
Kasyap & Koch (2014). The boundary conditions corresponding to the above system
comprise of no-slip, no-penetration and no-flux conditions at the bottom wall (z = 0)

+V-[(gUo+un—DVn]=0, (2.8)

u=20, (2.9a)
w =0, (2.9b)
on
D— — Upgn = 0. (2.9¢)
9z

The boundary conditions at z = h, involve the kinematic equation for the height evolution,
the no-flux condition for the density field

w = h; + uhy, (2.10a)
on on

D (— — hx—) — Upgn =0, (2.10b)
az 0x

and the continuity of normal stress and tangential stress

AT -h=—yV.h

ow ou ow 1

— pam) =2 —(1—h2>—h ary oy

= P~ Pam} “{az x x<8z+ 8x>} T+ 2 (2.10¢)
Y hxx _ |28 B}
S {th”+TZZ 1+
n-T-1=0

u ow ow  du (2.10d)

— ”(a_z+§> <1—h§>+2uhx(a—z—a> =(T§-T§)hx,

where y is the surface tension at the film-air interface, 71 and 7 represent the unit normal
and tangent vectors at the interface, and T represents the total stress in the suspension

1 . 1
= ——[-h,1], t=———[1.h], T=-Vp+uViu+V.TE
R+l JR+1 T
(2.11a—c)
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In the above equations, h; and h, depict the temporal and spatial derivative along
the horizontal direction of the interface height. Equations (2.1), (2.2) and 2.8 are
non-dimensionalized using the following scaling, with an asterisk * used to indicate the
non-dimensional variables
D
T e e T )

H H a 70 a 70 H? QSzz(m

and the non-dimensional numbers — Péclet (Pe), capillary (Ca), Schmidt (Sc¢) and Reynolds
(Re) numbers

_ UoH v _ pUoH

Pe=—— pB= §c<n>L2H Ca= g P g . (213a-e)

D 8 14 pD 0
with B being an additional non-dimensional parameter that can be viewed as the ratio of
bacterial stress to the viscous stress (Kasyap & Koch 2012). We would like to mention
the presence of a typographical error in the definition of g in Murugan & Roy (2022).
Here, (n) is the average concentration of swimmers in the suspension. The equations can
be written in the following non-dimensional form with the asterisk * being dropped for the
sake of convenience

ou Iw
=+ . 0. (2.14a)
1 ou + Re (u% + w%> = —ﬁa—p Bu % pon (2.14b)
Sc 0t ax 9z ax  0x2 972 3 ox’
la—W+Re (ua—w—l-wa—w) = —ﬂa—p 82—W ({)Z—W—%a—n (2.14¢)
Sc ot ax 0z dz  x2  9z2 3 3z
L dn  Bun) dwn) = dn ia_zn B iaZ_n o 2.14d)

Pe 3t dx 9z § 9z  Pedx? Pedz?

The value of surface tension at an air—water interface is y ~ 71.97 mN m~'. The
mean velocity along the attractant-gradient is typically 10 % of the swimming speed,
Up~3 wm s~ for B. subtilis and Uy ~ 10—20 pm s~ ! for C. reinhardtii (Guasto
et al. 2010). The motility of the micro-organisms in the suspension and the nature of the
ambient medium where these organisms are present (such as the presence of biofilms)
typically gives rise to values of viscosity in the range of u ~ 107210 Pa s (Horvat
et al. 2019). This yields a capillary number in range of Ca ~ 10~’—10"!. The typical
diffusivity of a bacterial swimmer such as E. coli is D ~ 1071 m? s~! (Brenner, Levitov
& Budrene 1998). Thus the Schmidt and the Reynolds numbers for the system turn out to
be, Sc = 0(10%) and Re = O(10~%), respectively, which allows us to neglect the inertial
terms in the momentum equation. For a film thickness of H ~ 100 pm (as seen in Sokolov
et al. 2009) and a mean swimming speed of 3 um s~! (the mean swimming speed along
the attractant is typically 10 % of the swimming speed), the Péclet number turns out to
be Pe ~ 3. The puller-type swimmer C. reinhardtii has a swimming speed in the range
100200 pwm s~! (Guasto et al. 2010) and the corresponding value of Pe for such a
suspension would lie in the range 10-20. The value of the dipole moment for an E. coli
bacterium is C =~ 0.57, whereas C = 4.11 for C. reinhardtii (Subramanian & Koch 2009;
Guasto et al. 2010). The length of the swimmer cells are L ~ 12 um and L &~ 19.5 pm.
For an average concentration of swimmers, (n) ~ 2 X 10" mm~! (Sokolov ef al. 2009),
the value of 8 ~ 60 for E. coli and B ~ —1170 for C. reinhardtii.
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Experiments by Sokolov et al. (2009) involving an aerotactic suspension of bacteria in
a quiescent liquid film revealed an instability, wherein they observed the emergence of
large-scale convective motions beyond a critical film thickness. Kasyap & Koch (2012)
modelled the observed hydrodynamic instability by considering an active stress driven
flow within a channel, with the anisotropy in the stress field arising from the biased random
walk of the individual swimmers. In the current work, we replace the top wall with a free
interface. The presence of the free interface results in top—bottom symmetry breaking and
leads to different stability characteristics with an inversion in the sign of the imposed
attractant gradient. The non-dimensionalized boundary conditions at the bottom wall are

u=0, (2.15a)
w=0, (2.15b)
on
— — Pegn =0. (2.15¢)
az

Similarly, the non-dimensionalized boundary conditions at the interface (z = h) are

1
w = —h; + uhy, (2.16a)
Pe
on on
— —Pegn+h,— =0, (2.16b)
0z 0x

and the continuity of normal stress and tangential stress

) ) V.h
nT-n=—
Ca
ow u ow 1
- 2l —(1=-m)=n | —+—
= B{p — pam} {8z< x) "(az+ax)}1+h§’ (2.16¢)
B 1 278 B 1 2 1
- T T}—=— W —2)——,
Ca (1+ h2)372 {ire+ 12 i L e gy
n-T-1=0
u ow 5 ow u _ B B _ (2.16d)
= (G+50) (=) +on (G = 57) = (R~ 1) = g

The above stress boundary conditions highlight the role of active stresses at the interface.
The viscous tangential stresses are not zero at the interface; they are proportional to the
‘active’ normal stress difference (NP = Tg — Tg). This modification is reminiscent of
the Marangoni stresses due to surface tension gradients (Leal 2007). One must note that
suspensions of passive non-Brownian particles also exhibit normal stresses (Guazzelli
& Pouliquen 2018). Contrary to the scenario presently under consideration, the normal
stresses for the passive case would only exist in the presence of a background shear
flow, depending on the local shear rate. Therefore for particle-laden free surface flows,
normal stresses would vanish at the interface due to the stress-free boundary condition
(Dhas & Roy 2022). Thus, microorganisms’ biased swimming due to an attractant leads
to an anisotropic stress, consequently altering the tangential stress balance. We will show
later, in Appendix C, that this modification to the tangential stress boundary condition is
responsible for the new interfacial instability.
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3. Linear stability analysis

To determine the stability characteristics of the system, we linearize the equations using a
normal mode form

(u, w, p,n, b} = 10,0, p(2), 7(2), 1} + {a(z), W), pQ), i), il} explike +o1).  (3.1)

As is typical in a linear theory, the perturbation amplitudes are assumed to be small
compared with the base state variables of the system

i pgp ikl wgl hgl (3.2a—e¢)

The base state is a quiescent suspension, with the number density distribution being
governed by a balance between the flux associated with the preferential migration along
the attractant gradient and the diffusive flux arising from unbiased random walk of the
swimmers. The base state pressure field is thus a function of the local number density

_ gPeester  _ 2_
A= gr o P pam = 3 (3:30.)

