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Abstract
We prove two theorems about the Malcev Lie algebra associated to the Torelli group of a surface of genus g: Stably,
it is Koszul and the kernel of the Johnson homomorphism consists only of trivial Sp2𝑔 (Z)-representations lying in
the centre.
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1. Introduction

Let Σ𝑔,1 denote a compact oriented surface of genus g with one boundary component. Its Torelli group
is the group 𝑇𝑔,1 of isotopy classes of orientation-preserving diffeomorphisms of Σ𝑔,1 which act as
the identity on 𝐻1(Σ𝑔,1;Z). There is an initial pro-unipotent Q-algebraic group under 𝑇𝑔,1, whose pro-
nilpotent Lie algebra is the unipotent completion, or Malcev completion, 𝔱𝑔,1 of 𝑇𝑔,1. Hain has proved
that, as long as 𝑔 ≥ 4, 𝔱𝑔,1 is isomorphic to the completion of the associated graded Gr•LCS 𝔱𝑔,1 of its
lower central series and that this Lie algebra is quadratically presented. In this paper, we will prove that it
is Koszul in a stable range. Throughout this paper, we shall take ‘Koszul’ to mean the diagonal criterion:
the additional ‘weight’ grading of Gr•LCS 𝔱𝑔,1 induces a weight grading on its Lie algebra homology (see
Section 2 for our grading conventions), and Koszulness means vanishing of this bigraded Lie algebra
homology away from the diagonal.
Theorem A. The Lie algebra Gr•LCS 𝔱𝑔,1 is Koszul in weight ≤ 𝑔

3 .
More generally, for Σ𝑟

𝑔,𝑛 a surface of genus g with n boundary components and r marked points, let
𝔱𝑟𝑔,𝑛 be the unipotent completion of its Torelli group. We also prove that Gr•LCS 𝔱𝑔 and Gr•LCS 𝔱

1
𝑔 are Koszul

in the same range, as well as the relative unipotent completions Gr•LCS 𝔲𝑔, Gr•LCS 𝔲
1
𝑔 and Gr•LCS 𝔲𝑔,1 (see

Section 3.1.1 for detailed definitions). This result for Gr•LCS 𝔲𝑔 has simultaneously been obtained by
Felder–Naef–Willwacher [FNW23]; we discuss the relation between the arguments in Remark 7.4.
Remark.
(i) Theorem A and its variants imply Conjecture 16.2 of [Hai20] and answer Questions 9.13 and 9.14

of [HL97] affirmatively. By Corollary 16.5 of [Hai20], Conjecture 16.1 of loc. cit. is also true. This
is part (iii) of ‘the most optimistic landscape’ in Section 19 of [Hai20].

(ii) Remark 3.5 shows that the Lie algebra Gr•LCS 𝔱𝑔,1 cannot actually be Koszul.
Garoufalidis–Getzler [GG17] have used work of Looijenga and Madsen–Weiss to compute the stable

character of the quadratic dual of Gr•LCS 𝔲𝑔 as graded algebraic Sp2𝑔 (Z)-representation and then in
Theorem 1.3 of loc. cit. have computed from this—under the assumption of stable Koszulness—the stable
character of Gr•LCS 𝔱𝑔 as a graded algebraic Sp2𝑔 (Z)-representation. In [KRW20c, Sections 6, 8.1], we
gave a different approach to the first of these computations and explained how it applies to surfaces with a
boundary component or a marked point too. This method, along with Theorem A and its generalisation,
renders the characters of the graded algebraic Sp2𝑔 (Z)-representations Gr•LCS 𝔱𝑔, Gr•LCS 𝔱

1
𝑔, Gr•LCS 𝔱𝑔,1,

Gr•LCS 𝔲𝑔, Gr•LCS 𝔲
1
𝑔 and Gr•LCS 𝔲𝑔,1, amenable to computer calculation in weight ≤ 𝑔

3 .
We further use Theorem A to analyse the map

𝜏𝑔,1 : Gr•LCS 𝔱𝑔,1 −→ 𝔥𝑔,1 ⊂ Der(Lie(𝐻))

obtained from the action of the mapping class group of Σ𝑔,1 on its fundamental group, whose image
lies in the Lie subalgebra 𝔥𝑔,1 ⊂ Der(Lie(𝐻)) of symplectic derivations. Following Hain, we call this
the geometric Johnson homomorphism, and Morita has asked whether it is injective in weight ≠ 2. The
map 𝜏𝑔,1 is one of Lie algebras with additional weight grading in the category of algebraic Sp2𝑔 (Z)-
representations and here we give strong evidence for this injectivity by tightly constraining its kernel in
a range.
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Theorem B. In weight ≤ 𝑔
3 , the kernel of 𝜏𝑔,1 lies in the centre of the Lie algebra Gr•LCS 𝔱𝑔,1 and consists

of trivial Sp2𝑔 (Z)-representations.

We also prove the analogous statement for 𝔱1
𝑔, 𝔱𝑔, 𝔲𝑔,1, 𝔲1

𝑔 and 𝔲𝑔.

Remark.

(i) The map 𝜏𝑔,1 factors over a map Gr•LCS 𝔱𝑔,1 → Gr•LCS 𝔲𝑔,1 whose kernel is a centralQ in weight 2 on
which Sp2𝑔 (Z) acts trivially [Hai97, Theoren 3.4], so Theorem B is sharp in this sense. However,
comparing [GG17, Section 7] with [MSS15, Table 1] one sees that Gr•LCS 𝔲𝑔,1 → 𝔥𝑔,1 is injective
in weight ≤ 6 in a stable range, and it might well be the case that this map is injective.

(ii) Stably and neglecting trivial Sp2𝑔 (Z)-representations in the centre, this answers several questions in
the literature: part (i) of ‘the most optimistic landscape’ in Section 1.9 of [Hai20], [HL97, Question
9.7], [Mor99, Problem 6.2], [Mor06, Problem 3.3, Problem 8.1], [HM09, Question 8.2], [MSS20,
Conjecture 1.8]. It also has consequences for finite type invariants of 3-manifolds (see Remark 8.6),
c.f. p. 381 of [Mor99].

Our arguments use in an essential manner the classifying spaces 𝐵Tor𝜕 (𝑊𝑔,1) of the Torelli groups of
the high-dimensional analogue of a surface of genus g with one boundary component. As a consequence,
we also obtain results about the rational homotopy Lie algebra of 𝐵Tor𝜕 (𝑊𝑔,1) (see Section 7.1).

Outline of proofs. We now outline the proof of Theorem A. We will suppress explicit ranges for the
sake of readability, writing ‘in a stable range’ when a statement holds in a range of degrees or weights
tending to∞ with g.

(1) Use Koszul duality, and relate different genera g and dimensions n. By a result of Hain, the Lie
algebra Gr•LCS 𝔱𝑔,1 is quadratically presented when 𝑔 ≥ 4. Hence, to prove Theorem A, it suffices to
prove the quadratic dual commutative algebra of Gr•LCS 𝔱𝑔,1 is Koszul in a stable range, in the sense
that its bigraded commutative algebra homology groups vanish away from the diagonal.

The quadratic dual of Gr•LCS 𝔱𝑔,1 can be identified as an algebra of twisted Miller–Morita–
Mumford classes as in [KRW20c, Section 5]. Taking into account the Sp2𝑔 (Z)-action this description
is uniform in g: There is a commutative algebra object 𝐸1/(𝜅𝑒2) : dsBr→ Gr(Q-mod) in the category
of representations of the downward signed Brauer category whose realisation 𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2 ) ∈

Gr(Rep(Sp2𝑔 (Z))) is the quadratic dual of Gr•LCS 𝔱𝑔,1 in a stable range (implicitly 𝐾∨ depends on g
but 𝐸1/(𝜅𝑒2 ) does not). This realisation is Koszul in a stable range if and only if 𝐸1/(𝜅𝑒2 ) is if and
only if 𝐸1 is. The algebra object 𝐸1 is one of a family 𝐸𝑛 which up to rescaling only depends on the
parity of n, and this has a closely related variant 𝑍𝑛. The commutative algebra object 𝐸1 is Koszul
in a stable range if and only if 𝐸𝑛 is if and only if 𝑍𝑛 is.

(2) Use high-dimensional manifold theory to get vanishing of the nontrivial Sp2𝑔 (Z)-representations.
The reason for the reductions performed in Step (1) is that the algebra object 𝑍𝑛 has appeared in
[KRW20b]: Its realisation 𝐾∨ ⊗d(s)Br 𝑍𝑛 is an algebra of twisted Miller–Morita–Mumford classes
for the framed Torelli group Torfr

𝜕 (𝑊𝑔,1) of the 2𝑛-dimensional analogue 𝑊𝑔,1 = 𝐷2𝑛#(𝑆𝑛 × 𝑆𝑛)#𝑔

of the surface Σ𝑔,1. These classes account for nearly all of the cohomology of this group: When
2𝑛 ≥ 6, a finite cover of the classifying space of this group fits in a fibration sequence

𝑋1(𝑔) −→ 𝐵Torfr
𝜕 (𝑊𝑔,1) −→ 𝑋0

of nilpotent spaces with Sp2𝑔 (Z)-action (the action is trivial on 𝑋0) and 𝐾∨ ⊗d(s)Br 𝑍𝑛 =
𝐻∗(𝑋1(𝑔);Q) in a stable range. It thus suffices to verify the diagonal criterion for the commutative
algebra homology of 𝐻∗(𝑋1 (𝑔);Q).

There is an unstable rational Adams spectral sequence of Sp2𝑔 (Z)-representations

𝐻Com
𝑠 (𝐻∗(𝑋1 (𝑔);Q))𝑟𝑛 =⇒ Hom(𝜋𝑟𝑛−𝑠+1(𝑋1 (𝑔)),Q).
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As 𝐻∗(𝑋1 (𝑔);Q) is sparse, so are the entries in this spectral sequence. Not only does this imply a
sparsity result for 𝜋∗(𝑋1 (𝑔)) ⊗Q, but we can exclude differentials in any desired range by increasing
the dimension 2𝑛. In [KRW20b], we also accessed the rational homotopy groups of 𝐵Torfr

𝜕 (𝑊𝑔,1)
using embedding calculus. Up to contributions from 𝜋∗(𝑋0) ⊗Q, this gives a different sparsity result
for 𝜋∗(𝑋1(𝑔)). Verification of the diagonal criterion up to trivial representations then follows in a
stable range by combining the two sparsity results.

(3) Apply a transfer argument in graph complexes to get vanishing of the trivial Sp2𝑔 (Z)-representations.
In terms of the commutative algebra object 𝑍𝑛, we have proven that its commutative algebra
homology vanishes away from the diagonal when evaluated on those objects of d(s)Br given by
nonempty sets, and it remains to prove the same holds for the empty set. To do so, we resolve 𝑍𝑛

by a complex 𝑅𝐵𝑍𝑛 of red-and-black graphs: The commutative algebra homology groups of 𝑅𝐵𝑍𝑛

equal those of 𝑍𝑛, but 𝑅𝐵𝑍𝑛 is chosen so that these can be computed by taking strict commutative
algebra indecomposables; this is a graph complex 𝑅𝐵𝑍𝑛

conn of connected red-and-black graphs. We
show that this is closely related to a complex 𝐺𝑍𝑛 of connected black graphs, and in particular
certain vanishing ranges can be passed back and forth between these complexes.

Step (2) gives the required vanishing of the homology of 𝑅𝐵𝑍𝑛
conn(𝑆) for all nonempty sets S,

and in turn this implies a certain vanishing of the homology of 𝐺𝑍𝑛 (𝑆) for all nonempty sets S. A
transfer argument shows that the homology of 𝐺𝑍𝑛 (∅) injects into that of 𝐺𝑍𝑛 (1), giving a certain
vanishing of the homology of 𝐺𝑍𝑛 (∅); this then implies the required vanishing of the homology of
𝑅𝐵𝑍𝑛

conn(∅).
We next outline the proof of Theorem B. Using Theorem A, we can identify the geometric Johnson
homomorphism in terms of high-dimensional manifold theory: Up to trivial representations, it amounts
to the map induced on rational homotopy groups by the composition

𝑋1 (𝑔) −→ 𝐵Torfr
𝜕 (𝑊𝑔,1) −→ 𝐵hAut∗(𝑊𝑔,1).

Its injectivity can then be deduced from the unstable rational Adams spectral sequence and sparsity
results of Step (2).

2. Preliminaries

Notation 2.1. Let Q-mod denote the category of Q-vector spaces, Gr(Q-mod) the category of nonneg-
atively graded Q-vector spaces, and Ch the category of nonnegatively graded chain complexes over Q.
We consider Gr(Q-mod) as the subcategory of Ch of chain complexes without differential, and Q-mod
as the subcategory of Gr(Q-mod) of graded vector spaces supported in degree 0. We endow Ch with
the usual symmetric monoidality, incorporating the Koszul sign rule and give the other categories the
induced symmetric monoidalities.

We will want to consider objects (chain complexes, etc.) equipped with an additionalN-grading, called
the ‘weight grading’, and we write ChN := Fun(N, Ch) and so on for the categories of these. Treating N
as a symmetric monoidal category having only identity maps and symmetric monoidal structure given
by addition, Day convolution endows these categories with their own symmetric monoidalities. We
emphasise that when interchanging elements the sign incurred depends only on the homological degree
and not on the weight. In particular, 𝑋 ↦→

⊕
𝑛∈N 𝑋 (𝑛) : ChN → Ch is symmetric monoidal.

2.1. Commutative algebras

Let Com denote the nonunital commutative operad in Q-mod, having Com(𝑟) = 0 for 𝑟 = 0 and
Com(𝑟) = Q as a trivial 𝔖𝑟 -representations otherwise. A commutative algebra in Ch is an algebra for
the operad Com or, equivalently, the associated monad.

The (desuspended) Harrison complex of commutative algebra A is

Harr(𝐴) [−1] � coLie(𝐴[1]) [−1],
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where [1] denotes suspension and [−1] denotes desuspension of chain complexes, and the differential
𝑑 = 𝑑𝐴 + 𝑑Harr is the sum of the differential 𝑑𝐴 induced by that on A and the differential 𝑑Harr induced
by the unique map of Lie coalgebras given on cogenerators by the commutative multiplication map
coLie2(𝐴[1]) = Λ2 (𝐴[1]) = Sym2(𝐴) [2] → 𝐴[1]. These satisfy 𝑑𝐴𝑑Harr + 𝑑Harr𝑑𝐴 = 0, so 𝑑2 = 0.

If A is a nonunital commutative algebra object in the subcategory Gr(Q-mod) ⊂ Ch, then the objects
Harr(𝐴) inherit a further grading, as usual in homological algebra. We may think of this as follows: The
grading of A determines a Q×-action on A, where 𝑢 ∈ Q× acts as 𝑢𝑞 in degree q. Functoriality gives a
Q×-action on Harr(𝐴), and we write Harr∗(𝐴)𝑞 for the subspace on which 𝑢 ∈ Q× acts as 𝑢𝑞 . It is clear
that such eigenspaces exhaust Harr(𝐴), and we set

𝐻Com
𝑝 (𝐴)𝑞 � 𝐻𝑝+𝑞 (Harr(𝐴))𝑞 = 𝐻𝑝+𝑞−1(Harr(𝐴) [−1])𝑞

and call p the Harrison degree, q the internal degree and 𝑝 + 𝑞 − 1 the total degree.
If A also has a weight grading, that is, is a nonunital commutative algebra object in Gr(Q-mod)N,

then the Harrison complex and its homology obtains a further weight grading, and we write

𝐻Com
𝑝 (𝐴)𝑞,𝑤 � 𝐻𝑝+𝑞 (Harr(𝐴))𝑞,𝑤

for the piece of weight w.

Definition 2.2. For 𝐴 ∈ AlgCom(Gr(Q-mod)N), we say that A is Koszul in weight ≤ 𝑊 if 𝐻Com
𝑝 (𝐴)𝑞,𝑤 = 0

when 𝑝 ≠ 𝑤 and 𝑤 ≤ 𝑊 . If 𝑊 = ∞, then we simply say that A is Koszul.