The equations governing the perturbation are

kit + Div = 0, (3.4)

—Bikp + {D2 _ k2} i+ gikﬁ —0, (3.5)

—ﬂDﬁ+{D2—k2}Vu—?Dﬁ=o, (3.6)

ﬁ+ikrm+1>(fvﬁ)+gDﬁ—i{DZ—kZ}ﬁ:o, 3.7)
Pe Pe

where D = d/dz represents the derivative along the vertical direction. Eliminating & and
D, the momentum equations reduce to a form that is reminiscent of the Orr—Sommerfeld
equation, but devoid of inertia and being forced by an active stress arising from a gradient
in the number density

[D4 — 22D + k4] W+ BK2Di = 0, (3.84)
[DZ _gPeD— (o + kz)] it — g Peiiv = 0. (3.8b)

Similarly the linearized boundary conditions are

D? v + kKW = Bk*nh
. k*h
w=0 D3V — 32D + ki = —
Dv=0} atz=0 Gl =1, (39
Dn—gPen=0 G—h:ﬁ;
Pe
Dn—gPen=0

The perturbed fluid flow described by (3.8)—(3.9) is driven by a combination of the stresses
generated by swimmer density and interface perturbations to the thin-film suspension.
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The swimmer density perturbations give rise to an anisotropic active stress by (3.8)—(3.9)
throughout the entire suspension that results in the creation of a normal stress difference.
The instabilities resulting from this mode can be studied by perturbing solely the swimmer
density field as seen in Kasyap & Koch (2012). In Appendix B we detail the effects of a
wall with slip on the stability calculation by Kasyap & Koch (2012), wherein we find that
the hindrance to flow offered by a no-slip wall serves to dampen the instabilities when
compared with a slippery wall.

The perturbations to the interface gives rise to a jump in the viscous stress across the
interface resulting in a local shear flow. This mode of flow instability can be studied by
perturbing solely the interface and not the swimmer density field, as shown in the toy
problem in Appendix C. However, these two toy problems are only capable of destabilizing
suspensions of pushers. The flow instability seen in suspensions of pullers (discussed
in the following §§ 3.1 and 3.2) arises from the coupling between the swimmer density
and interface perturbations, wherein the perturbations to the swimmer density field give
rise to a jump in the normal stress across the interface (see the normal stress balance in
(3.9)). This coupling is better analysed in detail through the toy problem formulated in
Appendix D wherein we isolate the role of density perturbations in creating a jump in
normal stress at the interface. In the following subsection we show that the signatures
associated with these three toy problems that can be observed clearly through a long-wave
stability calculation of the system.

3.1. Long-wave stability analysis of the system

In this section we will carry out a long-wave linear stability analysis of the system. By
perturbing the system using long waves (k < 1) it is possible to asymptotically solve
the governing stability equations and extract some physical insights into the mechanism
associated with the instabilities observed in the system. Thus, a perturbation expansion of
the system variables is performed by treating (k) as a small parameter

W= o + K2y + KMo + .. (3.10a)
it = g + K2iip + K*ig + ..., (3.10b)
o =09+ Koy +kos+.... (3.10¢)

The interface height & has not been expanded as a series in k%, due to the results of the
stability calculation being invariant to such an expansion, as has been shown in Smith
(1990). As (3.8) and (3.9) are comprised of only even powers of the wavenumber k, it is
sufficient to consider only even powers in the perturbation expansion above. The equations
at O(1) are

Dy =0, (3.11a)
D%y — g Pe Dty — opig — g Pe” iwg = 0, (3.11b)
with boundary conditions

DXy =0

wo =0 D3y = 0
Dwy=0¢ atz=0 ooh [ Az=1 (3.11¢)

Dng — gPeng =0 e MO
Dny — gPeng =0
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The solution reveals the absence of flow at O(1) of the perturbation expansion with an
exponentially varying density profile

- gPeegPeZ

wo = 0, fl() = moggl’e—_l’ oy = O, (3120)

where 71 is the gap-integrated number density 1. The equations at O(k?) are

Dy + BDivg = 0, (3.13q)
D%y — g Pe Divy — oW — o — g Pe? iiiip = 0, (3.13b)
subject to the boundary conditions
D, = Bih
Wy =10 D3y + Biig = h/Ca
Dwy=0; atz=0 oh vatz=1. (3.14)
Dy — gPeny =0 P_e=W2
Dny — gPeny =0

A modified capillary number, Ca = Ca /K%, is defined to be an O(1) quantity. The
analytical solution of the above system yields a quadratic equation governing the growth
rate 0. We relegate the detailed expressions of velocity, number density and growth rate
to Appendix A. The stability characteristics reveal a new mode of instability associated
with the interface and a modification to the previously characterized density mode by
Kasyap & Koch (2012). The positive and negative values of 8 correspond to the pusher-
and puller-type swimmers that have been approximated as extensile and contractile force
dipoles respectively. Pullers do not trigger an instability through the density mode detailed
by Kasyap & Koch (2012) or by the decoupled interface mode (no number density
perturbations) discussed in Appendix C. For the coupled system, we find a new result,
a suspension of pullers is unstable to long-wave perturbations at finite and large Pe for

g = +1.
The neutral curves in the second quadrant of figure 3 pertaining to a suspension of
pushers (B8 > 0) with g = —1, displays a switch in the mechanism of instability from

an interface mode to a density mode with increasing Pe. The system is strongly coupled
and ascertaining the mechanism of the instability of an individual mode is done by
drawing a comparison with the velocity profiles obtained in the toy problems discussed
in Appendixes B and C. The velocity field of a density mode displays a flip in the sign
of the horizontal velocity u across the film height, whereas the interface mode velocity
profile is reminiscent of a flow generated by applying a shear stress at the free interface.
The transition from the interface mode to the density mode is thus observed by tracking
the velocity field associated with the unstable mode as shown in figure 4. At low values
of Pe, the uniform distribution of the density field creates a jump in viscous stress that
drives the interface mode of instability. The solution of the quadratic equation governing
the growth rate, for the asymptote of Pe < 1 yields

1 1 1
O.Im‘erface Mode __ {_,8 - _A} k2P€ + {—gﬁ} k2P€2 4 0(P€3), (3.15)
27 3Ca 4
O.DensityMode — _k2 N {%gﬂ} k2P€2 + 0(P€3)‘ (3.16)
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B Stable oscillatory region 7] Density mode is unstable [l Oscillatory instability of both modes

Figure 3. Regions of stability from a long-wave theory for a suspension of pushers (8 > 0) and pullers
(B < 0). The first and fourth quadrants pertain to a system with an attractant gradient pointed towards the
interface (g = +1), while the second and third quadrant correspond to the system with the gradient pointed
towards the bottom wall (g = —1) for (a) Ca = 0.1, (b) Ca = 1 and (¢) Ca = 10.