2.2. Lie algebras

Let Lie denote the Lie operad, whose definition can be found in [LV12, Section 13.2.3]. A Lie algebra in
Ch is an algebra for the operad Lie, or equivalently the associated monad. The (desuspended) Chevalley–
Eilenberg complex of a Lie algebra L is

CE(𝐿) [−1] = coCom(𝐿 [1]) [−1],

where the differential 𝑑 = 𝑑𝐿 + 𝑑CE is again the sum of the differential 𝑑𝐿 induced by that on L and the
differential 𝑑CE induced by the unique map of cocommutative coalgebras given on cogenerators by the Lie
bracket map coCom2(𝐿 [1]) = Sym2 (𝐿 [1]) = Lie2(𝐿) [2] → 𝐿 [1]. These satisfy 𝑑𝐿𝑑CE + 𝑑CE𝑑𝐿 = 0,
so 𝑑2 = 0.

If L is a Lie algebra object in Gr(Q-mod), then as above we can endow the Chevalley–Eilenberg
complex with a further grading, and we set

𝐻Lie
𝑝 (𝐿)𝑞 � 𝐻𝑝+𝑞 (CE(𝐿))𝑞 = 𝐻𝑝+𝑞−1(CE(𝐿) [−1])𝑞 .

If L also has a weight grading, then we write

𝐻Lie
𝑝 (𝐿)𝑞,𝑤 � 𝐻𝑝+𝑞 (CE(𝐿))𝑞,𝑤

for the piece of weight w.

Definition 2.3. For 𝐿 ∈ AlgLie (Gr(Q-mod)N), we say that L is Koszul in weight ≤ 𝑊 if 𝐻Lie
𝑝 (𝐿)𝑞,𝑤 = 0

when 𝑝 ≠ 𝑤 and 𝑤 ≤ 𝑊 . If 𝑊 = ∞, then we simply say that L is Koszul.

2.3. Koszul duality

The operads Com and Lie are Koszul dual [GK94, Corollary 4.2.7], [LV12, Proposition 13.1.5], and
thus there is a Koszul duality between nonunital commutative algebras and Lie algebras.
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A quadratic datum for a nonunital commutative algebra is a pair (𝑉, 𝑆) of a finite-dimensional graded
vector space V and a subspace 𝑆 ⊂ Com(2) ⊗𝔖2 𝑉

⊗2. From this, we may form the quadratic nonunital
commutative algebra 𝐴(𝑉, 𝑆) as the quotient of the free graded nonunital commutative algebra Com(𝑉)
by the ideal generated by S. As the relations are homogeneous in V (namely purely quadratic), we can
endow this with a weight grading by declaring V to have weight 1. Similarly, a quadratic datum for
a Lie algebra, given by a pair (𝑊, 𝑅) of a finite-dimensional graded vector space W and a subspace
𝑅 ⊂ Lie(2) ⊗𝔖2 𝑊

⊗2, yields a quadratic Lie algebra 𝐿(𝑊, 𝑅); it has a weight grading by declaring W
to have weight 1.

Given a quadratically presented nonunital commutative algebra 𝐴 = 𝐴(𝑉, 𝑆), its quadratic dual Lie
algebra is 𝐴! � 𝐿(𝑉∨[−1], 𝑆⊥[−2]).1 Similarly, given a quadratically presented Lie algebra 𝐿 =
𝐿(𝑊, 𝑅), its quadratic dual nonunital commutative algebra is 𝐿! � 𝐴(𝑊∨[1], 𝑅⊥[2]). These construc-
tions are natural in the quadratic data, and are dualities in the sense that there are natural isomorphisms
𝐴 � (𝐴!)! and 𝐿 � (𝐿!)!. In particular, the quadratic dual preserves any group actions on the objects
in question.

The definitions of Koszulness given in Definition 2.2 and Definition 2.3 are the diagonal criteria;
a reference is [Mil12, Theorem 4.9 (ii)]. By [Mil12, Theorem 4.11], A is Koszul if and only if 𝐴! is
Koszul. The same is true for the notions of Koszulness in a range by the same argument:
Lemma 2.4. A quadratic nonunital commutative algebra A is Koszul in weight ≤ 𝑊 if and only if its
quadratic dual Lie algebra 𝐴! is Koszul in weight ≤ 𝑊 . �

2.4. Orthogonal and symplectic representation theory

We recall some facts from [KRW20c, Section 2.1]. Let 𝐻 (𝑔) be a 2𝑔-dimensional rational vector space
with nonsingular 𝜖-symmetric pairing 𝜆 : 𝐻 (𝑔) ⊗ 𝐻 (𝑔) → Q given by the hyperbolic form. Its dual 𝜖-
symmetric form 𝜔 : Q→ 𝐻 (𝑔) ⊗ 𝐻 (𝑔) characteristic by (𝜆 ⊗ id) (− ⊗ 𝜔) = id(−). The automorphisms
of 𝐻 (𝑔) preserving 𝜆 are denoted O𝜖 (𝐻 (𝑔)); these are the Q-points of an algebraic group O𝑔,𝑔 for
𝜖 = 1 and Sp2𝑔 for 𝜖 = −1. Observe that O𝜖 (𝐻 (𝑔)) is a subgroup of GL2𝑔 (Q) and the intersection
O𝜖 (𝐻 (𝑔)) ∩ GL2𝑔 (Z) is O𝑔,𝑔 (Z) if 𝜖 = 1 and Sp2𝑔 (Z) if 𝜖 = −1.

For distinct i and j in {1, 2, . . . , 𝑞}, applying the pairing 𝜆 to the ith and jth factors yields a map

𝜆𝑖, 𝑗 : 𝐻 (𝑔)⊗𝑞 −→ 𝐻 (𝑔)⊗𝑞−2

and inserting the form 𝜔 in the ith and jth factors yields a map

𝜔𝑖, 𝑗 : 𝐻 (𝑔)⊗𝑞−2 −→ 𝐻 (𝑔)⊗𝑞 .

We obtain representations of O𝜖 (𝐻 (𝑔)) by

𝐻 (𝑔) [𝑞] � ker
(
𝐻 (𝑔)⊗𝑞

𝜆𝑖, 𝑗
−→

⊕
𝑖, 𝑗

𝐻 (𝑔)⊗𝑞−2
)
,

𝐻 (𝑔)[𝑞] � coker
(⊕

𝑖, 𝑗

𝐻 (𝑔)⊗𝑞−2 𝜔𝑖, 𝑗
−→ 𝐻 (𝑔)⊗𝑞

)
,

and the composition 𝐻 (𝑔) [𝑞] → 𝐻 (𝑔)⊗𝑞 → 𝐻 (𝑔)[𝑞] is an isomorphism. The action of the symmetric
group Σ𝑞 permuting the terms in the tensor product 𝐻 (𝑔)⊗𝑞 descends to an action on 𝐻 (𝑔) [𝑞] and
𝐻 (𝑔)[𝑞] .

Recall that the irreducible rational representations of 𝔖𝑞 are in bijection with partitions 𝜆 of q into
positive integers; these are denoted 𝑆𝜆. Then we define

𝑉𝜆 � [𝑆𝜆 ⊗ 𝐻 (𝑔) [𝑞] ]𝔖𝑞 .

1For convenience, our grading conventions are such that if the gradedQ-vector space V is concentrated in nonnegative degrees,
then so is 𝑉 ∨.
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By construction, these are algebraic O𝜖 (𝐻 (𝑔))-representations. They are either zero or irreducible, and
the irreducible ones are distinct and exhaust all isomorphism classes.

We will have a use for representations of arithmetic subgroups 𝐺 ⊂ O𝜖 (𝐻 (𝑔)), that is, groups
𝐺 ⊂ O𝜖 (𝐻 (𝑔)) which are commensurable with O𝑔,𝑔 (Z) or Sp2𝑔 (Z). As long as 𝑔 ≥ 2, the 𝑉𝜆 restrict
to irreducible algebraic representations of G and any algebraic representation of G is a direct sum of
these [KRW20c, Section 2.1].

3. The Torelli Lie algebra

3.1. Basic results

3.1.1. Definitions
Let Σ𝑟

𝑔,𝑛 be a surface of genus g with n boundary components and r marked points, and Γ𝑟
𝑔,𝑛 its mapping

class group, consisting of isotopy classes of orientation-preserving diffeomorphism fixing pointwise
the boundary components and the marked points. Its Torelli group is the subgroup 𝑇𝑟

𝑔,𝑛 ⊂ Γ𝑟
𝑔,𝑛 of

those isotopy classes which act as the identity on 𝐻1(Σ𝑔;Z) through the inclusion Σ𝑟
𝑔,𝑛 ↩→ Σ𝑔. Its pro-

unipotent, or Malcev, completion 𝔱𝑟𝑔,𝑛 is the Lie algebra of the initial pro-unipotent algebraic group over
Q under 𝑇𝑟

𝑔,𝑛.
There is a tautological extension of groups 𝑇𝑟

𝑔,𝑛 → Γ𝑟
𝑔,𝑛 → Sp2𝑔 (Z), and the induced representation

Γ𝑟
𝑔,𝑛 → Sp2𝑔 (Q) into the Q-points of the algebraic group Sp2𝑔 is Zariski dense. There is an initial

pro-algebraic group G𝑟
𝑔,𝑛 over Q with Zariski dense homomorphism to Sp2𝑔 and pro-unipotent kernel

[Hai93, §2]. The Lie algebra of G𝑟
𝑔,𝑛 is 𝔤𝑟𝑔,𝑛 and the pro-nilpotent Lie algebra of this kernel is the relative

unipotent completion 𝔲𝑟𝑔,𝑛 of 𝑇𝑟
𝑔,𝑛.

Let 𝔭𝑟𝑔,𝑛 denote the Lie algebra of the pro-unipotent completion of the fundamental group 𝜋𝑟𝑔,𝑛 of
the ordered configuration space in Σ𝑔 of r points and n points with nonzero tangent vector (in the
notation of [Hai97] we have 𝔭𝑔 = 𝔭1

𝑔). The usual extensions of groups relating mapping class groups
yield extensions of Lie algebras (Theorem 3.4 and Proposition 3.6 of [Hai97]).

Lemma 3.1. For 𝑔 ≥ 3, there are extensions of Lie algebras

𝔭𝑟𝑔,𝑛 −→ 𝔱𝑟𝑔,𝑛 −→ 𝔱𝑔, Q −→ 𝔱𝑟𝑔,𝑛 −→ 𝔱𝑟+1𝑔,𝑛−1,

Q −→ 𝔱𝑟𝑔,𝑛 −→ 𝔲𝑟𝑔,𝑛.

3.1.2. Mixed Hodge structures and lower central series
The associated graded of the lower central series of a Lie algebra 𝔤 is a Lie algebra Gr•LCS 𝔤. We consider
this as a Lie algebra in Gr(Q-mod)N by giving it homological degree 0 and giving Gr𝑤LCS 𝔤 weight w. In
the following, there are unfortunately two things called weight: our additional grading and the Hodge
theoretic weight filtration. We do not think any confusion is likely, but we shall refer to our weight
grading as ‘the additional grading’ in places where confusion is possible.

As long as 𝑔 ≥ 3, Theorem 4.10 of [Hai97] says that 𝔱𝑟𝑔,𝑛 is equipped with a mixed Hodge structure
whose weight filtration agrees, up to negation of the indexing, with the lower central filtration. By
Corollary 4.8 and 4.9 of loc. cit., the same is true for 𝔲𝑟𝑔,𝑛. Corollary 5.3 of loc. cit. (stated over C, see
[Hai20, Section 7.4] for why it is also true over Q) implies that for 𝑔 ≥ 3 there are isomorphisms of
pro-nilpotent Lie algebras

𝔱𝑟𝑔,𝑛 �
∏
𝑠>0

Gr𝑠LCS 𝔱
𝑟
𝑔,𝑛 and 𝔲𝑟𝑔,𝑛 �

∏
𝑠>0

Gr𝑠LCS 𝔲
𝑟
𝑔,𝑛.

Similarly,𝔭𝑟𝑔,𝑛 comes with a mixed Hodge structure [Hai87, Theorem 1], and by Section 2 and Lemma 4.7
of [Hai97] its weight filtration agrees, up to negation of the indexing, with the lower central series
filtration.
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The existence of compatible mixed Hodge structures implies that taking the associated graded of
the weight filtration is exact and hence so is taking the associated graded of the lower central series
filtration. In Lemma 3.1, the two copies of Q are the Hodge structures Q(1), so we obtain the following
(using Section 13 and Theorem 4.10 of [Hai97]), where we clarify that the Q[2] are in weight 2 and
homological degree 0.
Lemma 3.2. For 𝑔 ≥ 3, there are extensions of Lie algebras with additional grading

Gr•LCS 𝔭
𝑟
𝑔,𝑛 −→ Gr•LCS 𝔱

𝑟
𝑔,𝑛 −→ Gr•LCS 𝔱𝑔 Q[2] −→ Gr•LCS 𝔱

𝑟
𝑔,𝑛 −→ Gr•LCS 𝔱

𝑟+1
𝑔,𝑛−1,

Q[2] −→ Gr•LCS 𝔱
𝑟
𝑔,𝑛 −→ Gr•LCS 𝔲

𝑟
𝑔,𝑛.

3.1.3. Koszulness
The general version of Theorem A is as follows.
Theorem 3.3. The Lie algebras with additional grading Gr•LCS 𝔱𝑔,1, Gr•LCS 𝔱

1
𝑔, Gr•LCS 𝔱𝑔, Gr•LCS 𝔲𝑔,1,

Gr•LCS 𝔲
1
𝑔 and Gr•LCS 𝔲𝑔 are Koszul in weight ≤ 𝑔

3 .
The following proposition shows that Theorem A implies Theorem 3.3, so we may focus on

Theorem A for the remainder of this paper.
Proposition 3.4. Suppose 𝑔 ≥ 3 and that Gr•LCS 𝔱𝑔,1 is Koszul in weight ≤ 𝑊 . Then the same is true for
Gr•LCS 𝔱

1
𝑔, Gr•LCS 𝔱𝑔, Gr•LCS 𝔲𝑔,1, Gr•LCS 𝔲

1
𝑔 and Gr•LCS 𝔲𝑔.

Proof. Though we defined Koszulness in terms of Chevalley–Eilenberg homology, to verify its vanishing
we may as well use Chevalley–Eilenberg cohomology, and take advantage of its multiplicative structure.
We first prove that Gr•LCS 𝔱

1
𝑔 is Koszul in additional gradings ≤ 𝑊 , by considering the spectral sequence

in Lie algebra cohomology for the extension

Q[2] −→ Gr•LCS 𝔱𝑔,1 −→ Gr•LCS 𝔱
1
𝑔

of Lemma 3.2. This yields a Gysin sequence

· · · −→ 𝐻 𝑝−2
Lie (Gr•LCS 𝔱

1
𝑔)0,𝑤−2

𝑒 ·−
−→ 𝐻 𝑝

Lie(Gr•LCS 𝔱
1
𝑔)0,𝑤 −→ 𝐻 𝑝

Lie(Gr•LCS 𝔱𝑔,1)0,𝑤 −→ · · ·

If 𝑤 ≤ 𝑊 , then the right-hand term is zero whenever 𝑝 ≠ 𝑤, in which case 𝐻 𝑝
Lie(Gr•LCS 𝔱

1
𝑔)0,𝑤 is infinitely

divisible by e and hence vanishes. Thus, Gr•LCS 𝔱
1
𝑔 is also Koszul in additional gradings ≤ 𝑊 .

We next prove that Gr•LCS 𝔱𝑔 is Koszul in additional gradings ≤ 𝑊 , using the extension

Gr•LCS 𝔭
1
𝑔 −→ Gr•LCS 𝔱

1
𝑔 −→ Gr•LCS 𝔱𝑔

of Lemma 3.2. We will make use of continuous Lie algebra cohomology; see [Hai97, Section 5] for
background. By Proposition 5.5 of [Hai97], we have an isomorphism

𝐻∗Lie(Gr•LCS 𝔭𝑔) = 𝐻∗Lie(Gr−•W𝔭𝑔) � Gr−•W 𝐻∗Lie,cts(𝔭𝑔)

and as surface groups are pseudo-nilpotent [KO87] we have 𝐻∗Lie,cts(𝔭𝑔) = 𝐻∗(Σ𝑔;Q). In particular,
we have 𝐻2

Lie(Gr•LCS 𝔭𝑔) = Q and the cohomology in higher degrees vanishes. Thus, in the spectral
sequence for this extension projection to the top row provides a fibre-integration map

𝜋! : 𝐻∗Lie(Gr•LCS 𝔱
1
𝑔) −→ 𝐻∗−2

Lie (Gr•LCS 𝔱𝑔)

which as usual is a map of 𝐻∗Lie(Gr•LCS 𝔱𝑔)-modules and satisfies 𝜋! (𝑒) = 2 − 2𝑔 ≠ 0 ∈ 𝐻0
Lie(Gr•LCS 𝔱𝑔)

by comparison to the corresponding extension of groups 𝜋1 (Σ𝑔) → 𝑇1
𝑔 → 𝑇𝑔. In particular, this implies

that 𝜋∗ : 𝐻 𝑝
Lie(Gr•LCS 𝔱𝑔)0,𝑤 → 𝐻 𝑝

Lie(Gr•LCS 𝔱
1
𝑔)0,𝑤 is injective. Assuming Gr•LCS 𝔱

1
𝑔 is Koszul the target

of this map vanishes for 𝑝 ≠ 𝑤 and 𝑤 ≤ 𝑊 : Thus, the source does too.
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For 𝔲𝑔,1, we use the extension Q(1) → 𝔱𝑔,1 → 𝔲𝑔,1 of Lie algebras with mixed Hodge structure and
proceed as we did above for 𝔱1

𝑔, taking associated graded and using the Gysin sequence; 𝔲1
𝑔 and 𝔲𝑔 may

be treated similarly. �

Remark 3.5. The Lie algebra Gr•LCS 𝔱𝑔 for 𝑔 ≥ 4 can never actually be Koszul, and hence neither can
Gr•LCS 𝔱

1
𝑔 or Gr•LCS 𝔱𝑔,1 be by the proof of Proposition 3.4. If Gr•LCS 𝔱𝑔 were Koszul, then Gr•LCS 𝔲𝑔 would

be too by the Gysin sequence argument of Proposition 3.4 applied to

Q[2] −→ Gr•LCS 𝔱𝑔 −→ Gr•LCS 𝔲𝑔 .

This would imply that the cohomology algebras 𝐻∗Lie(Gr•LCS 𝔱𝑔) and 𝐻∗Lie(Gr•LCS 𝔲𝑔) are both generated
in tridegree (1, 0, 1) by the same vector space (Gr1

LCS 𝔲𝑔)
∨ ∼
→ (Gr1

LCS 𝔱𝑔)
∨. This is finite-dimensional

for 𝑔 ≥ 3 by a theorem of Johnson [Joh85], so the map

𝐻∗Lie(Gr•LCS 𝔲𝑔) −→ 𝐻∗Lie(Gr•LCS 𝔱𝑔)

is surjective and both cohomology groups vanish above some cohomological degree. Let the top degrees
in which the cohomologies are nontrivial be called U and T, so this surjection shows that 𝑈 ≥ 𝑇 . On
the other hand the Gysin sequence for the extension shows that 𝑇 = 𝑈 + 1, a contradiction.

As far as we can tell Koszulness of Gr•LCS 𝔲𝑔 cannot be ruled out in this way:
Question 3.6. Is it possible that Gr•LCS 𝔲𝑔 is Koszul?

3.1.4. Quadratic presentations
We will take from the work of Hain only the fact that the Lie algebra Gr•LCS 𝔱𝑔,1 is quadratically presented
and not a particular presentation: In the following section, we will deduce from this fact a presentation
that is convenient for us.

For 𝑔 ≥ 6, the following is [Hai97, Corollary 7.8] (beware that what is denoted 𝔱𝑔,𝑛 in [Hai15,
Theorem 7.8] is denoted 𝔱𝑛𝑔 in [Hai97] and here). It can be generalised to 𝑔 ≥ 4 using the results in
[Hai15, Section 7].
Theorem 3.7 (Hain). For 𝑔 ≥ 4 and 𝑟, 𝑛 ≥ 0, the Lie algebras with additional grading Gr•LCS 𝔱

𝑛
𝑔,𝑟 and

Gr•LCS 𝔲
𝑛
𝑔,𝑟 are quadratically presented. �

3.2. Cohomology of 𝖙𝒈,1 in low degrees

Following Morita and Kawazumi [KM96], in [KRW20c, Section 5.1] we have constructed, for each
𝑎, 𝑟 ≥ 0 with 𝑟 + 2𝑎 − 2 ≥ 0 and tuple 𝑣1, 𝑣2, . . . , 𝑣𝑟 ∈ 𝐻1 (Σ𝑔;Q), a cohomology class

𝜅𝑒𝑎 (𝑣1 ⊗ 𝑣2 ⊗ · · · ⊗ 𝑣𝑟 ) ∈ 𝐻𝑟−2+2𝑎 (𝑇𝑔,1;Q)

generalising the Miller–Morita–Mumford class 𝜅𝑒𝑎 ; we refer to it as a twisted MMM-class. (We often
write 1 for 𝑒0.) This construction is linear in the 𝑣𝑖 , is alternating under permuting the 𝑣𝑖 and is Sp2𝑔 (Z)-
equivariant.
Lemma 3.8. If {𝑎𝑖} is a basis of 𝐻1(Σ𝑔;Q) and {𝑎#

𝑖 } is the dual basis characterised by 〈𝑎#
𝑖 ·𝑎 𝑗 , [Σ𝑔]〉 =

𝛿𝑖 𝑗 , then there are relations∑
𝑖

𝜅𝑒𝑎 (𝑣1 ⊗ · · · ⊗ 𝑣 𝑗 ⊗ 𝑎𝑖) · 𝜅𝑒𝑏 (𝑎
#
𝑖 ⊗ 𝑣 𝑗+1 ⊗ · · · ⊗ 𝑣𝑟 ) = 𝜅𝑒𝑎+𝑏 (𝑣1 ⊗ · · · ⊗ 𝑣𝑟 )∑

𝑖

𝜅𝑒𝑎 (𝑣1 ⊗ · · · ⊗ 𝑣𝑟 ⊗ 𝑎𝑖 ⊗ 𝑎#
𝑖 ) = 𝜅𝑒𝑎+1 (𝑣1 ⊗ · · · ⊗ 𝑣𝑟 )∑

𝑖, 𝑗 ,𝑘

𝜅1 (𝑎𝑖 ⊗ 𝑎 𝑗 ⊗ 𝑎𝑘 ) · 𝜅1 (𝑎
#
𝑖 ⊗ 𝑎#

𝑗 ⊗ 𝑎#
𝑘 ) = 0.
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Proof. The first two are given in [KRW20c, Section 5.2]. Repeatedly applying the first two relations
shows that

∑
𝑖, 𝑗 ,𝑘 𝜅1 (𝑎𝑖 ⊗ 𝑎 𝑗 ⊗ 𝑎𝑘 ) · 𝜅1 (𝑎

#
𝑖 ⊗ 𝑎#

𝑗 ⊗ 𝑎#
𝑘 ) = −𝜅𝑒2 . Now, 𝑒2 = 𝑝1 = 3L1 and we have

𝜅L1 = 0 ∈ 𝐻2(𝑇𝑔,1;Q) as a consequence of the family signature theorem (see, e.g., [Ati69]). �

This construction for 𝑎 = 0 and 𝑟 = 3 gives a map of Sp2𝑔 (Z)-representations

𝜅1 : Λ3𝑉1 −→ 𝐻1 (𝑇𝑔,1;Q).

Remark 3.9. The linear dual 𝐻1(𝑇𝑔,1;Q) → Λ3𝑉1 of 𝜅1 may be identified with the Johnson homomor-
phism [Joh85].

Taking cup products of such classes determines an algebra homomorphism

𝜙 : Λ∗ [Λ3𝑉1 [1]] −→ 𝐻∗(𝑇𝑔,1;Q).

It follows from the discussion in [KRW20c, Section 8.2] and the estimate in [KRW20c, Section 9.3]
that as long as 𝑔 ≥ 4 this map is an isomorphism in degree 1 and its kernel in degree 2 is spanned by
the terms ∑

𝑖

𝜅1 (𝑣1 ⊗ 𝑣2 ⊗ 𝑎𝑖) · 𝜅1 (𝑎
#
𝑖 ⊗ 𝑣5 ⊗ 𝑣6) −

∑
𝑖

𝜅1(𝑣1 ⊗ 𝑣5 ⊗ 𝑎𝑖) · 𝜅1 (𝑎
#
𝑖 ⊗ 𝑣6 ⊗ 𝑣2) (IH)

for 𝑣1, 𝑣2, 𝑣5, 𝑣6 ∈ 𝐻1(Σ𝑔,1;Q), as well as the invariant vector∑
𝑖, 𝑗 ,𝑘

𝜅1 (𝑎𝑖 ⊗ 𝑎 𝑗 ⊗ 𝑎𝑘 ) · 𝜅1 (𝑎
#
𝑖 ⊗ 𝑎#

𝑗 ⊗ 𝑎#
𝑘 ) (Θ)

(which, as we showed in the proof of Lemma 3.8 above, represents −3𝜅L1 ). Furthermore, in degrees
≤ 2 the image of 𝜙 is the maximal algebraic subrepresentation 𝐻∗(𝑇𝑔,1;Q)alg.

Theorem 3.10. There is a homomorphism of trigraded algebras

𝜓 :
Λ∗ [Λ3𝑉1 [1, 0, 1]]
((IH), (Θ))

−→ 𝐻∗Lie(Gr•LCS 𝔱𝑔,1)∗,∗,

which as long as 𝑔 ≥ 4 is an isomorphism in cohomological degrees ∗ ≤ 2.

Proof. We will work with the continuous Lie algebra cohomology 𝐻∗Lie,cts(𝔱𝑔,1), cf. [Hai97, Section 5].
By [Hai97, Proposition 5.5], there is an isomorphism

Gr𝑊• 𝐻∗Lie,cts(𝔱𝑔,1) � 𝐻∗Lie(Gr𝑊• 𝔱𝑔,1), (1)

and by [Hai97, Theorem 4.10] there is an identification

Gr𝑊• 𝔱𝑔,1 = Gr−•LCS𝔱𝑔,1. (2)

By definition of the lower central series, this Lie algebra with additional grading is generated by its
piece of grading 1. Its grading 1 piece is by definition the abelianisation of the Lie algebra 𝔱𝑔,1, which is
tautologically identified with 𝐻1 (𝑇𝑔,1;Q) and so for 𝑔 ≥ 3 is the algebraic Sp2𝑔 (Z)-representation Λ3𝑉1
by a theorem of Johnson [Joh85]. It follows that the Lie algebra with additional grading Gr•LCS 𝔱𝑔,1 is a
finite-dimensional algebraic Sp2𝑔 (Z)-representation in each additional grading, so Gr𝑊• 𝐻∗Lie,cts(𝔱𝑔,1) is
a finite-dimensional algebraic Sp2𝑔 (Z)-representation in each bigrading. As the weight filtration is finite
in each cohomological degree, it follows that 𝐻∗Lie,cts(𝔱𝑔,1) is a finite-dimensional algebraic Sp2𝑔 (Z)-
representation in each degree.
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Consider the natural map

𝐻∗Lie,cts(𝔱𝑔,1) −→ 𝐻∗(𝑇𝑔,1;Q). (3)

By the discussion above, it has image in the maximal algebraic subrepresentation 𝐻∗(𝑇𝑔,1;Q)alg. As
𝐻1 (𝑇𝑔,1;Q) � Λ3𝑉1 is finite-dimensional, [Hai97, Proposition 5.1] implies that (3) is an isomorphism
in degree 1 and a monomorphism in degree 2. Thus, 𝜙 factors as

𝜙 : Λ∗ [Λ3𝑉1 [1]]
𝜓′′

−→ 𝐻∗Lie,cts(𝔱𝑔,1) −→ 𝐻∗(𝑇𝑔,1;Q)alg

and the relations (IH) and (Θ) hold in 𝐻2
Lie,cts(𝔱𝑔,1), so 𝜓 ′′ descends to give

Λ∗ [Λ3𝑉1 [1]]
((𝐼𝐻), (Θ))

𝜓′

−→ 𝐻∗Lie,cts(𝔱𝑔,1) −→ 𝐻∗(𝑇𝑔,1;Q)alg

with 𝜓 ′ an isomorphism in degree 1 and a monomorphism in degree 2. By the discussion above the
composition is an isomorphism in degrees ≤ 2, so it follows that 𝜓 ′ is too.

It follows from (1) and (2) that 𝐻1
Lie,cts(𝔱𝑔,1) is a pure Hodge structure of weight −1, so if we give the

domain of 𝜓 ′ the weight filtration given by minus its degree, then 𝜓 ′ is an isomorphism of weight-filtered
graded vector spaces in degrees ∗ ≤ 2: passing to associated graded for the weight filtration, applying
(1) and (2) again, and recalling that Gr•LCS 𝔱𝑔,1 is supported in homological degree 0, gives the map 𝜓
in the statement of the lemma and shows it is an isomorphism in cohomological degrees ∗ ≤ 2. �

Remark 3.11. It will be a consequence of Theorem A that 𝜓 is in fact an isomorphism in a stable range
of degrees.

Our next goal is to describe the quadratic presentation of Gr•LCS 𝔱𝑔,1. This uses the following lemma.

Lemma 3.12. Let W be a vector space and 𝑄 ≤ Λ2𝑊 be a subspace, and form the quadratic Lie algebra
𝔤 = Lie(𝑊)/(𝑄). Then

(i) The abelianisation map 𝔤→ 𝑊 induces an isomorphism 𝑊∨
∼
→ 𝐻1

Lie(𝔤).
(ii) The kernel of Λ2𝐻1

Lie(𝔤) → 𝐻2
Lie(𝔤) is the annihilator of Q.

Proof. As 𝔤 is quadratically presented it admits an additional grading by weight, where W is put in
weight 1. This endows the Chevalley–Eilenberg chains (coCom(𝔤[1]) [−1], 𝑑𝐶𝐸 ) with an additional
weight grading, with respect to which it takes the form (homological degree is displayed horizontally,
weight vertically)

0 ? ? ?

0 Lie2 (𝑊)/𝑄 Λ2𝑊 0

0 𝑊 0 0

0 0 0 0.

The maps from the second to the first column are given by [−,−] : Λ2𝔤→ 𝔤 so are surjective in weights
> 1, as 𝔤 is generated in weight 1. Dualising this complex, it follows that 𝐻1

Lie(𝔤) = 𝑊∨ and that there
is an exact sequence as claimed

0 −→ (Lie2(𝑊)/𝑄)∨ −→ Λ2𝑊∨ = Λ2𝐻1
Lie(𝔤) −→ 𝐻2

Lie(𝔤). �

Let us write 𝑅 � 〈(𝐼𝐻), (Θ)〉 ≤ Λ2Λ3𝑉1 and 𝑅⊥ ≤ (Λ2Λ3𝑉1)
∨ � Λ2Λ3𝑉1 for its annihilator.

https://doi.org/10.1017/fmp.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.10


12 A. Kupers and O. Randal-Williams

Remark 3.13. As long as 𝑔 ≥ 6 we have the decomposition

Λ2Λ3𝑉1 = 2𝑉0 + 3𝑉12 + 2𝑉14 +𝑉16 +𝑉2,12 +𝑉22 +𝑉22 ,12

into irreducible Sp2𝑔 (Z)-representations. The vectors (IH) generate the representation 𝑉0 + 𝑉12 + 𝑉22

(see [GN98, Proof of Corollary 2.2 (ii)]2), and the invariant vector (Θ) can be checked not to lie in (IH).
Therefore, 𝑅⊥ � 2𝑉12 + 2𝑉14 + 𝑉16 + 𝑉2,12 + 𝑉22 ,12 . For 𝑔 < 6, the representation theory is degenerate
but in principle a similar analysis can be made.

The following is essentially in [Hai97], though Hain does not give the final answer in the case of 𝔱𝑔,1.
The explicit presentation produced by Hain’s method in this case was given in [HS00] (and agrees with
the following).

Corollary 3.14 (Hain). For 𝑔 ≥ 4, there is an isomorphism

Lie(Λ3𝑉1 [0, 1])/(𝑅⊥) ∼−→ Gr•LCS 𝔱𝑔,1.

Proof. As Gr•LCS 𝔱𝑔,1 admits a quadratic presentation by Theorem 3.7, it is isomorphic to Lie(𝑊)/(𝑄)
for some vector space W of homological degree 0 and weight 1 and some 𝑄 ≤ Λ2𝑊 , and we may
apply Lemma 3.12 to determine W and Q in terms of 𝐻∗Lie(Gr•LCS 𝔱𝑔,1) for ∗ ≤ 2, which is given by
Theorem 3.10. This gives 𝑊 = (Λ3𝑉1)

∨ � Λ3𝑉1 and 𝑄 = 𝑅⊥. �

Using Lemma 2.4, it follows that for 𝑔 ≥ 4 the Lie algebra Gr•LCS 𝔱𝑔,1 is Koszul in weight ≤ 𝑊 if and
only if the commutative algebra object Λ∗ [Λ3𝑉1 [1,1] ]

( (𝐼 𝐻 ) , (Θ)) in Gr(Q-mod)N is Koszul in weight ≤ 𝑊 , allowing
us to work with the latter.