At leading order, this yields a critical activity of § =2/(3 EE) for the onset of an
instability. At large Pe, for g = —1, a large number of bacteria succeed in accumulating
near the bottom wall due to the weak diffusive flux in the system. This greatly diminishes
the strength of the interfacial stress which drives the interface mode. Thus, the instability
of the system is plausible only through a density mode, with the active stress generated by
the pusher-type swimmers reinforcing the density perturbation.

The first quadrant in figure 3 corresponds to a suspension of pushers that exhibit
preferential swimming towards the interface (g = +41). This leads to the presence of a
finite number of bacteria near the interface regardless of the strength of diffusion flux
in the system. At small Pe the interfacial stress is strong enough to drive an instability.
The critical activity for the instability is independent of the direction of the attractant
gradient (g) for Pe < 1, as is seen from (3.15). With increasing Pe, the strength of the
interfacial stress is amplified due to the increasing number of swimmers near the interface.
In addition, the active stress associated with the pusher field becomes significant with
increasing Pe, as the weak diffusive flux fails to dampen the density field perturbation.

The fourth quadrant in figure 3 corresponds to a suspension of pullers with g = +1. The
contractile nature of the puller velocity field makes it stable to perturbations associated
with the density field as seen from Kasyap & Koch (2012, 2014). It can also be seen from
Appendix C (C3) that a suspension of pullers (8 < 0) is stable to perturbations associated
with the interface. In the coupled system, the hydrodynamic field arising from the active
stress strives to reinforce the interface perturbations, whereas the interfacial stress in the
case of pullers drives a flow that strengthens the density perturbations, rendering the
coupled system unstable. This mechanism associated with the instability is further verified
when looking at the nonlinear long-wave simulations for the film evolution in § 4.2.

The system consisting of a suspension of pullers with g = —1 is unconditionally stable
as seen from the third quadrant of figure 3. The coupled dynamics of both the interfacial
and active stress is required for the instability of a suspension of pullers. In this system
configuration, the active stress is severely weakened in the low Pe regime of strong
diffusion, wherein gradients in the density field are strongly suppressed. The finite and
large Pe regime involves the migration of swimmers towards the attractant-rich bottom
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Figure 4. Velocity fields for Ca = 1. Points A, B, C and D correspond to pusher-type swimmers with g = 10
and Pe = 10, 3.5, 1.0 and 5 respectively. Point E corresponds to Puller-type swimmers with 8 = —10 and
Pe = 5. In the plots of the velocity fields pertaining to the two modes in the problem, the red and green curves
depict the velocity field associated with unstable and stable modes, respectively.

wall, thus weakening the interfacial stress which is dependent on the density field of
swimmers at the interface.

3.2. Finite wavenumber stability characteristics

In the previous sections, we discussed the instability mechanisms of the interface and
density modes using a long-wave theory. We will now probe the stability of a chemotactic
thin film to disturbances of arbitrary wavelengths, analysing the modification of both the
instabilities. Kasyap & Koch (2014) used a spectral method to numerically probe the
stability characteristics at finite wavenumber (k), for the active suspension system in a
channel. They employed basis functions originating from the homogeneous solution of
the equations in (3.8) subject to boundary conditions associated with the channel. In the
current problem, the free interface makes the calculation of a similar set of basis functions
tedious. We employ Lagrange polynomials with the domain being discretized using the
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Figure 5. Validation of long-wave theory with the numerical calculation for Pe = 5, 8 = 100, Ca = 107%,
k=0.01.

Chebyshev grid points in the same manner as detailed by Trefethen (2000) to probe the
finite k stability characteristics

N—1 N—1
=Ly, =Y L, (3.17a)
j=0 j=0

where w; and n; are the values of w and n evaluated at the Chebyshev grid points, z; =
cos(jt/N). The spectral solver is validated with the long-wave stability calculation as
shown in figure 5. The solver is then used to probe the stability characteristics at finite
wavenumber.

3.2.1. Pushers (B > 0) with g = —1

The long-wave stability calculation for pushers with g = —1 (figure 4) revealed the
presence of interface and density modes of instability. The interface mode of instability is
stabilized at high values of k as stronger gradients in the interface height end up amplifying
the effects of surface tension. This can be seen from figure 6 which shows the switch in
mechanism associated with the most unstable mode that occurs with increasing k. Figure 7
depicts the change in regions of stability in the k—f plane for various values of Pe.

At low values of Pe a high value of activity (8) is required to trigger an instability
through the density mode (already established in Kasyap & Koch (2012) and Appendix B).
This is due to the strong diffusive flux in the system, which disallows gradients in
the density field as seen in the long-wave calculation. This statement can be inferred
by comparing figures 7(a) and 7(d) which correspond to Pe = 0.1 and Pe = 10.0, and
showcases the absence and presence of finite wavenumber instabilities, respectively. It is
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Figure 6. For a suspension of pushers with g = —1, Pe = 4, 8 = 100 and Ca = 1073, figure (a) depicts the
variation of the growth rate (o) with the wavenumber (k), for the two unstable modes in the problem (red and
blue lines) with an asymptote (dashed black line) providing a comparison with the long-wave theory discussed
in § 3.1. Panels (b,c) depict the velocity field for different values of the wavenumber (k) pertaining to the growth
rates of the two modes displayed in (@), with the in-line numbers depicting the appropriate wavenumber (k)
at which the eigenfunction is generated. In (b,c) the dashed curves indicate that the mode has stabilized at the
corresponding inline wavenumber.

more readily apparent when looking at the figure 8, wherein the neutral regions are plotted
in the Pe—f plane.

The instability of the system in the small Pe regime is thus primarily dominated by
the interface mode which is particularly strong at low wavenumbers wherein the effects
of surface tension are diminished. The subsequent transition wherein instabilities appear
in the finite wavenumber regime as seen in figures 7(b)-7(c) is due to the increased
prominence of the density mode, especially at high values of k& wherein the stronger
gradients in the density field amplify the pusher velocity field and enhance the density
perturbations. Figure 8 displays the regions of stability in the Pe—f plane. In particular,
the lack of instabilities in the large k regime, for small and finite Pe numbers be observed
from figure 8(d).