4. Representations of the downward Brauer category

In this section, we define the objects 𝐸𝑛 and 𝑍𝑛, which are augmented unital commutative algebra
objects in the category of representations of the downward (signed) Brauer category and explain how
they relate to Gr•LCS 𝔱𝑔,1 as well as each other.

4.1. The downward Brauer category

The following is identical to [KRW20c, Definition 2.15]. One thinks of the morphisms of this category
as in Figure 1.

Definition 4.1. The downward Brauer category dBr is the Q-mod-enriched category with objects finite
sets, and with vector space of morphisms dBr(𝑆, 𝑇) having basis the pairs ( 𝑓 , 𝑚𝑆) of an injection

• • • • • • •

• • • • •

𝑆

𝑇

Figure 1. A graphical representation of a morphism ( 𝑓 , 𝑚𝑆) in dBr(𝑆, 𝑇) from a 7-element set S to a
5-element set T. The order of crossings is irrelevant.

2This paper is corrected in [Aka05], but that does not affect this point.
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𝑓 : 𝑇 ↩→ 𝑆 and an unordered matching 𝑚𝑆 on the set 𝑆 \ 𝑓 (𝑇). It has a symmetric monoidality given by
disjoint union.

There is also the following signed version, identical to [KRW20c, Definition 2.20].

Definition 4.2. The downward signed Brauer category dsBr is the Q-mod-enriched category with
objects finite sets, and with vector space of morphisms dsBr(𝑆, 𝑇) given as follows. First, let dsBr(𝑆, 𝑇)′
denote the vector space with basis the pairs ( 𝑓 , 𝑚𝑆) of an injection 𝑓 : 𝑇 ↩→ 𝑆 and an ordered matching
𝑚𝑆 of 𝑆 \ 𝑓 (𝑇). Then let dsBr(𝑆, 𝑇) be the quotient space of dsBr(𝑆, 𝑇)′ by the subspace spanned by
elements ( 𝑓 , 𝑚𝑆) − (−1)𝑟 ( 𝑓 , 𝑚′𝑆) whenever 𝑚′𝑆 differ from 𝑚𝑆 by reversing precisely r pairs. It has a
symmetric monoidality given by disjoint union.

We will also write FB for the category of finite sets and bijections and consider it (afterQ-linearising)
as a subcategory of both dBr and dsBr, consisting of all objects and morphisms spanned by those ( 𝑓 , 𝑚𝑆)

with f a bijection and 𝑚𝑆 = ∅. To treat the symmetric and skew-symmetric cases simultaneously, we
will write d(s)Br for dBr if n is even and dsBr if n is odd.

Recall that Gr(Q-mod) is the category of nonnegatively graded Q-vector spaces, considered as a
Q-mod-enriched category. We shall be interested in (graded) representations of the downward (signed)
Brauer category, that is, enriched functors 𝐹 : d(s)Br → Gr(Q-mod). The category of such functors
Fun(d(s)Br, Gr(Q-mod)) is again symmetric monoidal under Day convolution, using the symmetric
monoidality on d(s)Br given by disjoint union and that on Gr(Q-mod) given by tensor product of graded
vector spaces and the Koszul sign rule. Using the tensoring of Gr(Q-mod) over Q-mod, it is given by
the enriched coend

(𝐹 ⊗ 𝐺) (𝑆) =
∫ 𝑆′,𝑆′′ ∈d(s)Br

d(s)Br(𝑆′ � 𝑆′′, 𝑆) ⊗ 𝐹 (𝑆′) ⊗ 𝐺 (𝑆′′),

and the monoidal unit is the functor 1 : d(s)Br → Ch given by Q on the empty set and 0 on all other
finite sets. One can compute the values of the Day convolution explicitly as⊕

𝑆′,𝑆′′

Pair(𝑆′ � 𝑆′′, 𝑆) ⊗𝔖𝑆′×𝔖𝑆′′
𝐹 (𝑆′) ⊗ 𝐺 (𝑆′′)

�
−→ (𝐹 ⊗ 𝐺) (𝑆), (4)

where the indexing set runs over all isomorphism classes of pairs of finite sets and Pair(𝑆′ � 𝑆′′, 𝑆) ⊂
d(s)Br(𝑆′ � 𝑆′′, 𝑆) is the span of those ( 𝑓 , 𝑚𝑆′�𝑆′′ ), where each pair in 𝑚𝑆′�𝑆′′ contains elements of
both 𝑆′ and 𝑆′′. To see this, use that Day convolution preserves colimits in each variable to reduce to
the case that F and G are representable and verify it by hand there.

4.1.1. Homotopy theory of representations of the downward Brauer category
We can do homotopy theory with these objects if we enlarge their target to Ch. One can use∞-categories
or model structures; we opt for the latter because we need to do some explicit computations.

We endow Ch with the projective model structure [GS07, Theorem 1.5]: the weak equivalences are
quasi-isomorphisms, the cofibrations are degreewise monomorphisms and the fibrations are epimor-
phisms in positive degrees. Let us define chain complexes

𝐷 (𝑛) � (Q{𝑧𝑛}[𝑛] ⊕ Q{𝑧𝑛−1}[𝑛 − 1], 𝑑𝑧𝑛 = 𝑧𝑛−1)

𝑆(𝑛 − 1) � (Q{𝑧𝑛−1}[𝑛 − 1], 0).
(5)

Then this model structure is cofibrantly generated by the set I of generating cofibrations given by
0→ 𝑆(0) and the inclusions 𝑆(𝑛−1) ↩→ 𝐷 (𝑛) for 𝑛 ≥ 1, and the set J of generating trivial cofibrations
given by the inclusions 0 ↩→ 𝐷 (𝑛) for 𝑛 ≥ 1 [GS07, Examples 3.4(1)].

Lemma 4.3. The category Fun(d(s)Br, Ch) has a model structure whose weak equivalences and fibra-
tions are objectwise. This is cofibrantly generated and monoidal with respect to Day convolution.
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The proof proceeds as in the unenriched case [Hir03, Theorem 11.6.1] by right transfer as in [Hir03,
Theorem 11.3.2]. The set of generating cofibrations 𝐼 ′ is given by the union over all 𝑆 ∈ ob(d(s)Br) of
the image of I under the left adjoint 𝑆∗ to the evaluation Fun(d(s)Br, Ch) → Ch given by 𝐹 ↦→ 𝐹 (𝑆),
and the set of generating trivial cofibrations 𝐽 ′ is in the same manner with J in place of I. That this
model structure is monoidal is [Isa09, Proposition 2.2.15].

By Lemma 4.3, the Day convolution tensor product preserves weak equivalences in each entry when
all objects involved are cofibrant. The latter hypothesis is in fact unnecessary.

Lemma 4.4. The Day convolution tensor product on d(s)Br preserves weak equivalences in each entry.

Proof. Using (4), the result follows from the facts that for rational chain complexes tensor products and
quotients by finite group actions preserve weak equivalences. �

4.2. Commutative algebras on the downward Brauer category

Recall that Com denotes the nonunital commutative algebra operad. We write AlgCom (Fun(d(s)Br, Ch))
for the category of Com-algebra objects in the symmetric monoidal category Fun(d(s)Br, Ch); these are
nonunital commutative algebra objects.

4.2.1. Unital commutative algebras
Let Com+ denote the unital commutative algebra operad, having Com+(𝑟) = Q with trivial 𝔖𝑟 -action
for all 𝑟 ≥ 0. We will write AlgCom+ (Fun(d(s)Br, Ch)) for the category of Com+-algebra objects in
Fun(d(s)Br, Ch); these are unital commutative algebra objects.

The object 1 is canonically a unital commutative algebra object; an augmentation for a unital
commutative algebra object R is a morphism 𝜖 : 𝑅 → 1. Since the unit provides a section, there is a
splitting

𝑅 = 1 ⊕ 𝑅

with 𝑅 = ker(𝜖) the augmentation ideal. This is canonically a nonunital commutative algebra object
and taking the augmentation ideal yields an equivalence of categories

Algaugm
Com+ (Fun(d(s)Br, Ch))

�
−→ AlgCom (Fun(d(s)Br, Ch)) (6)

which has an inverse given by unitalisation.

4.2.2. Homotopy theory of commutative algebras and André–Quillen homology
To do homotopy theory with the nonunital commutative algebras in Fun(d(s)Br, Ch), we transfer the
model structure to these objects.

Lemma 4.5. The category AlgCom (Fun(d(s)Br, Ch)) has a model structure whose weak equivalences
and fibrations are objectwise. This is cofibrantly generated. �

The proof proceeds as in the unenriched case by right transfer [GS07, Example 3.7]. The set of
generating cofibrations is 𝐹Com𝐼 ′ and the set of generating trivial cofibrations is 𝐹Com𝐽 ′ with 𝐹Com the
left adjoint in the free-forgetful adjunction

AlgCom (Fun(d(s)Br, Ch)) Fun(d(s)Br, Ch).
𝑈Com

𝐹Com

Remark 4.6. The same construction endows AlgCom+ (Fun(d(s)Br, Ch)) with a model structure
whose weak equivalences and fibrations are objectwise. Moreover, [Hir03, Theorem 7.6.5] endows
Algaugm

Com+ (Fun(d(s)Br, Ch)) with a model structure whose weak equivalences, cofibrations and fibrations
are such when forgetting the augmentation. Then (6) is a Quillen equivalence.
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The monad Com has an augmentation 𝜖 : Com → Id by projection to the 𝑛 = 1 summand, and
we define indecomposables 𝑄Com(𝑅) of a nonunital commutative algebra object 𝑅 as the following
reflexive coequaliser in Fun(d(s)Br, Ch)

Com(𝑅) 𝑅 𝑄Com(𝑅).
act

𝜖

This is the left adjoint in an adjunction

Fun(d(s)Br, Ch) AlgCom(Fun(d(s)Br, Ch))
𝑍Com

𝑄Com

with right adjoint the trivial algebra functor 𝑍Com endowing F with the zero multiplication. With the
model structures of Lemma 4.3 and Lemma 4.5 this is a Quillen adjunction, because the right adjoint
preserves the underlying objects and hence (trivial) fibrations. We write L𝑄Com for the total left derived
functor of 𝑄Com.

Definition 4.7. For a nonunital commutative algebra object 𝑅 : d(s)Br → Ch we define its André–
Quillen homology

AQ𝑝 (𝑅) � 𝐻𝑝 (L𝑄
Com (𝑅)).

Notation 4.8. By a slight abuse of notation, for an augmented commutative algebra R with augmentation
ideal 𝑅, we write L𝑄Com+ (𝑅) for L𝑄Com (𝑅), and AQ∗(𝑅) for AQ∗(𝑅).

4.2.3. Regular sequences
If 𝑅 ∈ Algaugm

Com+ (Fun(d(s)Br, Ch)) and 𝑧 ∈ 𝑅(∅) is a cycle of degree 𝑘 ≥ 0, then by adjunction there is
a map (∅)∗𝑆(𝑘) → 𝑅, where (∅)∗ denotes the left Kan extension along the inclusion {∅} → d(s)Br
and 𝑆(𝑘) is the chain complex of (5). Using that R is a unital commutative algebra object, this further
extends to a morphism 𝐹Com+ ((∅)∗𝑆(𝑘)) → 𝑅, using which we may form the pushout

𝐹Com+ ((∅)∗𝑆(𝑘)) 𝑅

𝐹Com+ (0) 𝑅/(𝑧)

(7)

in the category Algaugm
Com+ (Fun(d(s)Br, Ch)).

Definition 4.9. Let R and z be as above, then we say that z is not a zero divisor if the morphisms
𝑧 · − : Q[𝑘] ⊗ 𝑅(𝑆) → 𝑅(𝑆) are injective for all finite sets S.

In particular, as 𝑧2 = (−1)𝑘 𝑧2 by graded-commutativity, k must be even.

Lemma 4.10. If 𝑧 ∈ 𝑅(∅) is not a zero divisor, then (7) is a homotopy pushout.

Proof. Consider the generating cofibration 𝑆(𝑘) ↩→ 𝐷 (𝑘 + 1) of (5). Then

𝐹Com+ ((∅)∗𝑆(𝑘)) −→ 𝐹Com+ ((∅)∗𝐷 (𝑘 + 1))

is a cofibration modelling the left vertical map of (7) (it is a generating cofibration). If 𝑐𝑅
∼
→ 𝑅 is

a cofibrant replacement (we may assume it is surjective) and 𝑧′ ∈ 𝑐𝑅(∅) is a lift of z, the homotopy
pushout is by definition given by

𝑐𝑅 ⊗𝐹Com+ ( (∅)∗𝑆 (𝑘))
𝐹Com+ ((∅)∗𝐷 (𝑘 + 1))
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which is 𝑐𝑅⊗𝐹Com+ ((∅)∗𝑆(𝑘 +1)) with differential determined by 𝑑 (𝑥⊗1) = 𝑑𝑐𝑅 (𝑥) ⊗1, 𝑑 (1⊗ 𝑧𝑘+1) =
𝑧′ ⊗ 1 and the Leibniz rule.

We thus first prove that the map

𝑐𝑅 ⊗𝐹Com+ ( (∅)∗𝑆 (𝑘))
𝐹Com+ ((∅)∗𝐷 (𝑘 + 1)) −→ 𝑅 ⊗𝐹Com+ ( (∅)∗𝑆 (𝑘))

𝐹Com+ ((∅)∗𝐷 (𝑘 + 1))

induced by 𝑐𝑅
∼
→ 𝑅 is a weak equivalence. To do so, we use that there is an isomorphism

𝐹Com+ ((∅)∗𝑆(𝑘 + 1)) � (∅)∗(Λ[𝑧𝑘+1]) (8)

and filter both sides by powers of 𝑧𝑘+1 (there will be only two nonzero powers, 1 and 𝑧𝑘+1, since 𝑘 + 1
is odd). On the associated gradeds, we get either a shift of the map 𝑐𝑅 → 𝑅 or the map 0→ 0, so the
result follows.

Next, we observe that the isomorphism (8) together with the fact that 𝑘 + 1 is odd, identifies
𝑅 ⊗ 𝐹Com+ ((∅)∗𝑆(𝑘 + 1)) with the mapping cone of

𝑧 · − : Q[𝑘] ⊗ 𝑅 −→ 𝑅.

As we have assumed that z is not a zero divisor, this map is injective when evaluated on any finite set, so its
cokernel and mapping cone are quasi-isomorphic: It follows that 𝑅⊗𝐹Com+ ((∅)∗𝑆(𝑘 +1)) � 𝑅/(𝑧). �

Corollary 4.11. If 𝑧 ∈ 𝑅(∅) is not a zero divisor, then there is a homotopy cofibre sequence

(∅)∗(Q{𝑧}[𝑘]) −→ L𝑄
Com+ (𝑅) −→ L𝑄Com+ (𝑅/(𝑧)).

4.2.4. The Harrison complex
Koszul duality between the nonunital commutative and Lie operads [LV12, Section 13.1.5] gives for
𝑅 ∈ AlgCom (Fun(d(s)Br, Ch)) a weak equivalence of the form

𝐹Com (coLie(𝑅[1]) [−1]) ∼−→ 𝑅,

where the differential of the domain is a certain functorial deformation of the differential induced by that
on 𝑅 [LV12, Corollary 11.3.5], and the domain is in addition cofibrant [LV12, Proof of Theorem 12.1.6];
the proofs in [LV12] are given in Ch but go through for Fun(d(s)Br, Ch). Taking indecomposables shows
that the (shifted) Harrison complex (c.f. Section 2.1),

Harr(𝑅) [−1] � coLie(𝑅[1]) [−1]

is a model for the derived indecomposables (cf. [LV12, Proposition 13.1.4]).

Lemma 4.12. L𝑄Com (𝑅) � Harr(𝑅) [−1].

Proof. For 𝑐𝑅 ∼
−→ 𝑅 a cofibrant replacement, there is a commutative diagram

𝑄Com(𝑐𝑅) 𝑄Com(𝐹Com (coLie(𝑐𝑅[1]) [−1])) coLie(𝑐𝑅[1]) [−1]

𝑄Com(𝐹Com (coLie(𝑅[1]) [−1])) coLie(𝑅[1]) [−1] .

By definition 𝑐𝑅 is a cofibrant, and 𝐹Com (coLie(𝑐𝑅[1]) [−1]) is too by the discussion above. The left
horizontal map is thus a weak equivalence; it is a left Quillen functor applied to a weak equivalence
between cofibrant objects. The right vertical map is a weak equivalence as coLie(−) preserves weak
equivalences (as the tensor product does by Lemma 4.4 and coinvariants for a finite group action do). �
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4.2.5. Additional gradings and Koszulness
If a nonunital commutative algebra object 𝑅 takes values in the subcategory Gr(Q-mod) ⊂ Ch, then the
objects AQ𝑝 (𝑅) inherit a further grading, as in Section 2.1. We set

𝐻Com
𝑝 (𝑅)𝑞 � AQ𝑝+𝑞−1(𝑅)𝑞 � 𝐻𝑝+𝑞 (Harr(𝑅))𝑞

and call p the Harrison degree, q the internal degree and 𝑝 + 𝑞 − 1 the total degree. If 𝑅 also has a
weight grading, that is, 𝑅 ∈ AlgCom (Fun(d(s)Br, Gr(Q-mod)N)), then its derived indecomposables can
be formed in ChN, giving them an additional weight grading (and similarly for the Harrison complex)
and we write

𝐻Com
𝑝 (𝑅)𝑞,𝑤 � AQ𝑝+𝑞−1(𝑅)𝑞,𝑤 � 𝐻𝑝+𝑞 (Harr(𝑅))𝑞,𝑤 ,

for the piece of weight w.

Definition 4.13. For 𝑅 ∈ AlgCom(Fun(d(s)Br, Gr(Q-mod)N)), we say that 𝑅 is Koszul in weight≤ 𝑊 if
𝐻Com

𝑝 (𝑅)𝑞,𝑤 = 0 when 𝑝 ≠ 𝑤 and 𝑤 ≤ 𝑊 . If 𝑊 = ∞, then we simply say that R is Koszul.

The following lemma gives an easy criterion for half of this inequation:

Lemma 4.14. If each 𝑅(𝑆) is supported in weight ≥ 1, then 𝐻Com
𝑝 (𝑅)𝑞,𝑤 = 0 if 𝑝 > 𝑤.

Proof. Neglecting the differential, the Harrison complex splits as⊕
𝑘≥0

coLie(𝑘) ⊗𝔖𝑘 (𝑅[1])
⊗𝑘 .

The weight of 𝑅[1] is ≥ 1, so the weight of (𝑅[1])⊗𝑝 is ≥ 𝑝. As 𝐻Com
𝑝 (𝑅) is a subquotient of

coLie(𝑝) ⊗𝔖𝑝 (𝑅[1])⊗𝑝 , it is supported in weight ≥ 𝑝. �

4.3. Realisation

If H is a vector space with a (skew) symmetric form 𝜆, then we will now explain how a representation
of the downward (signed) Brauer category yields a representation of Aut(𝐻, 𝜆).

Definition 4.15. If 𝜆 is a symmetric form on H, there is associated a functor

𝐾 : dBr −→ Gr(Q-mod)

given as follows: To the object S, we assign 𝐾 (𝑆) = 𝐻⊗𝑆 , considered as a graded vector space in grading
zero, and to the morphism ( 𝑓 , 𝑚𝑆) : 𝑆 → 𝑇 we assign the map 𝐻⊗𝑆 → 𝐻⊗𝑇 given by applying 𝜆 to
each of the pairs in 𝑚𝑆 and using the bijection 𝑓 (𝑇)

∼
→ 𝑇 to induce an isomorphism 𝐻⊗ 𝑓 (𝑇 )

∼
→ 𝐻⊗𝑇

on the remaining factors.
Similarly, if 𝜆 is a skew-symmetric form on H there is associated a functor

𝐾 : dsBr −→ Gr(Q-mod)

given in the same way on objects and given on a morphism [( 𝑓 , 𝑚𝑆)] : 𝑆 → 𝑇 by applying 𝜆 to each of
the ordered pairs in 𝑚𝑆; as 𝜆 is skew-symmetric this is well defined.

Remark 4.16. In [KRW20c] K was defined on the full Brauer category (s)Br, and its restriction to
d(s)Br was denoted 𝑖∗𝐾 . We have no need for the full Brauer category here and hence opt to simplify
the notation.

In either case, dualising K gives a functor 𝐾∨ : d(s)Brop → Gr(Q-mod), and taking the coend with
this defines a functor

𝐾∨ ⊗d(s)Br − : Fun(d(s)Br, Gr(Q-mod)) −→ Gr(Q-mod).

As explained in [KRW20c, Section 2.2.1] (following [SS15]), this has a strong symmetric monoidality.
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The data (𝐻, 𝜆) is – tautologically – equipped with an action of the group Aut(𝐻, 𝜆), and hence the
functor K is too. Thus, the above construction may be promoted to a functor

𝐾∨ ⊗d(s)Br − : Fun(d(s)Br, Gr(Q-mod)) −→ Gr(Rep(Aut(𝐻, 𝜆))),

that is, to take values in graded Aut(𝐻, 𝜆)-representations.
From now on, we take (𝐻, 𝜆) to be (𝐻 (𝑔), 𝜆) as in Section 2.4 so that Aut(𝐻, 𝜆) = O𝜖 (𝐻 (𝑔)). This

functor is a left adjoint so is right exact but is not left exact in general. However, it has the following
stable left exactness property. Let us say that a functor 𝐴 : d(s)Br→ Q-mod is supported on sets of size
≤ 𝑁 if 𝐴(𝑆) = 0 whenever |𝑆 | > 𝑁 . (We take the target to be Q-modules rather than graded Q-modules
as we will later wish to consider functors to graded Q-modules whose support depends on the grading.)

Lemma 4.17. For each 𝐴 ∈ Fun(d(s)Br,Q-mod) and finite set S there is a surjective map

𝐴(𝑆) −→ [𝐻 (𝑔)[𝑆 ] ⊗ (𝐾
∨ ⊗d(s)Br 𝐴)]O𝜖 (𝐻 (𝑔))

which is injective when |𝑆 | ≤ 𝑔.

Proof. Recall from Section 2.4 that 𝐻 (𝑔)[𝑆 ] is a certain quotient of 𝐻 (𝑔)⊗𝑆 , and consider

[𝐻 (𝑔)[𝑆 ] ⊗ (𝐾
∨ ⊗d(s)Br 𝐴)]O𝜖 (𝐻 (𝑔)) =

∫ 𝑇 ∈d(s)Br
[𝐻 (𝑔)[𝑆 ] ⊗ 𝐾 (𝑇)∨]O𝜖 (𝐻 (𝑔)) ⊗ 𝐴(𝑇).

There is a natural transformation of two variables

d(s)Br(𝑇, 𝑆) −→ [𝐻 (𝑔)[𝑆 ] ⊗ 𝐾 (𝑇)∨]O𝜖 (𝐻 (𝑔))

given by the functoriality of K, which is surjective, and is injective if |𝑆 | + |𝑇 | ≤ 2𝑔, by [KRW20c,
Theorem 2.6]. By the co-Yoneda lemma it gives a map

𝐴(𝑆) −→ [𝐻 (𝑔)[𝑆 ] ⊗ (𝐾
∨ ⊗d(s)Br 𝐴)]O𝜖 (𝐻 (𝑔))

which is surjective, and injective for |𝑆 | ≤ 𝑔. �

Lemma 4.18. If 0→ 𝐴→ 𝐵→ 𝐶 → 0 is a short exact sequence in the category Fun(d(s)Br,Q-mod)
such that B is supported on sets of size ≤ 𝑔, then

0 −→ 𝐾∨ ⊗d(s)Br 𝐴 −→ 𝐾∨ ⊗d(s)Br 𝐵 −→ 𝐾∨ ⊗d(s)Br 𝐶 −→ 0

is again exact.

(The following argument provides the missing second half of the proof of [KRW20c, Corollary 2.18],
which is not as immediate as we had suggested.)

Proof. It is right exact as 𝐾∨ ⊗d(s)Br − is a left adjoint, so we only need to show that the left-hand map
is injective. As B is supported on sets of size ≤ 𝑔 and A is a subobject of B, A also is supported on sets
of size ≤ 𝑔.

The map

𝐴(𝑆) −→ [𝐻 [𝑆 ] ⊗ (𝐾
∨ ⊗d(s)Br 𝐴)]O𝜖 (𝐻 (𝑔))

of Lemma 4.17 is an isomorphism for |𝑆 | ≤ 𝑔. As the domain vanishes if |𝑆 | > 𝑔, this map is an
isomorphism. The same argument holds with A replaced by B, and so we deduce that the map

[𝐻 [𝑆 ] ⊗ (𝐾
∨ ⊗d(s)Br 𝐴)]O𝜖 (𝐻 (𝑔)) −→ [𝐻 [𝑆 ] ⊗ (𝐾

∨ ⊗d(s)Br 𝐵)]O𝜖 (𝐻 (𝑔))

is injective for all finite sets S.
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If 𝐾∨ ⊗d(s)Br 𝐴 → 𝐾∨ ⊗d(s)Br 𝐵 were not injective, then its kernel would contain an irreducible
algebraic O𝜖 (𝐻 (𝑔))-representation, which would be detected by applying [𝐻 [𝑆 ] ⊗ −]O𝜖 (𝐻 (𝑔)) for some
finite set S. Thus, the map is injective as claimed. �

4.3.1. Realisation and Koszulness
The above results imply that realisation preserves Koszulness in a range increasing with g.
Lemma 4.19. Suppose that the weight w piece of a nonunital commutative algebra 𝑅 ∈

AlgCom(Fun(d(s)Br, Gr(Q-mod)N)) is supported on sets of size ≤ 𝜆𝑤 for some 𝜆 ∈ N>0. Then as long
as 𝑤 ≤ 1

𝜆𝑔 we have

𝐾∨ ⊗d(s)Br 𝐻Com
𝑝 (𝑅)𝑞,𝑤 � 𝐻Com

𝑝 (𝐾∨ ⊗d(s)Br 𝑅)𝑞,𝑤 .

Proof. As an explicit model for the derived indecomposables of 𝑅 we can take the Harrison complex
(Lemma 4.12):

L𝑄Com(𝑅) � coLie(𝑅[1]) [−1] = Harr(𝑅) [−1] .

The weight w piece of 𝑅 is supported on sets of size ≤ 𝜆𝑤, that is, 𝑅(𝑆)𝑞,𝑤 = 0 if 𝑤 < 1
𝜆 |𝑆 |. It follows

that tensor powers of 𝑅 have the same property, and so Schur functors of 𝑅 have the same property, and
hence the chain complex with additional grading Harr(𝑅) has this vanishing property too. In particular,
for each 𝑤 ≤ 1

𝜆𝑔, Harr(𝑅)𝑞,𝑤 is a chain complex supported on sets of size ≤ 𝑔, so by Lemma 4.18 the
operation 𝐾∨ ⊗dsBr − is exact on it. Thus, as long as 𝑤 ≤ 1

𝜆𝑔, we have

𝐾∨ ⊗d(s)Br 𝐻Com
𝑝 (𝑅)𝑞,𝑤 � 𝐻𝑝+𝑞 (𝐾

∨ ⊗d(s)Br Harr(𝑅))𝑞,𝑤
� 𝐻𝑝+𝑞 (Harr(𝐾∨ ⊗d(s)Br 𝑅))𝑞,𝑤

� 𝐻Com
𝑝 (𝐾∨ ⊗d(s)Br 𝑅)𝑞,𝑤 ,

where for the second step we have used that 𝐾∨ ⊗d(s)Br − is an additive strong symmetric monoidal left
adjoint and so commutes with the formation of the Harrison complex. �

4.4. The main examples

There are two families of examples we shall work with, which are both special cases of the functors
P (−;B)′

≥0 ⊗ det⊗𝑛 from [KRW20c, Definition 1.3], and we follow that definition.
Definition 4.20. A partition of a finite set S is a finite collection of possibly empty subsets {𝑆𝛼}𝛼∈𝐼 of
S which are pairwise disjoint and whose union is S. A partition is admissible if each part has size ≥ 3.

For 𝑛 ∈ N>0, let 𝑍𝑛 : d(s)Br → Gr(Q-mod) be the functor which to a finite set S assigns the vector
space

𝑍𝑛 (𝑆) = Q{admissible partitions {𝑆𝛼}𝛼∈𝐼 of 𝑆} ⊗ det(Q𝑆)⊗𝑛,

made into a graded vector space by declaring a part 𝑆𝛼 to have degree 𝑛(|𝑆𝛼 | − 2), and a partition to
have degree the sum of the degrees of its parts.

The linear map 𝑍𝑛 (𝑆) → 𝑍𝑛 (𝑇) induced by a bijection ( 𝑓 ,∅) : 𝑆 → 𝑇 is simply given by rela-
belling elements in a partition and by the induced map on determinants. The linear map induced by
(𝑖𝑛𝑐, (𝑥, 𝑦)) : 𝑆 → 𝑆 \{𝑥, 𝑦} assigns to the element [{𝑆𝛼}𝛼∈𝐼 ] ⊗ (𝑥∧ 𝑦∧ 𝑠3∧· · ·∧ 𝑠 |𝑆 | )

⊗𝑛 the following:

(i) If some 𝑆𝛽 contains {𝑥, 𝑦}, then it assigns 0.
(ii) If x and y lie in different parts 𝑆𝛽 and 𝑆𝛾 , then these are merged into a single new part 𝑆𝛽\{𝑥}∪𝑆𝛾\{𝑦}

and it assigns

[{𝑆𝛼}𝛼≠𝛽,𝛾 ∪ {𝑆𝛽 \ {𝑥} ∪ 𝑆𝛾 \ {𝑦}}] ⊗ (𝑠3 ∧ · · · ∧ 𝑠 |𝑆 | )
⊗𝑛.

On a more general morphism in d(s)Br, the effect of 𝑍𝑛 is determined by the above and functoriality.
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Figure 2. The effect of the morphism (𝑖𝑛𝑐, {1, 2}) : 𝑆 = 8 → 𝑆′ = 8 \ {1, 2} on two elements of
𝑍𝑛 (𝑆): The first is the partition of S into parts 𝑆𝛼 = {1, . . . , 5} and 𝑆𝛽 = {6, 7, 8} and the second is
the partition into parts 𝑆′𝛼′ = {2, . . . , 6} and 𝑆′𝛽′ = {1, 7, 8}. Similarly to [KRW20c, Section 5.3], we
represent each part in a partition by a corolla whose legs are labelled by the elements in that part;
we have suppressed the orientations. In this graphical notation, morphisms in d(s)Br act by reordering
labels and connecting legs, collapsing internal edges and mapping to zero whenever a loop appears.

Definition 4.21. A weighted partition of a set S is a partition {𝑆𝛼}𝛼∈𝐼 of S along with a weight
𝑔𝛼 ∈ {0, 1, 2, 3, . . .} for each part. A weighted partition is admissible if

(i) Each part of size 0 has weight ≥ 2.
(ii) Each part of size 1 or 2 has weight ≥ 1.

For 𝑛 ∈ N>0, let 𝐸𝑛 : d(s)Br → Gr(Q-mod) be the functor which to a finite set S assigns the vector
space

𝐸𝑛 (𝑆) = Q{admissible weighted partitions {(𝑆𝛼, 𝑔𝛼)}𝛼∈𝐼 of 𝑆} ⊗ det(Q𝑆)⊗𝑛,

made into a graded vector space by declaring a weighted part (𝑆𝛼, 𝑔𝛼) to have degree 𝑛(2𝑔𝛼 + |𝑆𝛼 | −2),
and a weighted partition to have degree the sum of the degrees of its weighted parts.