3.2.2. Pushers (f > 0) with g = +1

The attractant gradient pointing towards the interface causes a finite number of bacteria
to be present at the interface regardless of the strength of diffusion in the system. The
interface mode is driven by the jump in viscous stress and is proportional to the density of
swimmers at the interface. At small Pe the regime is diffusion dominated and the effect of
preferential swimming arising from the direction of the attractant gradient is negligible.
The interfacial stress varies as ~O(1). The neutral curves corresponding to low Pe in
figure 9 show that the critical activity 8 required for the onset of instability is lower in the
long-wave regime. This is consistent with the characteristics of the interface mode which
stabilizes at finite wavenumber due to surface tension effects. At moderate and large Pe,
the diminished effect of diffusion allows for a large number of swimmers to accumulate
near the interface. The interfacial stress varies as ~O(Pe) for large Pe which explains the
reduction in the critical value of § for the onset of instability as seen in 9. Furthermore,
gradients in the density field become prominent owing to weak diffusion thus allowing
the active stress to further attenuate the interface perturbations. Figure 10 reinforces this
result as it is clearly seen from the Pe—f plane that the large Pe limit becomes unstable at
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Figure 7. Neutral curves in the k&~ plane for pushers with g = —1 and Ca = 103 for (a) Pe = 0.1,
(b) Pe = 1.0, (¢) Pe = 4.0 and (d) Pe = 10.0.

much lower values of activity regardless of the value of k. The upward shift of the neutral
curves with increasing k is indicative of the increasing strength of surface tension at finite
wavenumber.

3.2.3. Pullers (B < 0) with g = +1

Through the long-wave stability calculation in § 3.1 and the toy problem formulated in
Appendix D, it was shown that the coupling between the perturbations applied to the
swimmer density field and the interface height is crucial in destabilizing suspensions of
pullers. The stability calculation for suspensions of pullers involving finite wavenumber
perturbations reveal a similar trend, wherein the dampening of perturbations associated
with either the swimmer density field or the interface height is sufficient to stabilize the
system. This result can be seen observed from figure 11, wherein the regions of stability in
the Pe—f across different wavenumbers (k) display the universal trend of stabilizing with
decreasing Pe. This is contrary to the behaviour of suspensions of pushers, wherein the
lowering of the strength of diffusive flux in the system, merely serves to at best switch the
mode of instability.
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Figure 8. Neutral curves in the Pe—f plane for pushers with g = —1 and Ca = 1073 for (a) k = 0.04,
(b) k=04, (c) k=1.0and (d) k = 8.0.
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Figure 9. Neutral curves in the k—g plane for pushers with (g = +1) and Ca = 103 for (a) Pe = 0.1,
(b) Pe = 2.0 and (c) Pe = 6.0.
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A similar phenomenon occurs at large wavenumbers wherein the effects of surface
tension are strong enough to dampen the perturbations to the interface, consequently
stabilizing the suspension as a whole, as shown in figure 12. Figures 11 and 12 together
showcase that the coupling between density and interface perturbations is the driving
mechanism for the instability even at finite wavenumbers.

To further understand the mechanism associated with the instability, it is necessary to
look at the evolution of the system beyond the purview of a linear theory. In the next
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Figure 10. Neutral curves in the Pe—g plane for pushers with (¢ = +1) and Ca = 1073 for (a) k = 0.1,
(b) k=3.5and (c) k = 8.0.
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Figure 11. Neutral curves in the Pe—pg plane for pullers with g = +1 and Ca = 1073 for (a) k = 0.04,
(b) k=0.4and (c) k = 2.0.
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Figure 12. Neutral curves in the k— 8 plane for pullers with g = 41 and Ca = 1073 for (@) Pe = 0.5,
(b) Pe = 2.0 and (c) Pe = 6.0.

section, a set of nonlinear evolution equations for the system in the long-wave limit are
formulated and solved.

4. Nonlinear long-wave theory of the film

The problem formulation in §§ 2 and 3 made use of a single length scale, the film height
H, to scale lengths along the x and z directions. The essence of developing a long-wave
theory for the film evolution relies on the disparity in length scales in the two directions —
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film height H in the z-direction and wavelength of disturbances A in the x-direction. This
is done through the definition of a film aspect ratio that is assumed asymptotically small
(e = H/L <« 1). Thus, all lengths along the z and x direction are scaled with the film
height H and H /e, respectively. This approximation makes the velocities along the x and
z directions differ by O(e).

The z-momentum equation involves a balance between the hydrostatic pressure and the
active stress, through which we obtain a scaling for the pressure field. The x-momentum
equation involves a balance between the hydrostatic pressure, the active stress, and the
viscous stress. The time scaling is chosen such that the unsteady term from the number
density conservation equation balances the difference between the diffusive and advective
flux of the density field

2
2

X=xH 7*=zeH u* =eUpu w*'=eUpw 1" =te" o (4.1a—e)

With the long-wave scaling arguments presented above the number density and momentum
conservation equations transform as

ia_Zn_ga_n p[18n _1on_3Gm _dmm]_, (4.24)
Pe 972 9z Pe 8x2 Pe 0t ax 0z
p B on 5 [8%u
A =0, 4.2b
|: P + 3 ax] e [8x2 (4.26)
dp  20n S[18%w J[18%w
e i —Z 2 =o. 42
|:8z+38z:|+€ [ﬁ 8z2:|+6 B ox2 (4:20)

The boundary conditions at the bottom wall remain the same as in (2.15). At the interface,
z = h, applying the scaling proposed by the long-wave theory in (4.1a—e), the boundary
conditions in (2.16) transform as

2 h
[ﬂp + Zpn+ 4} + €2 [ﬂphﬁ — —,3nh2 + 2h + e h2] =0, (4.3a)
3 Ca Ca
u Bnh I u n 3| 0w h28u 2 ow _o, (4.3b)
_ n _ _— = .
¢ 0z * 0z € 0x * 0z 0z
w= Feht + uh,, (4.3¢)
) 3
D Pegn|+ || =o. 4.3d)
9z *ox

In the above set of equations, the subscripts ¢ and x indicate the derivatives of the variable
with respect to time (7) and the horizontal coordinate (x), respectively, with Ca = Ca/e> =

nUo/€*y denoting a modified capillary number. For a film aspect ratio e = H/L < 0.1,
the maximum value of the modified capillary number Ca = 1, and is assumed to be an
O(1) quantity.
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4.1. Nonlinear evolution equations

Equation (4.2a) at O(1) subject to the above no-flux conditions gives the form of the
number density

g Pe e8Pe?