The linear map 𝐸𝑛 (𝑆) → 𝐸𝑛 (𝑇) induced by a bijection ( 𝑓 ,∅) : 𝑆 → 𝑇 is simply given by rela-
belling elements in a partition and by the induced map on determinants. The linear map induced by
(𝑖𝑛𝑐, (𝑥, 𝑦)) : 𝑆 → 𝑆 \ {𝑥, 𝑦} assigns to the element [{(𝑆𝛼, 𝑔𝛼)}𝛼∈𝐼 ] ⊗ (𝑥 ∧ 𝑦 ∧ 𝑠3 ∧ · · · ∧ 𝑠 |𝑆 | )

⊗𝑛 the
following:

(i) If some 𝑆𝛽 contains {𝑥, 𝑦}, then it assigns

[{(𝑆𝛼, 𝑔𝛼)}𝛼≠𝛽 ∪ {(𝑆𝛽 \ {𝑥, 𝑦}, 𝑔𝛽 + 1)}] ⊗ (𝑠3 ∧ · · · ∧ 𝑠 |𝑆 | )
⊗𝑛,
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Figure 3. The effect of the morphism (𝑖𝑛𝑐, {1, 2}) : 𝑆 = 8→ 𝑆′ = 8 \ {1, 2} on two elements of 𝐸𝑛 (𝑆),
once more representing each part in a partition by a corolla and suppressing the orientations. Each
part 𝑆𝛼 in a partition – that is, each corolla – has a weight 𝑔𝛼 ≥ 0 indicated with a label at the vertex.
Morphisms in d(s)Br act by reordering labels and connecting labels, collapsing internal edges (adding
their weights) and removing loops (adding 1 to the weight of the vertex it is attached to).

(ii) If x and y lie in different parts 𝑆𝛽 and 𝑆𝛾 , then it assigns

[{(𝑆𝛼, 𝑔𝛼)}𝛼≠𝛽,𝛾 ∪ {(𝑆𝛽 \ {𝑥} ∪ 𝑆𝛾 \ {𝑦}, 𝑔𝛽 + 𝑔𝛾)}] ⊗ (𝑠3 ∧ · · · ∧ 𝑠 |𝑆 | )
⊗𝑛.

On a more general morphism in d(s)Br, the effect of 𝐸𝑛 is determined by the above and functoriality.

The functors 𝑍𝑛 and 𝐸𝑛 have lax symmetric monoidalities given by disjoint union, making them into
unital commutative algebra objects in Fun(d(s)Br, Gr(Q-mod)). As they are concentrated in homological
degrees which are multiples of n, we can give them an additional weight grading by declaring it to be the
homological degree divided by n. Furthermore, both 𝑍𝑛 and 𝐸𝑛 have unique augmentations, by sending
all (weighted) partitions of nonempty sets to zero and the empty partition of the empty set to 1. Up
to scaling the homological grading each of these augmented unital commutative algebra objects only
depends on the parity of n.

For each n, there is a (lax symmetric monoidal) epimorphism 𝐸𝑛 → 𝑍𝑛 given by sending a part
(𝑆𝛼, 0) to 𝑆𝛼, and parts with strictly positive weight to zero. It is compatible with the augmentations.

After having introduced 𝐸𝑛 and 𝑍𝑛 we will now explain that, as commutative algebra objects, they
differ only by the attachment of a single commutative algebra cell. As we mentioned above, there is a
map of commutative algebra objects 𝐸𝑛 → 𝑍𝑛 and hence maps L𝑄Com+ (𝐸𝑛) → L𝑄

Com+ (𝑍𝑛). Taking
the homotopy cofibre of this, we may define the relative homology groups 𝐻Com

𝑝 (𝑍𝑛, 𝐸𝑛)𝑞,𝑤 which
participate in the usual long exact sequence. We have the following description of this relative homology.
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Theorem 4.22. We have

𝐻Com
𝑝 (𝑍𝑛, 𝐸𝑛)𝑞,𝑤 (𝑆) �

{
Q if |𝑆 | = 1 and (𝑝, 𝑞, 𝑤) = (2, 𝑛, 1),
0 otherwise.

Proof. As the weight is given by the homological grading divided by n, we may neglect it. Let us
write 𝑛 � {1, 2, . . . , 𝑛} and in particular 1 = {1}. There is a map 𝑆(𝑛) → 𝐸𝑛 (1) corresponding to the
weighted partition (1, 1) of the set 1, with 𝑆(𝑛) as in (5). This is adjoint to a map 1∗𝑆(𝑛) → 𝐸𝑛 and
hence, as the target is a unital commutative algebra object, to a map 𝜙 : 𝐹Com+ (1∗𝑆(𝑛)) −→ 𝐸𝑛. Using
this we may form the pushout

𝐹Com+ (1∗𝑆(𝑛)) 𝐸𝑛

𝐹Com+ (1∗𝐷 (𝑛 + 1)) 𝐸 ′𝑛

𝜙

of unital commutative algebra objects. As (1, 1) maps to zero in 𝑍𝑛 (1), there is a factorisation

𝐸𝑛 −→ 𝐸 ′𝑛 −→ 𝑍𝑛. (9)

Although 𝐸 ′𝑛 : d(s)Br → Ch does not take values in the subcategory Gr(Q-mod) ⊂ Ch, we can
nonetheless give it an ‘internal grading’ and ‘weight’ by declaring both 1∗𝑆(𝑛) and 1∗𝐷 (𝑛 + 1) to have
internal degree n and weight 1. Then the maps (9) both preserve these two additional gradings. We
will show that the map 𝐸 ′𝑛 → 𝑍𝑛 is a weak equivalence: As the cofibre of the map L𝑄Com+ (𝐸𝑛) →

L𝑄Com+ (𝐸 ′𝑛) is 1∗(𝐷 (𝑛+1)/𝑆(𝑛)) = 1∗𝑆(𝑛+1) by construction (supported in total degree 𝑛+1, internal
degree n, and weight 1) the formula in the statement of the theorem follows.

Pushouts of commutative algebra objects are given by the relative tensor product, and – neglecting
the differential – we have

𝐹Com+ (1∗𝐷 (𝑛 + 1)) = 𝐹Com+ (1∗𝑆(𝑛) ⊕ 1∗𝑆(𝑛 + 1))

= 𝐹Com+ (1∗𝑆(𝑛)) ⊗ 𝐹Com+ (1∗𝑆(𝑛 + 1))

so that – neglecting the differential – we have

𝐸 ′𝑛 = 𝐸𝑛 ⊗ 𝐹Com+ (1∗𝑆(𝑛 + 1)).

Claim. We have 𝐹Com+ (1∗𝑆(𝑛 + 1)) (𝑇) � det(Q𝑇 )⊗𝑛+1 [(𝑛 + 1) |𝑇 |], and the functoriality is such that a
morphism ( 𝑓 , 𝑚) in d(s)Br with 𝑚 ≠ ∅ acts as zero.
Proof of claim. By definition of Day convolution, we have

(1∗𝑆(𝑛 + 1))⊗𝑝 (𝑇) = 𝑆(𝑛 + 1)⊗𝑝 ⊗ d(s)Br({1, 2, . . . , 𝑝}, 𝑇)

where 𝔖𝑝 acts diagonally, and so

𝐹Com+ (1∗𝑆(𝑛 + 1)) (𝑇) =
⊕
𝑝≥0

𝑆(𝑛 + 1)⊗𝑝 ⊗𝔖𝑝 d(s)Br({1, 2, . . . , 𝑝}, 𝑇).

Write 𝑒𝑛+1 ∈ 𝑆(𝑛 + 1) for the basis element. If ( 𝑓 , 𝑚) ∈ d(s)Br({1, 2, . . . , 𝑝}, 𝑇) has 𝑚 ≠ ∅, say
with (𝑥, 𝑦) ∈ 𝑚, then

(𝑒𝑛+1 ⊗ · · · ⊗ 𝑒𝑛+1) ⊗𝔖𝑝 ( 𝑓 , 𝑚) = (𝑥 𝑦) · (𝑒𝑛+1 ⊗ · · · ⊗ 𝑒𝑛+1) ⊗𝔖𝑝 (𝑥 𝑦) · ( 𝑓 , 𝑚)

= (−1)𝑛+1 (𝑒𝑛+1 ⊗ · · · ⊗ 𝑒𝑛+1) ⊗𝔖𝑝 (−1)𝑛 ( 𝑓 , 𝑚)
= −(𝑒𝑛+1 ⊗ · · · ⊗ 𝑒𝑛+1) ⊗𝔖𝑝 ( 𝑓 , 𝑚)
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Figure 4. Intuitive indication of the map 𝜒. Weights 𝑔𝛼 are not indicated, and weights ℎ𝛼 = 1 are
indicated by a half-edge with a red end.

and so this term vanishes. Hence, only the term with 𝑝 = |𝑇 | contributes, giving 𝐹Com+ (1∗𝑆(𝑛+1)) (𝑇) =
𝑆(𝑛 + 1)⊗ |𝑇 | ⊗𝔖|𝑇 | d(s)Br({1, 2, . . . , |𝑇 |}, 𝑇). The claim is simply an interpretation of this formula. �

Using the expression (4) for Day convolution, neglecting the differential we have

𝐸 ′𝑛 (𝑆) =
⊕
𝑆′,𝑆′′

Pair(𝑆′ � 𝑆′′, 𝑆) ⊗𝔖𝑆′×𝔖𝑆′′
𝐸𝑛 (𝑆

′) ⊗ det(Q𝑆′′ ) ⊗𝑛+1 [(𝑛 + 1) |𝑆′′ |] . (10)

We will give an interpretation of this in terms of decorated partitions. Define a biweighted partition of
a set S to be a partition {𝑆𝛼}𝛼∈𝐼 of a subset of S along with a weight 𝑔𝛼 ∈ {0, 1, 2, 3, . . .} and a further
weight ℎ𝛼 ∈ {0, 1} for each part. A biweighted partition is admissible if

(i) when |𝑆𝛼 | = 0 then 𝑔𝛼 + ℎ𝛼 ≥ 2,
(ii) when |𝑆𝛼 | = 1, 2 then 𝑔𝛼 + ℎ𝛼 ≥ 1.

For such a biweighted partition, we let 𝐴 � ∪𝛼∈𝐼 𝑆𝛼, 𝐵 � 𝑆 \ 𝐴 and 𝐽 � {𝛼 ∈ 𝐼 | ℎ𝛼 = 1}. Define

𝐸 ′′𝑛 (𝑆) =
⊕

admissible biweighted partitions
{(𝑆𝛼 ,𝑔𝛼 ,ℎ𝛼) }𝛼∈𝐼 of 𝑆

det(Q𝐽 ) ⊗ det(Q𝐵) ⊗ det(Q𝑆)⊗𝑛

made into a graded vector space by declaring a biweighted partition to have degree (𝑛 + 1) |𝐵 | +∑
𝛼∈𝐼 𝑛(2𝑔𝛼 + |𝑆𝛼 | − 2) + (2𝑛 + 1)ℎ𝛼.
Define a morphism of graded vector spaces

𝜒 : 𝐸 ′′𝑛 (𝑆) −→ 𝐸 ′𝑛 (𝑆)

on ({𝑆𝛼}𝛼∈𝐼 , 𝑔𝛼, ℎ𝛼) ⊗ ( 𝑗1 ∧ · · · ∧ 𝑗 |𝐽 | ) ⊗ (𝑏1 ∧ · · · ∧ 𝑏 |𝐵 | ) ⊗ (𝑎1 ∧ · · · ∧ 𝑎 |𝐴 | ∧ 𝑏1 ∧ · · · ∧ 𝑏 |𝐵 | )
⊗𝑛 as

follows. Let 𝑆′ � 𝐴 ∪ 𝐽 and 𝑆′′ � 𝐵 ∪ 𝐽, and let 𝜙 = ( 𝑓 , 𝑚) : 𝑆′ � 𝑆′′ → 𝑆 be the morphism in d(s)Br
with injection 𝑓 : 𝑆 → 𝑆′ � 𝑆′′ given by sending 𝑠 ∈ 𝑆 to 𝑠 ∈ 𝑆′ if 𝑠 ∈ 𝐴, and to 𝑠 ∈ 𝑆′′ if 𝑠 ∈ 𝐵, and
matching m given by pairing each element of 𝐽 ⊂ 𝑆′ with the same element of 𝐽 ⊂ 𝑆′′, putting that of
𝑆′ first. For 𝛼 ∈ 𝐼, let

𝑆′𝛼 �

{
𝑆𝛼 if ℎ𝛼 = 0,
𝑆𝛼 ∪ {𝛼} if ℎ𝛼 = 1,

⊂ 𝑆′.

Then 𝜙, ({𝑆′𝛼}𝛼∈𝐼 , 𝑔𝛼) ⊗ (𝑎1 ∧ · · · ∧ 𝑎 |𝐴 | ∧ 𝑗1 ∧ · · · ∧ 𝑗 |𝐽 | )
⊗𝑛, (𝑏1 ∧ · · · ∧ 𝑏 |𝐵 | ∧ 𝑗1 ∧ · · · ∧ 𝑗 |𝐽 | )

⊗𝑛+1

represents an element of (10). Note that permuting the 𝑗𝑖 acts by the sign, permuting the 𝑎𝑖 acts by the
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nth power of the sign and permuting the 𝑏𝑖 acts via the (𝑛 + 1)st power of the sign, making this map
well defined.

Claim. The map 𝜒 is an isomorphism.

Proof of claim. Suppose we are given a morphism 𝜙 = ( 𝑓 , 𝑚) : 𝑆′ � 𝑆′′ → 𝑆, ({𝑆′𝛼}𝛼∈𝐼 , 𝑔𝛼) ⊗ (𝑠′1 ∧
· · ·∧ 𝑠′

|𝑆′ |
) ⊗𝑛 ∈ 𝐸𝑛 (𝑆

′), and (𝑠′′1 ∧· · ·∧ 𝑠
′′
|𝑆′′ |
) ⊗𝑛+1 ∈ det(Q𝑆′′ ) ⊗𝑛+1 [(𝑛+1) |𝑆′′ |], representing an element

of 𝐸 ′𝑛 (𝑆) in the description (10).
Suppose that this data is such that there are ordered pairs (𝑠′𝑖 , 𝑠

′′
𝑖 ), (𝑠

′
𝑗 , 𝑠
′′
𝑗 ) with 𝑖 ≠ 𝑗 , but 𝑠′𝑖 , 𝑠

′
𝑗 ∈ 𝑆′𝛼.

The permutation (𝑠′𝑖 𝑠
′
𝑗 ) (𝑠

′′
𝑖 𝑠′′𝑗 ) gives a morphism 𝜓 : 𝑆′ � 𝑆′′ → 𝑆′ � 𝑆′′ such that 𝜙 ◦ 𝜓 = 𝜓.

Thus, the data above is equivalent to the data 𝜙, (𝑠′𝑖 𝑠
′
𝑗 ) · (({𝑆

′
𝛼}𝛼∈𝐼 , 𝑔𝛼) ⊗ (𝑠

′
1 ∧ · · · ∧ 𝑠′

|𝑆′ |
) ⊗𝑛),

(𝑠′′𝑖 𝑠′′𝑗 ) · (𝑠
′′
1 ∧ · · · ∧ 𝑠′′

|𝑆′′ |
) ⊗𝑛+1. That is: The data 𝜙, (−1)𝑛 ({𝑆′𝛼}𝛼∈𝐼 , 𝑔𝛼) ⊗ (𝑠′1 ∧ · · · ∧ 𝑠′

|𝑆′ |
), and

(−1)𝑛+1 (𝑠′′1 ∧ · · · ∧ 𝑠′′
|𝑆′′ |
) ⊗𝑛+1 and so minus the original element. Thus, such elements vanish, and we

may suppose that for each 𝛼 there is at most one pair (𝑠′, 𝑠′′) ∈ 𝑚 with 𝑠′ ∈ 𝑆′𝛼. Using this, it is easy to
produce an inverse to the map 𝜒: we set 𝑆𝛼 � 𝑆′𝛼 \ {𝑠

′} and ℎ𝛼 = 1 if (𝑠′, 𝑠′′) ∈ 𝑚 with 𝑠′ ∈ 𝑆′𝛼, and
otherwise set 𝑆𝛼 � 𝑆′𝛼 and ℎ𝛼 = 0. �

The differential of 𝐸 ′𝑛 (𝑆) is given under the isomorphism 𝜒 by sending the element
({𝑆𝛼}𝛼∈𝐼 , 𝑔𝛼, ℎ𝛼) ⊗ ( 𝑗1∧· · ·∧ 𝑗 |𝐽 | ) ⊗ (𝑏1∧· · ·∧𝑏 |𝐵 | ) ⊗ (𝑎1∧· · ·∧𝑎 |𝐴 | ∧𝑏1∧· · ·∧𝑏 |𝐵 | )

⊗𝑛 of 𝐸 ′′𝑛 (𝑆) to∑
𝛽∈𝐽 ⊂𝐼

({𝑆𝛼}𝛼∈𝐼 , 𝑔𝛼 + 𝛿𝛼𝛽 , ℎ𝛼 − 𝛿𝛼𝛽) ⊗ ( 𝑗1 ∧ · · · ∧ 𝑗 |𝐽 | )/𝛽

⊗ (𝑏1 ∧ · · · ∧ 𝑏 |𝐵 | ) ⊗ (𝑎1 ∧ · · · ∧ 𝑎 |𝐴 | ∧ 𝑏1 ∧ · · · ∧ 𝑏 |𝐵 | )
⊗𝑛

+
∑
𝑏∈𝐵

({𝑆𝛼}𝛼∈𝐼∪{𝑏}, 𝑔𝛼, ℎ𝛼) ⊗ ( 𝑗1 ∧ · · · ∧ 𝑗 |𝐽 | )

⊗ (𝑏1 ∧ · · · ∧ 𝑏 |𝐵 | )/𝑏 ⊗ (𝑎1 ∧ · · · ∧ 𝑎 |𝐴 | ∧ 𝑏1 ∧ · · · ∧ 𝑏 |𝐵 | )
⊗𝑛,

where 𝑆𝑏 = {𝑏}, 𝑔𝑏 = 1, ℎ𝑏 = 0. In particular, the partition 𝑆 =
⋃

𝛼 𝑆𝛼 ∪
⋃

𝑏∈𝐵{𝑏} of S is preserved by
the differential, so we recognise the chain complex 𝐸 ′′𝑛 (𝑆) as a direct sum of complexes, one for each
partition of S. Furthermore, we recognise the chain complex for the partition 𝑆 =

⋃
𝛼 𝑆𝛼 ∪

⋃
𝑏∈𝐵{𝑏} as

the tensor product of chain complexes, one for each part of this partition.

(i) That corresponding to the part 𝑆𝛼 is given by⊕
𝑔𝛼+1≥𝑟𝛼

(𝑆𝛼, 𝑔𝛼, 1) ⊗ 𝛼 ⊗ 1 𝑑
−→

⊕
𝑔𝛼≥𝑟𝛼

(𝑆𝛼, 𝑔𝛼, 0) ⊗ 1 ⊗ 1

(tensored with det(Q𝑆𝛼 )⊗𝑛) with 𝑑 ((𝑆𝛼, 𝑔𝛼, 1) ⊗ 𝛼 ⊗ 1) = (𝑆𝛼, 𝑔𝛼 + 1, 0) ⊗ 1 ⊗ 1, where 𝑟𝛼 is 2
if |𝑆𝛼 | is 0, is 1 if |𝑆𝛼 | is 1 or 2, and is 0 otherwise. The homology of this complex is given by⊕

0≥𝑟𝛼 (𝑆𝛼, 0, 0) ⊗ 1⊗ 1, that is, is 1-dimensional as long as |𝑆𝛼 | > 2 and zero otherwise, recalling
the requirement 𝑔𝛼 ≥ 0.

(ii) That corresponding to the part {𝑏} with 𝑏 ∈ 𝐵 is given by

(∅,−,−) ⊗ 1 ⊗ 𝑠
𝑑
−→
∼
({𝑏}, 1, 0) ⊗ 1 ⊗ 1

(tensored with det(Q𝑏)⊗𝑛) so is acyclic.

Thus, the homology of 𝐸 ′′𝑛 (𝑆) is supported on those partitions with 𝐵 = ∅, |𝑆𝛼 | > 2 and 𝑔𝛼 = ℎ𝛼 = 0,
and we recognise it as being isomorphic to 𝑍𝑛 (𝑆). By considering the maps involved (or by counting
dimensions) it follows that the map 𝐸 ′𝑛 (𝑆) → 𝑍𝑛 (𝑆) is an isomorphism on homology, so 𝐸 ′𝑛 → 𝑍𝑛 is a
weak equivalence. �
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Corollary 4.23. 𝐸𝑛 is Koszul if and only if 𝑍𝑛 is.

Proof. In the portion of the long exact sequence

𝐻Com
2 (𝐸𝑛)𝑛,1 (1) 𝐻Com

2 (𝑍𝑛)𝑛,1 (1) 𝐻Com
2 (𝑍𝑛, 𝐸𝑛)𝑛,1(1) = Q

𝐻Com
1 (𝐸𝑛)𝑛,1 (1) 𝐻Com

1 (𝑍𝑛)𝑛,1 (1) · · ·

we must show that the connecting map is injective. By the proof of the previous theorem, this connecting
map sends the generator to the map

1∗𝑆(𝑛)
𝜙
−→ 𝐸𝑛 −→ L𝑄

Com(𝐸𝑛),

a class in AQ𝑛 (𝐸𝑛)𝑛,1 (1) = 𝐻Com
1 (𝐸𝑛)𝑛,1 (1). As 1 is the lowest weight in which 𝐸𝑛 has nontrivial

elements, elements of this weight cannot be decomposable: Thus, as 𝜙 is nontrivial the connecting map
is too. �

4.5. Relation to Torelli Lie algebras

The relation between 𝐸1 and the Torelli Lie algebra was already indicated in [KRW20c, Remark 8.4],
but we explain it again here.

Notation 4.24. We write 𝜅𝑒 𝑗 � (∅, 𝑗) ∈ 𝐸𝑛 (∅).

Theorem 4.25. The realisation

𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2 ) ∈ Gr(Rep(Sp2𝑔 (Z)))
N

is a commutative algebra object, and as long as 𝑔 ≥ 4 it agrees in degrees ∗ ≤ 𝑔 with the quadratic
dual of the Lie algebra object

Gr•LCS𝔱𝑔,1 ∈ Gr(Rep(Sp2𝑔 (Z)))
N.

Proof. In the language of [KRW20c, Section 5], we have 𝐸1 = P (−;V)′
≥0 ⊗ det with V = Q[𝑒] having

|𝑒 | = 2, and so 𝐾∨ ⊗dsBr 𝐸1 is the object denoted 𝑅V there. By the discussion of [KRW20c, Section 8.2]
(especially Remark 8.4), and using the notation of Section 3.2, there is a map of graded commutative
algebras

Λ∗ [Λ3𝑉1 [1]]
((𝐼𝐻))

−→ 𝑅V

which is an isomorphism in a stable range of degrees. As in the proof of Lemma 3.8, the element
Θ =

∑
𝑖, 𝑗 ,𝑘 𝜅1 (𝑎𝑖 ⊗ 𝑎 𝑗 ⊗ 𝑎𝑘 ) · 𝜅1 (𝑎

#
𝑖 ⊗ 𝑎#

𝑗 ⊗ 𝑎#
𝑘 ) corresponds to −𝜅𝑒2 . As the weight grading on 𝐸1

coincides with its homological grading, there is a map

Λ∗ [Λ3𝑉1 [1, 1]]
((𝐼𝐻), (Θ))

−→ 𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2)

which is an isomorphism in a stable range of degrees, and the domain is the quadratic dual of Gr•LCS𝔱𝑔,1
as long as 𝑔 ≥ 4 by the discussion in Section 3.2. Finally, the stability range is determined in [KRW20c,
Section 9.5]: This map is an isomorphism in degrees ∗ ≤ 𝑔. �

This yields a relation between Koszulness of Gr•LCS 𝔱𝑔,1 and of 𝐸1.
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Proposition 4.26. If 𝐸1 is Koszul, then 𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2) is Koszul in weight ≤ 1
3𝑔.

Proof. Note that 𝐸1 (∅) is the polynomial algebra on the elements 𝜅𝑒 𝑗 = (∅, 𝑗) for 𝑗 > 1, and each
𝐸1 (𝑆) is a free 𝐸1(∅)-module, so the element 𝜅𝑒2 = (∅, 2) ∈ 𝐸1(∅)2,2 is not a zero divisor in the
sense of Section 4.2.3, and hence we may apply Corollary 4.11. Recalling the definition AQ∗(𝑅) =
𝐻∗(L𝑄

Com (𝑅)), there is a long exact sequence

· · · −→ (∅)∗(Q{𝜅𝑒2 }[2]) −→ AQ∗(𝐸1) −→ AQ∗(𝐸1/(𝜅𝑒2 )) −→ · · · .

As 𝜅𝑒2 is decomposable in 𝐸1 by the formula for (Θ), taking internal gradings and weight into account
this gives short exact sequences

0→ 𝐻Com
𝑝 (𝐸1)𝑞,𝑤 (𝑆) → 𝐻Com

𝑝 (𝐸1/(𝜅𝑒2 ))𝑞,𝑤 (𝑆) →

{
Q (𝑝, 𝑞, 𝑤) = (2, 2, 2), 𝑆 = ∅

0 otherwise
→ 0,

so 𝐸1 is Koszul if and only if 𝐸1/(𝜅𝑒2 ) is.
Observe that the weight w part of 𝐸1/(𝜅𝑒2 ) is supported on sets of size ≤ 3𝑤, so by Lemma 4.19 we

have

𝐾∨ ⊗dsBr 𝐻Com
𝑝 (𝐸1/(𝜅𝑒2 ))𝑞,𝑤 � 𝐻Com

𝑝 (𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2))𝑞,𝑤

as long as 𝑤 ≤ 1
3𝑔. Now, if 𝐸1/(𝜅𝑒2 ) is Koszul, then 𝐻Com

𝑝 (𝐸1/(𝜅𝑒2 ))𝑞,𝑤 = 0 for 𝑝 ≠ 𝑤, and it follows
that 𝐻Com

𝑝 (𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2 ))𝑞,𝑤 = 0 for 𝑝 ≠ 𝑤 and 𝑤 ≤ 1
3𝑔. �

Corollary 4.27. If 𝐸1 is Koszul, then Gr•LCS 𝔱𝑔,1 is Koszul in weight ≤ 1
3𝑔.

Proof. If 𝐸1 is Koszul, then, by Proposition 4.26, 𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2 ) is Koszul in weight ≤ 1
3𝑔. By

Theorem 4.25, 𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2 ) agrees with the quadratic dual of the Lie algebra Gr•LCS 𝔱𝑔,1 in weight
≤ 𝑔, so by Lemma 2.4 this Lie algebra is Koszul in weight ≤ 1

3𝑔. �

For any odd 𝑛 ≥ 1, the commutative algebra object 𝐸𝑛 is isomorphic to 𝐸1 with its homological
grading scaled by n. Thus, 𝐸1 is Koszul if and only if 𝐸𝑛 is Koszul, and using Corollary 4.27 and
Proposition 3.4 this is what we shall show to prove Theorem A and hence Theorem 3.3. We will do
so by showing that the 𝑍𝑛 are Koszul and appealing to Corollary 4.23. Koszulness of the 𝑍𝑛 has its
own applications, to the rational homotopy Lie algebra of diffeomorphism groups of high-dimensional
manifolds: We will explain these applications in Section 7.1.

5. High-dimensional manifolds: starting the proof of Theorem A

The goal of this section is to prove the following theorem, which almost proves that the objects
𝑍𝑛, 𝐸𝑛 ∈ Algaugm

Com+ (Fun(d(s)Br, ChN)) are Koszul.

Theorem 5.1. If 𝑞 ≠ 𝑛 · 𝑝, then the functors

𝐻Com
𝑝 (𝑍𝑛)𝑞,𝑤 : d(s)Br −→ Q-mod and 𝐻Com

𝑝 (𝐸𝑛)𝑞,𝑤 : d(s)Br −→ Q-mod

vanish when evaluated on nonempty sets.

As 𝑍𝑛 and 𝐸𝑛 have a weight grading which is equal to the homological grading divided by n, the
above is equivalent to the vanishing on nonempty sets of 𝐻Com

𝑝 (𝑍𝑛)𝑞,𝑤 and 𝐻Com
𝑝 (𝐸𝑛)𝑞,𝑤 for 𝑝 ≠ 𝑤, that

is, to Koszulness, but only on nonempty sets. Because of this, we can and will refrain from mentioning
the weight grading from now on.

By Corollary 4.23, it is enough to prove Theorem 5.1 for 𝑍𝑛, which we will do by relating 𝑍𝑛 to the
cohomology of moduli spaces of certain high-dimensional manifolds with framings. We have already
developed these results in [KRW20b], relying on results from [KRW20c, KRW20a], and it will suffice
to merely recall them here.
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5.1. Torelli groups of high-dimensional manifolds

For the remainder of this section, we suppose that 2𝑛 ≥ 6. We will use the 2𝑛-manifolds

𝑊𝑔,1 � 𝐷2𝑛#(𝑆𝑛 × 𝑆𝑛)#𝑔 .

A tangential structure for 2𝑛-manifolds can equivalently be described by a map 𝜃 : 𝐵→ 𝐵O(2𝑛), or
by a GL2𝑛 (R)-space Θ (see [GRW19, Section 4.5]). Here, we use the former, as in [KRW20c, KRW20a],
though we cite extensively from [KRW20b], which uses the latter.

Fix a tangential structure 𝜃 : 𝐵 → 𝐵O(2𝑛). A 𝜃-structure on 𝑊𝑔,1 is a map of vector bun-
dles ℓ : 𝑇𝑊𝑔,1 → 𝜃∗𝛾2𝑛, where 𝛾2𝑛 is the universal bundle over 𝐵O(2𝑛). We will fix a boundary
condition ℓ𝜕 : 𝑇𝑊𝑔,1 |𝜕𝑊𝑔,1 → 𝜃∗𝛾2𝑛 and consider only those 𝜃-structures which extend it; we let
Bun𝜕 (𝑇𝑊𝑔,1, 𝜃

∗𝛾2𝑛) denote the space of such bundle maps. The topological group Diff𝜕 (𝑊𝑔,1) of dif-
feomorphisms of 𝑊𝑔,1 which fix its boundary pointwise (in the 𝐶∞-topology) acts on it through the
derivative. We define

𝐵Diff 𝜃
𝜕 (𝑊𝑔,1) � Bun𝜕 (𝑇𝑊𝑔,1, 𝜃

∗𝛾2𝑛) � Diff𝜕 (𝑊𝑔,1).

We will only use tangential structures which satisfy the assumptions of Section 8 of [KRW20a]. By
Lemma 8.5 (i) of [KRW20a], there then exists up to homotopy a unique orientation-preserving boundary
condition ℓ𝜕 : 𝑇𝑊𝑔,1 |𝜕𝑊𝑔,1 → 𝜃∗𝛾2𝑛 which extends to 𝑊𝑔,1. For a 𝜃-structure ℓ on 𝑊𝑔,1, we denote by
𝐵Diff 𝜃

𝜕 (𝑊𝑔,1)ℓ the path-component of 𝐵Diff 𝜃
𝜕 (𝑊𝑔,1) which contains it.

The intersection product endows 𝐻𝑛 (𝑊𝑔,1;Z) with a nondegenerate (−1)𝑛-symmetric form. Every
diffeomorphism of 𝑊𝑔,1 induces an automorphism of this form, so we get a homomorphism

𝜋1 (𝐵Diff𝜕 (𝑊𝑔,1)) −→ 𝐺𝑔 =

{
Sp2𝑔 (Z) if 𝑛 is odd,
O𝑔,𝑔 (Z) if 𝑛 is even.

We will let 𝐺 𝜃, [ℓ ]
𝑔 ⊂ 𝐺𝑔 denote the image of the composition

𝜋1 (𝐵Diff 𝜃
𝜕 (𝑊𝑔,1)ℓ) −→ 𝜋1 (𝐵Diff𝜕 (𝑊𝑔,1)) −→ 𝐺𝑔 .

It is a finite index subgroup by [KRW20a, Lemma 8.9]. There is an induced map 𝐵Diff 𝜃
𝜕 (𝑊𝑔,1)ℓ →

𝐵𝐺 𝜃, [ℓ ]
𝑔 , and we define

𝐵Tor𝜃𝜕 (𝑊𝑔,1)ℓ � hofib
[
𝐵Diff 𝜃

𝜕 (𝑊𝑔,1)ℓ → 𝐵𝐺 𝜃, [ℓ ]
𝑔

]
.

5.2. 𝒁𝒏 and high-dimensional manifolds with framings

For 𝑍𝑛, we will use the above constructions with tangential structure 𝜃fr : 𝐸O(2𝑛) → 𝐵O(2𝑛) to
obtain Torelli groups 𝐵Torfr

𝜕 (𝑊𝑔,1)ℓ with framings. From this, we developed the commutative diagram
[KRW20b, (15)] with rows and columns fibration sequences

𝑋1(𝑔) 𝐵Torfr
𝜕 (𝑊𝑔,1)ℓ 𝑋0

𝐴1(𝑔) 𝐵Diff
fr
𝜕 (𝑊𝑔,1)ℓ Ω∞0 MT𝜃fr

𝐴2(𝑔) 𝐵𝐺fr, [ℓ ]
𝑔 Ω∞0 KH

𝛼fr

https://doi.org/10.1017/fmp.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.10


28 A. Kupers and O. Randal-Williams

with overlines denoting a passage to a finite cover or finite index subgroup which has no effect on
rational cohomology (we refer to loc. cit. for definitions and details). The proof of Theorem 5.1 uses the
following facts about 𝑋1 (𝑔), which combines Lemma 4.9, Theorem 4.11, Corollary 4.20 and Remark 6.5
of [KRW20b].