_ P
m = C(X, t)eg ez, (44)

n(x, z,t) = m(x, t)

where m = (n(x, t)) is the gap-integrated number density and the variable C(x,t) =

m(x, £)g Pe/ (e8P ¢h _ 1) is defined for the sake of algebraic simplicity. Here, () = foh dz,
denotes a gap integration. Integrating the z-momentum equation (4.2b) at O(1) yields
an expression for the pressure, with the constant of integration being evaluated from the
normal stress balance at the interface (4.3a)

My 2
BCa 3

P, x, 1) =— n(z, x, 1) + Pam- 4.5)

Using the pressure field calculated above, the x-momentum equation (4.2b) at O(¢) yields
a second-order differential equation governing u

3%u Mo 0N
— =|-=-B8—. 4.6
[ = by (4.6)
The above equation can be integrated twice with the constants of integration being

determined from the no-slip boundary condition at the bottom wall (z = 0) and (4.30),
to obtain an expression for the horizontal velocity field u

hxxx ZZ ﬂCX e8 s 1 Peh Pel
— — —h | ge8f€ =+ h Cg ez. 4.7
u = ~ |: Z ze /3 e ( )

The first term in the velocity field captures the effect of surface tension, which tries
to suppress the perturbations to the interface. The second term arises from the pusher
or puller stress on the fluid and is responsible for the density mode observed in the
long-wave stability calculation. The third term is a consequence of the jump in viscous
stress at the interface and is reminiscent of the Marangoni stress seen in Oron & Rosenau
(1994). Having arrived at an expression for the horizontal velocity field, a gap integration
performed on the number density equation (4.2a) at O(€?) yields

a ([ an
m; + — Peun — — ) dz; =0, 4.8)
ax | Jo ax

9 h
hy + — {/ Peudz} =0. 4.9)
ax Jo

X
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Figure 13. (a) The regions of stability and () the variation of the growth rate with Pe for g = 5 for a
suspension of pushers with a negative attractant gradient at Ca = 0.1 and £ = 0.1.

The coupled set of equations are expanded and written using the expressions for n and u
obtained in (4.4) and (4.7)

1 3 [heoh® 1
ﬁ z+ a[ ;)%Zl + EﬂhthCegPeh
IBCX gPeh 2p212
+2g3—Pe3<2+2gPeh+e {g P —2}) —0, (4.10)
| 3 Ch
PR [25—";‘1)3 {2+2gpeh+eg‘°eh(gZPeZhZ—z)}
a g3 Pe
cc
+ —2'63Px3 {4eg”e’1 —1 +ezgpeh(2gPeh—3)}
8 e
h C2 gPeh gPeh __ 1
ﬂ;T; {1 tesPeh (g Pef — 1)} _ cxegTez} —0. (411

4.2. Numerical solution of nonlinear long-wave equations

The coupled long-wave nonlinear system of equations (4.10) and (4.11) are solved
numerically using a fourth-order Runge—Kutta time integrator with the spatial derivatives
being computed using a second-order finite-difference scheme. Of the four possible
combinations involving suspensions of pushers and pullers subjected to an attractant
gradient along the negative or positive vertical axis, there are three configurations that
exhibit long-wave hydrodynamic instabilities according to the linear theory derived in
the previous section. We investigate the evolution of the unstable system through both
mechanisms of instability unearthed in the long-wave linear stability calculation. The
system of pushers subjected to a negative attractant gradient is of particular interest, since
there is a switch in the mechanism of instability of the most unstable mode in the system
with increasing Pe, as shown in figure 13.

4.2.1. Pushers with a negative gradient

The long-wave calculation for a suspension of pushers subjected to an attractant gradient
pointed towards the bottom wall reveals three distinct regions of instability in the Pe—p
plane as seen in figure 13. The intermediate region coloured in orange indicates the
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Figure 14. Nonlinear evolution of interface and pusher density field forg = —1, 8 = 5, Ca=0.1andk =0.1.
Solid lines indicate the interface height i(x, r) and dashed lines the gap-integrated density field m(x, f) for (a)
Pe = 1.0 (interface mode), (b) Pe = 3.0 (interface mode), (c) Pe = 5.0 (density mode), (d) Pe = 5.0 (interface
mode) at different times as indicated in the curve inset.

parameter space where both the modes are unstable. The nonlinear long-wave equations
are solved numerically at the three points A, B and C depicted in figure 13 and the
resulting time evolution of the interface height and gap-integrated density field is plotted
in figure 14.

The instability of the interface mode is driven by the jump in viscous stress which has
been shown to be proportional to the swimmer concentration at the interface. At low values
of Pe, the dominant diffusive flux in the number density conservation works to set up a
uniform distribution of swimmers along the film height and strives to negate the biased
migration of swimmers to accumulate near the bottom wall. This ensures the presence of
a finite number of swimmers at the interface resulting in the generation of the required
interfacial stress which favours the growth of the perturbation as seen in figures 14(a) and
14(b).

In the limit of large Pe, the negligible diffusive flux of the swimmer density field leads to
a large concentration of swimmers accumulating near the bottom wall. This diminishes the
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Figure 15. Streamlines for the pusher density mode for an imposed attractant gradient along the negative
z-direction (g = —1) for 8 =5, Ca = 0.1 and k = 0.1 at time = 140.97.

jump in viscous shear stress at the interface and greatly reduces the growth rate associated
with the interface mode of instability. On the other hand, the lack of diffusive flux fails
to disperse the growing concentration of swimmers driven by the hydrodynamic velocity
field of a pusher. Thus, we observe an instability arising from a mechanism similar to that
detailed by Kasyap & Koch (2012), which we have termed as the density mode (figure 14c).

The streamlines in figure 15 depict the flow draining out from under the trough, for
the case of the density mode (figure 14c¢). Furthermore, it is observed that the effect of
surface tension works to flatten the perturbation to the interface but the more significant
contributions arising from the active and interfacial stress succeed in deepening the trough
in a manner that is reminiscent of a film rupture. The numerical simulations are restricted
by the accuracy of the solver in resolving the field variables and their higher-order
derivatives at the deepening trough of the interface.

4.2.2. Pushers with a positive gradient
By flipping the direction of the attractant gradient for a suspension of pushers, we expect
a similar instability at low Pe since the density profile tends towards being distributed
uniformly across the film depth. Figures 16(a) and 16(b) display the effects of surface
tension in suppressing the waves that form on the interface. Figure 16(c) depicts the
saturation of the growth rate associated with the perturbation. It is interesting to note
that the density field closely shadows the interface evolution. This further supports
the argument that the strong effect of diffusion reduces the effect of clustering of the
swimmers near an attractant-rich boundary and that the variations in the gap-integrated
density field are solely caused by the deformation of the interface.

At finite values of Pe, we have an increasing concentration of swimmers accumulating
near the attractant-rich interface, which serves to strengthen the interfacial stress. The
evolution of the system for finite Pe is depicted in figures 17(a) and 17(b). The perturbation
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Figure 16. Nonlinear evolution of interface and pusher density field for an imposed attractant gradient along
the positive z-direction. Solid lines indicate the interface height A (x, t) and dashed lines the gap-integrated
density field m(x, t) for Pe = 0.1, = 10, k = 0.1 and (a) Ca = 0.01, (b) Ca = 0.001 at different times as
indicated in the figure inset. Panel (c) depicts the growth rate of the perturbations with time.
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Figure 17. Nonlinear evolution of interface and pusher density field for an imposed attractant gradient along
the positive z-direction. Solid lines indicate the interface height i(x, f) and dashed lines the gap-integrated

density field m(x, f) for Pe =5, p =2, k =0.1 and (a) Ca= 0.01, (b) Ca = 0.001 at different times as
indicated in the figure inset. Panel (c) depicts the growth rate of the perturbations with time.

grows unboundedly (figure 17¢) and leads to the divergence of the numerical solution. The
weak diffusive flux in the system fails to suppress the growth of the density perturbation.
Furthermore, the clustering of swimmers near the interface further amplifies the interface
perturbation. These effects can be seen by observing the flow streamlines and velocity
contours displayed in figure 18 which shows that the active-stress-driven flow and the
interfacial stress serve to amplify the interface perturbation. It is for this reason that we
do not observe a saturation of the perturbation growth as seen in the low Pe regime. The
effect of surface tension merely dampens the growth rate but ultimately fails to saturate
the growth of the perturbation.

4.2.3. Pullers with a positive gradient

The instability of a suspension of pullers is special in the sense that although the
interfacial and active stress strive to dampen the interface and density perturbations
respectively, the resultant velocity field ends up amplifying the perturbations to the system.
Figure 19(a) displays the flow streamlines which indicate that the swimmers accumulate
near the minima of the interface. This is aided by the interfacial stress as seen from
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Figure 18. For an initial perturbation that tr1ggers the interface mode, the streamlines for the flow and the
density field at time ¢ = 135. The parameter space is the same as in figure 16, Pe =5, g = 2, Ca = 0.001 and
k=0.1.
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Figure 19. Flow streamlines and puller density field for an imposed attractant gradient along the positive
z-direction, for Pe = 5, B = —20, k = 0.1 and Ca = 0.001 at time ¢ = 125.5.

figure 19(d), which varies linearly with the concentration of swimmers at the interface.
On the other hand, the active stress generated by the suspension of pullers amplifies
the interface perturbation, as seen from figure 19(c). The instability of a suspension of
pullers is thus dependent on both the interfacial and active stresses generated within the
system.
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Figure 20. Nonlinear evolution of interface and puller density field for an imposed attractant gradient along
the positive z-direction (g = +1), for Pe = 5, = —20, k = 0.1 and (@) Ca = 0.01, (b) Ca = 0.001 at different
times as indicated in the figure inset. Panel (c) depicts the growth rate of the perturbations with time.

The effects of surface tension play a role in stabilizing the perturbations and bringing
about the nonlinear saturation of the growth rate as seen from figure 20(c). At high values
of Ca, the weak effects of surface tension (figure 20a) leads to the formation of waves on
the interface with the swimmers clustering at the troughs associated with the interface
height. However, the time evolution is limited to numerical difficulties encountered
in resolving the steep growth associated with the extremum that develops in the
problem.

5. Conclusion and discussion

In this article we have detailed a new mode of instability associated with a free interface
that arises in an active suspension of swimmers. We have termed this the interface mode
owing to its destabilizing effect on the system even in the absence of perturbations to the
swimmer density field (as elaborated in the toy problem formulated in Appendix C). In
§ 3 we start by formulating a linear stability theory for the system. Through a long-wave
stability calculation in § 3.1 we show an instability in suspensions of pullers, arising
from the coupling between the interface and density modes. In particular, through the toy
problem formulated in Appendix D we pin down the source of the instability to be the jump
in normal stress at the interface created by perturbations to the swimmer density field.
The stability of the system to finite wavenumber perturbations in discussed in § 3.2. The
observed instabilities are found to be sensitive to the direction of the imposed attractant
gradient with respect to the interface. In § 4, a nonlinear long-wave theory governing the
evolution of the film is derived. The numerical solution of the nonlinear system is used
to validate the growth rates estimated from the linear stability calculation. In addition, the
simulations allow us to ascertain and verify the mechanism associated with the instabilities
found in the linear stability calculation.

The instability of the system through the interface and density mode analysed in this
paper originates from the normal stress difference that arises due to the preferential
swimming of micro-swimmers along the local attractant gradient. The current work
assumes a linear variation of the attractant concentration along the vertical direction.
However, an accurate modelling of the system requires accounting for the role of
convective transport of the attractant and the effects of secretion or consumption of
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attractant by micro-swimmers, as shown below in the scalar transport equation for the
attractant concentration field

9
a—j +V - [uc—D,Ve] = an. (5.1)

Here, c is the attractant concentration, D, depicts the diffusivity of the attractant arising
from the thermal fluctuations in the system and « is the rate of consumption or secretion of
the attractant by an individual swimmer. The approximation of the attractant concentration
profile as a linear gradient is valid in the limit of the attractant diffusivity being much larger
than the swimmer diffusivity (D, >> D) and the time scale associated with the attractant
secretion or consumption being much smaller than the attractant diffusive time scale
(H?/D, < co/(a(n)). A recent manuscript by us (Murugan & Roy 2022) details the role
of attractant transport on the creation of hydrodynamic instabilities in an active suspension.
However, the addition of an attractant density field, evolving with the dynamics of the film
in the current continuum framework adds a new level of complexity that is beyond the
scope of the current work.

The dynamics of the attractant transport represents one possible mechanism of
influencing the orientation distribution of swimmers in the suspension and consequently
the active stress in the suspension. In addition, the orientation distribution is directly
influenced by the viscous torques present in the system, which alters the effect of the active
stress in the suspension. To fully account for the effects of shear rotation, it is necessary to
solve the full kinetic equation as given in Kasyap & Koch (2014)

_p Jos : Q2 1 [ 2
H {W—I—V-[(p—{—u)ﬂ]—{—v-(pﬂ)}+{F—H/de}:Os (5:2)

where H = H/Usty depicts a Péclet number based on the swimming speed of the
organism. Kasyap & Koch (2014) have analytically solved the above kinetic equation
through a perturbation expansion in the limit of 4! « 1 and obtained the following
leading-order modification to the active stress:

TB:ﬁ{§<g —£)n—l'H_1n(Vu+VuT>}. (5.3)
6 3 5

In the above approximation of the active stress, 8/H = 0((n)L3(Usto/L)) (Kasyap &
Koch 2014). The current work is thus restricted to dilute suspensions ((n)L3 <« 1) of active
swimmers, wherein the effects of shear rotation may be neglected.

While the current work has addressed the evolution of the interface evolution through
the active stress generated by the swimmers, the behaviour of a force dipole near a wall
or interface is non-trivial, as shown by Crowdy et al. (2010), Spagnolie & Lauga (2012).
In addition, in the case of g = +1, the clustering of swimmers near the interface may
give rise to altered surface properties of surface tension and viscosity. Furthermore, the
clustering of swimmers could give rise to a jammed state as seen in Dixit & Homsy (2013)
and Vella, Aussillous & Mahadevan (2004), wherein the behaviour of the interface is akin
to an elastic sheet. The inclusion of these effects associated with the confinement in the
formulation of the active stress would lead to better predictions involving both the stability
calculation and the nonlinear evolution.
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The numerical solutions from the long-wave theory developed in § 4 for the evolution
of the film reveals a behaviour (see figures 15¢ and 17b) that bears a resemblance to the
rupture problem driven by Marangoni stresses as seen in Oron & Rosenau (1994), Joo,
Davis & Bankoff (1991) and Kabova et al. (2006). In the limit of Pe < 1, the swimmer
density field at leading order is uniform across the system domain and it can be shown that
the nonlinear long-wave equations for the dimensional height evolution of the film reduce

to the following equation:

d[h d 3uly . H
hi+ — | ——yha — ——1log— || =0, 5.4
o |:3,u8x (y wT Ty 08 h)} 4

which greatly resembles the nonlinear equation derived by Burelbach, Bankoff & Davis
(1988) (see also Zhang & Lister 1999) for the van der Waals rupture of a thin film

h—l—a il h A =0 (5.5)
" 9x | 3pox Ve =63 )| = '

Thus, within the ambit of our present modelling approach, active-stress-driven instabilities
of interfacial flows could act as potential candidates for initiating rupture of thin films,
with a swimming analogue of a disjoint pressure. We must add a caveat that any serious
efforts in studying the rupture of a micro-swimmer-laden thin film must acknowledge
that a continuum version of active stress will be suspect in the vicinity of a rupture
event.

Setting up a system involving a linear variation of the attractant is an arduous task owing
to the hydrodynamic fluctuations in the active suspension. The set-up by Cheng et al.
(2007) is appropriate for studying chemotaxis in a channel flow. Experiments involving
pusher- and puller-type swimmers such as E. coli and C. reinhardtii, respectively, using
a set-up similar to Sokolov et al. (2009), probably involving phototaxis for suspensions
of pullers, would provide further insight into the instability caused through the coupling
between the active and interfacial stresses in the film.
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Appendix A. The long-wave stability calculation

The O(k?) long-wave stability calculation from § 3.1, yields a quadratic equation for the
growth rate (07)

Ao} 4 Boy + C =0, (A1)
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where
= 5,4 ( gP 3
A=—12Cag’ Pe (eg e _ 1) (A2)
2
B=—2g*Pe* <egPe—1) {ZgPe <egPe—1) (A3)

+3a <,3g2P€2€gPe + B (egPe _ 1)2 —2g <€gPe _ 1) (egpe(,BPe D+ 1)) ) }
(A4)

— 2 2 3
C =g P {6,8 Cag® P*esP (egf’e - 1) 4 2484 Pe <e8Pe - 1) — 128 (egf’e - 1)

(AS)
+ gt P <3e8f’€ (,82 CaPe— 4) + e3P (BPe(3BCa+ 1) — 4)
+ P (B Pe(6f Ca— 1) + 12) + 4) (A6)
2883 P (eé'Pe - 1) (egPe <6/8 Ca+ (68 Ca + 3)es™ + 2) + 1) (A7)
+ 12842 P (egl’e — 1) ((,3 Ca+1) et (egPe — 1) — 1)} . (A8)

The quadratic equation governing the growth rate yields two modes. The velocity field
associated with a particular mode is given by

- mop
2 g2 Pe2(esPe — 1) (e8Pe(Pe(3f CagPe —2) — 6 Cac) + 2(3 Cao + Pe))

x {—g2 P (z — 1z(e8 ) (6/3 Ca + z(e8P — 1)) F12Cao (e8P — 1)(e8Pe7 — 1)
—2g Pe? (—3z2(e8”€ —1)(CaetP? (B —go)+ 1) + (e8P — 1)
+22(e8 7 — 1) + 38 Caes (s P — 1))

F2Pe(etP — 1) (—z (6Cago + (z — 3)2) + (z — 3)2e8 P 4 2877 — 2)}
(A9)

Appendix B. On the role of the slip boundary condition

In the problem of an active-stress-driven flow within a channel (Kasyap & Koch 2012),
we investigate the stability characteristics in the long-wave limit by introducing a velocity
slip condition at the top wall of the channel. The base state is a quiescent suspension
with the same density profile as in (3.3a,b). The linearized equations corresponding to the
momentum and number density conservation are given by (3.8a) and (3.8b). The boundary
conditions at the bottom wall (z = 0) are given by (3.9), whereas for the top wall (z = 1),
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the boundary conditions inclusive of the velocity slip condition are given by

w=0, (B1)
Do + AD*v = 0, (B2)
Dit — gPeii = 0, (B3)

where A is the slip parameter. In the long-wave limit (k < 1), the above system can be
solved by considering a perturbation expansion of the system variables using the small
parameter k. Since (3.8) and (3.9) comprise of solely even powers of the wavenumber
k, it is sufficient to consider only even powers in the perturbation expansion using the
small parameter k, as the use of odd powers would give rise to trivial equations. The O(1)
solution yields a quiescent suspension and a number density field varying along z. At

O(k?) a velocity field w and a corresponding growth rate o are obtained as

o =k (1 — Peap), (B4)
where
1
o= Q=1+ et P)2gh PA(1 1+ 41)) { — gPe(24 4+ 482
+gPe(8+ gPe+4(6+ gPe)d)) (BS)

— 241 + 1) — 88 (—6(1 + 1) + g Pe(g Pe + (—6 + g Pe(3 + g Pe)) ) (B6)

+ 2P (—24(1 + 1) + g Pe(24 + g Pe(—8 + g Pe + 2(12 + g Pe(—6 + gPe))/l)))} ,

B7)
and
W = o s {(zzegf’@(gzz PA(z— 1)+ gPe(z— 1)
g2(4A+ 1)Pe%(e8Pe — 1)
+61—-2(1+ 1)z+3) (B3)
— @A+ 1)etP 4 (2 — 1)(2A((2 = 2)z(g Pe 4+ 1) — 2)
+ (= DiagPe+2)+ 1)} (BY)

The neutral stability curves, displayed in figure 21, reveal that the top-bottom symmetry
in the problem is restored in the limit of A — 0, with the neutral curves in both cases of a
negative and positive attractant gradient converging to the prediction by Kasyap & Koch
(2012).

In the limit of 4 — oo, the channel wall at z = 1 behaves as a stress-free boundary.
When the attractant gradient is aligned away from the stress-free boundary and towards
the bottom wall, the stability curves show a minor deviation from the Kasyap & Koch
(2012) calculation at finite and small Pe. The two curves converge in the Pe — oo limit.

The system with the attractant gradient pointing towards the interface is the one of
special interest due to the reduced critical activity (8) for the onset of an instability.
The argument presented by Kasyap & Koch (2014) regarding the enhanced transport of
swimmers near a stress-free boundary as compared with a rigid wall and the resulting
amplification of the instability, is consistent with the velocity contours displayed in
figure 22.
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Figure 21. Neutral stability curves corresponding to a suspension of swimmers in a channel with a slip
boundary at z = 1, in Pe—p plane, forg = +1and g = —1,and 1 = 0.1 and A = oo.
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Figure 22. Streamlines pertaining to the velocity field perturbation corresponding to a suspension of
swimmers in a channel with a slip boundary at one wall, for the case of Pe =1, 8 = 10, k = 0.1 and g = +1.
The coloured contour plot indicates the magnitude of the swimmer density perturbation field.

Appendix C. On the effect of a free surface — interfacial normal stress difference

The amplification of the instability in the presence of a stress-free boundary is a good
motivation to investigate the stability characteristics in response to a free interface as
opposed to a rigid wall with slip. The base state consists of the quiescent suspension
and density profile identical to the previous section. The perturbation is applied purely to
the interface and the number density field is left unperturbed with the aim of isolating
the instability arising from the presence of a free boundary. The equation governing the
perturbation is thus solely given by (3.8a), with the boundary conditions of no slip and no
penetration at the bottom wall (3.9). At the free interface (z = 1), the boundary conditions
comprising of the kinematic equation for the interface evolution and the continuity of
tangential and normal stresses are given as follows:

D>y + kK>w = Bk’nh, (Cla)
k*h

D3 —3kK*Dw = —, (C1b)
Ca
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oh

e = w. (Clo)

The system of equations yields the following expression for the growth rate:

2 .
k*Pe B sinh(k) cosh(k)) } ’ )

77 22 1 cosh(2k) + 1 {M(l) T Ca (1 k

where i1(1) = g Pe e8¢ /(e2F¢ — 1). Figure 23 depicts the neutral curves at small and finite
wavenumbers, for two values of the capillary number. The form of the velocity field
associated with this mode is shown in the streamline plot of figure 24. The long-wave
asymptote for the above growth rate is

o =k*Pe (%ﬁ n(l) — ) + O(k*), (C3)

3Ca
where Ca = Ca/k? is assumed to be an O(1) quantity. The long-wave asymptote yields a

critical activity, § = 2/(3 Ca n(1)) for the onset of an instability. The analytical solution
for the above system at finite wavenumber yields the following expressions for the growth
rate (o) and velocity field (w):

2e*k Pe (e8¢ (B Ca kg Pe + k — sinh(k) cosh(k)) — k + sinh(k) cosh(k))

C4
“ Ca(e (42 1 2) + e + 1)(esPe — 1) 4
B 2hke?k
w =
Ca(e (k2 +2) + e + D)(esPe — 1)
x {sinh(kz) (kzz cosh(k) + k sinh(k) + cosh(k) (C5)

_eshe <cosh(k) (k%241 — B CagPe(z— 1)) + ksinh(k)(8 Cag Pez + 1))) (C6)

+ kz cosh(kz) <cosh(k) (eg Pe(g CagPe+ 1) — 1) k(P — 1) sinh(k)) } (€T

The figures representing the form of the velocity field (22) and (24) are essential towards
identifying the mode of instability in the full problem. The circulation regions of figure 22
bear a resemblance with the instability calculated by Kasyap & Koch (2014) which we
term as the density mode. On the other hand, the velocity profiles of the interfacial
mode depict the effect of the jump in viscous stress at the interface, which is reminiscent
of thermocapillary wave instabilities (Davis 1987; Oron & Rosenau 1994), wherein the
perturbations to the interface are reinforced by the fluid flow field as shown in figure 24.

The neutral curves for the negative gradient predict the absence of an instability in
the Pe — oo limit. This is consistent with the exponential form of the number density
field, wherein at large Pe, a majority of the swimmers are concentrated near either of
the boundaries depending on the direction of the imposed attractant gradient. Hence, the
interfacial mode, arising from the normal-stress difference which is linearly related to the
swimmer number density, is trivially stable with increasing Pe for a negative gradient and
exhibits a suitably amplified instability in the case of a positive gradient.
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Figure 23. Neutral stability curves in the Pe—f plane for a suspension of swimmers in a thin-film with
perturbations being applied solely to the interface, for (a) Ca = 1072 and (b) Ca = 1073,

Perturbed interface —— Streamlines

Normalized number density field

0 T 27 3n 4n
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Figure 24. Streamlines pertaining to the velocity field perturbation corresponding to a suspension of
swimmers in a thin film with perturbations being applied solely to the interface, for the case of Pe = 1, = 10,
Ca=0.1, k =0.1 and g = +1. The coloured contour plot indicates the magnitude of the swimmer density
perturbation field. The interface perturbation is exaggerated in the above plot for visualization purposes.

Appendix D. On the effect of normal stress differences in the suspension

In Appendixes B and C, the perturbations to the system are applied solely to the swimmer
density field or the interface height in order to ascertain the individual modes and
the associated mechanism for the instability in the problem. The instability seen in
Appendix C is driven by the jump in shear stress at the interface as a consequence of
the normal stress difference in the suspension, which generates a local shear flow that
amplifies the interface perturbation. In this section, we are interested in exploring the effect
of swimmer density perturbations in generating normal stress differences at the interface
and its role in destabilizing the system. Considering perturbations to both the swimmer
density field and the interface height, the equations governing the stability of the system
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are
[D4 D2 k4] =0, (Dla)
[DZ—gPeD—(a—i-kz)]ﬁ—gPezﬁﬂ/:O. (D1b)

The boundary conditions at the bottom wall remain unchanged from (3.9). At the free
interface (z = 1) the following conditions are imposed:

D> W+ kK =0, (D2a)
D3 —3KDw + Bk = X (D2b)
" Ca’
oh
Pe =w, (D2c)
Dn—gPen=0. (D2d)

The kinematic equation governing the height evolution (D2c¢) and the no-flux condition at
the free interface (D2d) remain unchanged from (3.9). The normal stress balance (D2b)
has an additional term that arises due to normal stress difference from the swimmer density
perturbation. The jump in shear stress at the interface is set to zero (D2a) in order to negate
the mode of instability discovered in Appendix C. From (D2b) it can be seen that the
normal stress difference arising from the density perturbations can work to both enhance
and limit the stabilizing effects of surface tension in the system.

An analytical solution of the system of equations (D1)—-(D2) is not feasible. In the
long-wave limit (k < 1), it is possible to obtain a closed form analytical solution for the
velocity field of the system as

k2 gPe B Cao (3 — z)z2e8t*

W =0 5P~ 1) (3Cao + Pe) (B3
The growth rate o is obtained by solving the following quadratic equation:
Ajo? + Aro + A3 =0, (D4)
where
Al = 6621g(egpe —1)?,
A> = Ca {eZgPe <6,3 s (,BgPez(2gPe _3) 4 6))
! (D5)

— 6657 (B + g( Pe +2)) + 6g] +2g Pe(ef ™ — 12,

Az = 2g Pe(ef7¢ — 1)

The growth rates yield the regions of instability in the Pe—f plane seen in figure 25. The
flow field that drives the instability arises from the normal stress difference at the interface
as a consequence of the swimmer density perturbation. The swimmer density perturbation
near an interface thus serves to destabilize a suspension of pullers as seen from quadrant
4 of figure 25, contrary to the results of Kasyap & Koch (2012).
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Figure 25. The figure portrays the regions of stability in the Pe—f, pertaining to the instability arising from
the jump in viscous normal stress at the interface. In the figure, quadrants 1 and 4 correspond to g = —1, with
quadrants 2 and 3 pertaining to ¢ = +1. Quadrants 1 and 2, with § > 0 depict the stability characteristics of
a suspension of pushers. Quadrants 3 and 4, with 8 < 0 depict the stability characteristics of a suspension of
pullers.
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