Theorem 5.2. Fix 2𝑛 ≥ 6.

(i) The space 𝑋1(𝑔) is nilpotent and of finite type.
(ii) The action of 𝜋1 (𝐴2(𝑔)) on 𝐻∗(𝑋1 (𝑔);Q) and 𝜋∗(𝑋1(𝑔)) ⊗ Q factors over 𝐺fr, [ℓ ]

𝑔 .
(iii) There is a map 𝐾∨ ⊗d(s)Br 𝑍𝑛 → 𝐻∗(𝑋1 (𝑔);Q) of 𝐺fr, [ℓ ]

𝑔 -representations which is an isomorphism
in a range of homological degrees tending to∞ as 𝑔 →∞.

(iv) In a range tending to∞ as 𝑔 → ∞, in degrees ∗ ≤ 𝑛(𝑛−3)
2 the nontrivial 𝐺fr, [ℓ ]

𝑔 -representations in
𝜋∗+1 (𝑋1 (𝑔)) ⊗ Q vanish except with ∗ = 𝑟 (𝑛 − 1) for some 𝑟 ≥ 1. �

5.3. Proof of Theorem 5.1

We first prove Theorem 5.1 for 𝑍𝑛, using the above theorem as input. As a consequence of
Theorem 5.2 (i), there is a strongly convergent unstable rational Adams spectral sequence

𝐸2
𝑠,𝑡 = 𝐻Com

𝑠 (𝐻∗(𝑋1 (𝑔);Q))𝑡 =⇒ Hom(𝜋𝑡−𝑠 (Ω𝑋1 (𝑔)),Q),

with 𝑑𝑟 -differential of bidegree (−𝑟,−𝑟 + 1) which, by naturality and Theorem 5.2 (ii), is a spectral
sequence of 𝐺fr, [ℓ ]

𝑔 -representations.
By Theorem 5.2 (iii), in a stable range the rational cohomology of 𝑋1(𝑔) is concentrated in degrees

which are multiples of n. Thus, in a stable range the groups 𝐸2
𝑠,𝑡 are supported along the lines 𝑡 = 𝑟 · 𝑛

with 𝑟 ∈ N and by the argument of Lemma 4.14 we have 𝐸2
𝑠,𝑟𝑛 = 0 for 𝑟 < 𝑠. Thus, 𝐸2

𝑠,𝑡 with 𝑡 = 𝑟 · 𝑛
is nontrivial only for 1 ≤ 𝑠 ≤ 𝑟 , contributing to degrees

𝑟 · 𝑛 − 𝑟 + 1 ≤ 𝑡 − 𝑠 + 1 ≤ 𝑟 · 𝑛.

Furthermore, as long as these ranges of total degrees are separated from each other there can be no
differentials between the corresponding lines: In particular, as long as 𝑛 ≥ 𝑟 − 2 the spectral sequence
must collapse in degrees 𝑡 − 𝑠 + 1 ≤ 𝑟 · 𝑛. Thus, as long as 𝑟 ≤ 𝑛 + 2, there is an isomorphism of
𝐺fr, [ℓ ]

𝑔 -representations in a stable range

𝐻Com
𝑠 (𝐻∗(𝑋1 (𝑔);Q))𝑟𝑛 � Hom(𝜋𝑟𝑛−𝑠+1 (𝑋1(𝑔)),Q).

By Theorem 5.2 (iv), in degrees ∗ ≤ 𝑛(𝑛−3)
2 the nontrivial representations on the right side vanish except

when 𝑟 = 𝑠. Hence the same is true for the left side.
By Theorem 5.2 (iii) there is a map

𝐾∨ ⊗d(s)Br 𝑍𝑛 −→ 𝐻∗(𝑋1 (𝑔);Q)

of 𝐺fr, [ℓ ]
𝑔 -representations which is an isomorphism in a stable range. By Lemma 4.19

𝐾∨ ⊗d(s)Br 𝐻Com
𝑝 (𝑍𝑛)𝑞 � 𝐻Com

𝑝 (𝐾∨ ⊗d(s)Br 𝑍𝑛)𝑞

as long as 𝑞
𝑛 ≤

1
3𝑔, which is satisfied by taking g large enough. By the vanishing result established

above, for all large enough g and for 𝑞 ≤ 𝑛(𝑛−3)
2 , this is a trivial representation whenever 𝑞 ≠ 𝑛 · 𝑝. By

the discussion in Section 2.4, the same is true as O𝜖 (𝐻 (𝑔))-representations.
By Lemma 4.17, if 𝐻Com

𝑝 (𝑍𝑛)𝑞 (𝑆) were not zero for a nonempty finite set S, then for 𝑔 ≥ |𝑆 | so
would be [𝐻 [𝑆 ] ⊗ (𝐾∨ ⊗d(s)Br 𝐻Com

𝑝 (𝑍𝑛)𝑞]
O𝜖 (𝐻 (𝑔)) . As 𝐻 [𝑆 ] for a nonempty set S is a direct sum of
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irreducibles that are not equal to the trivial representation, this implies that 𝐾∨ ⊗d(s)Br 𝐻Com
𝑝 (𝑍𝑛)𝑞 would

contain a nontrivial subrepresentation. Using the above, we conclude that

𝐻Com
𝑝 (𝑍𝑛)𝑞 (𝑆) = 0 for 𝑆 ≠ ∅ and 𝑞 ≠ 𝑛 · 𝑝 as long as 𝑞 ≤ 𝑛(𝑛−3)

2 .

We now use that for all n’s of the same parity the commutative algebra objects 𝑍𝑛 are isomorphic up
to a linear scaling of degrees. As the bound ‘𝑞 ≤ 𝑛(𝑛−3)

2 ’ scales quadratically with n it can therefore be
ignored, yielding Theorem 5.1 for 𝑍𝑛.

To deduce Theorem 5.1 for 𝐸𝑛, we invoke Corollary 4.23.

5.4. 𝑬𝒏 and high-dimensional manifolds with Euler structure

Instead of using Corollary 4.23 to deduce Theorem 5.1 for 𝐸𝑛 from 𝑍𝑛, one may prove it directly using a
custom tangential structure which mimics in high dimensions the moduli spaces of surfaces. We explain
this in this extended remark, as it may be of independent interest. It was in fact our original approach to
Theorem A.

The Pontrjagin classes 𝑝 𝑗 ∈ 𝐻4 𝑗 (𝐵SO(2𝑛);Z) for 1 ≤ 𝑗 < 𝑛 induce a map

𝐵SO(2𝑛) −→
∏

1≤ 𝑗<𝑛
𝐾 (Z, 4 𝑗).

We denote its homotopy fibre by 𝐵𝑒, which has n-connected cover 𝐵𝑒 � 𝐵𝑒〈𝑛〉.
Definition 5.3. The Euler tangential structure is the map 𝜃𝑒 : 𝐵𝑒 → 𝐵O(2𝑛).

The name is justified by the calculation 𝐻∗(𝐵𝑒;Q) = Q[𝑒] where e denotes the Euler class, of de-
gree 2𝑛. By construction 𝐵𝑒 is n-connected, and since 𝐵SO(2𝑛) has finitely generated homotopy groups,
so does 𝐵𝑒. Thus, this tangential structure satisfies the hypotheses for Section 8 of [KRW20a]. From
Section 5.1, we obtain 𝐵Tor𝜃𝑒

𝜕
(𝑊𝑔,1) which we shorten to 𝐵Tor𝑒𝜕 (𝑊𝑔,1). A straightforward adaptation

of the techniques of [KRW20c, KRW20b] yields a homotopy-commutative diagram

𝑋𝑒
1 (𝑔) 𝐵Tor𝑒𝜕 (𝑊𝑔,1)ℓ 𝑋𝑒

0

𝐴𝑒
1 (𝑔) 𝐵Diff

𝑒

𝜕 (𝑊𝑔,1)ℓ Ω∞0 MT𝜃𝑒

𝐴𝑒
2 (𝑔) 𝐵𝐺𝑒, [ℓ ]

𝑔 Ω∞0 KH

𝛼𝑒

with rows and columns fibration sequences, and an analogue of Theorem 5.2 sufficient to directly prove
Theorem 5.1 for 𝐸𝑛.

Theorem 5.4.

(i) The space 𝑋𝑒
1 (𝑔) is nilpotent and of finite type.

(ii) The action of 𝜋1 (𝐴
𝑒
2 (𝑔)) on 𝐻∗(𝑋𝑒

1 (𝑔);Q) and 𝜋∗(𝑋
𝑒
1 (𝑔)) ⊗ Q factors over 𝐺𝑒, [ℓ ]

𝑔 .
(iii) There is a map

𝐾∨ ⊗d(s)Br 𝐸𝑛

(𝜅𝑒 𝑗 | 𝑗 > 1)
−→ 𝐻∗(𝑋𝑒

1 (𝑔);Q)

of 𝐺𝑒, [ℓ ]
𝑔 -representations which is an isomorphism in a range of homological degrees tending to∞

as 𝑔 →∞.
(iv) In a stable range, in degrees ∗ ≤ 𝑛(𝑛−3)

2 the nontrivial 𝐺𝑒, [ℓ ]
𝑔 -representations in 𝜋∗+1 (𝑋

𝑒
1 (𝑔)) ⊗ Q

vanish except with ∗ = 𝑟 (𝑛 − 1) for some 𝑟 ≥ 1. �
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6. Graph complexes: finishing the proof of Theorem A

Our strategy to complete the proof of Theorem 3.3 is as follows. Firstly, we will establish graph complex
models 𝑅𝐵𝑍𝑛

conn and 𝑅𝐵𝐸𝑛
conn for L𝑄Com (𝑍𝑛) and L𝑄Com(𝐸𝑛), in terms of graphs with red and black edges

whose black subgraph is connected, equipped with a certain differential. Once these models have been
established, there are several ways in which one can proceed: We have chosen to proceed in the most
self-contained way, but see Section 7.2.2 for alternatives using vanishing results for graph complexes
from the literature. In this section, we will disregard the weight grading on 𝐸𝑛 and 𝑍𝑛.

6.1. Red and black graphs

We will first describe explicit cofibrant replacements for the augmented unital commutative algebra
objects 𝑍𝑛, 𝐸𝑛 ∈ Algaugm

Com+ (Fun(d(s)Br, Ch)).

Definition 6.1.

(i) A graph Γ is a tuple (𝑉, 𝐻, 𝜄, 𝜕) of a set V of vertices, a set H of half-edges, a function 𝜕 : 𝐻 → 𝑉
and an involution 𝜄 on H. The edges E of Γ is the set of free orbits of 𝜄, and the legs L is the set of
trivial orbits. For a graph Γ, we will write𝑉 (Γ), 𝐻 (Γ), 𝐸 (Γ), 𝐿(Γ), 𝜄Γ and 𝜕Γ for its associated data.

(ii) An isomorphism of graphs Γ � Γ′ is a pair of bijections between their sets of vertices and half-
edges which intertwine the 𝜄’s and 𝜕’s.

Definition 6.2. If 𝑒 = {ℎ1, ℎ2} ∈ 𝐸 (Γ) is an edge, the graph Γ′ = Γ/𝑒 obtained by contracting the edge
e has vertices 𝑉 (Γ′) � 𝑉 (Γ)/(𝜕Γ (ℎ1) ∼ 𝜕Γ (ℎ2)), half-edges 𝐻 (Γ′) � 𝐻 (Γ) \ {ℎ1, ℎ2}, boundary map

𝜕Γ′ : 𝐻 (Γ) \ {ℎ1, ℎ2}
inc
−→ 𝐻 (Γ)

𝜕Γ
−→ 𝑉 (Γ)

quot
−−−→ 𝑉 (Γ)/(𝜕Γ (ℎ1) ∼ 𝜕Γ (ℎ2)),

and involution 𝜄Γ′ = 𝜄Γ |𝐻 (Γ′) .

Definition 6.3.

(i) A weighted red and black graph Γ is a graph (𝑉, 𝐻, 𝜄, 𝜕) along with a function 𝑐 = 𝑐Γ : 𝐸 (Γ) →
{𝑅, 𝐵} colouring each edge either red or black, and a function 𝑤 : 𝑉 (Γ) → N assigning to each
vertex a weight3 .

(ii) We write 𝐸𝑅 (Γ) � 𝑐−1
Γ (𝑅) and 𝐸𝐵 (Γ) � 𝑐−1

Γ (𝐵) for the sets of red edges and black edges,
respectively. The black subgraph of Γ is the subgraph consisting of all vertices and the black edges.

(iii) An isomorphism of weighted red and black graphs Γ � Γ′ is an isomorphism of graphs which
commutes with the colour and weight functions.

(iv) A weighted red and black graph is admissible if for each 𝑣 ∈ 𝑉 (Γ) we have 2𝑤(𝑣) + #𝜕−1 (𝑣) ≥ 3.

Definition 6.4. If 𝑒 ∈ 𝐸𝐵 (Γ), we let Γ/𝑒 be the weighted red and black graph obtained by contracting
the edge 𝑒 = {ℎ1, ℎ2}, taking the induced colouring, and

(i) If 𝜕 (ℎ1) ≠ 𝜕 (ℎ2), then giving the new vertex weight 𝑤(𝜕 (ℎ1)) + 𝑤(𝜕 (ℎ2));
(ii) If 𝜕 (ℎ1) = 𝜕 (ℎ2), then giving the new vertex weight 𝑤(𝜕 (ℎ1)) + 1.

Similarly let Γ\𝑒 be the red and black graph obtained by turning the black edge e red.

Note that if Γ is admissible, so are Γ/𝑒 and Γ\𝑒. Recall that det(𝑉) � Λdim(𝑉 ) (𝑉). Define 1-
dimensional vector spaces

𝔎𝐵 (Γ) � det(Q𝐸𝐵 (Γ) ) and 𝔏(Γ) � det(Q𝐿 (Γ) ). (11)

Isomorphisms of weighted red and black graphs induce isomorphisms of these vector spaces.

3This is unrelated to the ‘weight grading’ discussed earlier: No confusion should arise, as we do not refer to the weight grading
in this section.
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Figure 5. A weighted red and black graph with two vertices, of weight 𝑔𝛼 and 𝑔𝛽 respectively, and two
legs, labelled by 2. We have also indicated the terms 𝑑col and 𝑑con of the differential, assuming n is
even (if n were odd, then the graph would be zero by symmetry of the legs). In 𝑑col, the reader maybe
expected two terms obtained by turning red one of the two black edges connecting the two vertices, by
these yield the same graph with opposite sign and hence cancel. The same happens in 𝑑con, where two
terms obtained by collapsing one of the two black edges connecting the two vertices cancel.

If 𝑒 ∈ 𝐸𝐵 (Γ), there are maps −/𝑒 : 𝔎𝐵 (Γ) → 𝔎𝐵 (Γ/𝑒) and −\𝑒 : 𝔎𝐵 (Γ) → 𝔎𝐵 (Γ\𝑒) given by
contracting with e. As contracting or colouring an edge does not change the set of legs, there are also
canonical identifications 𝔏(Γ) ∼→ 𝔏(Γ/𝑒) and 𝔏(Γ)

∼
→ 𝔏(Γ\𝑒).

Definition 6.5. For an admissible weighted red and black graph Γ, we set

deg(Γ) � 𝑛

( ∑
𝑣 ∈𝑉 (Γ)

(2𝑤(𝑣)+val(𝑣)−2)

)
+ #𝐸𝐵 (Γ)

and define a graded vector space

𝑅𝐵𝐸𝑛 (𝑆) �

������
⊕

Γ=(𝑉 ,𝐹, 𝜄,𝜕,𝑐,𝑤)

ℓ : 𝐿 (Γ) ∼→𝑆

𝔎𝐵 (Γ) ⊗ 𝔏(Γ)
⊗𝑛 [deg(Γ)]

������
/∼,

where the sum is over all admissible weighted red and black graphs with legs identified with S, and ∼
is the equivalence relation induced by isomorphism of such graphs.

We define a differential by summing over all ways of contracting a black edge or turning a black edge
red, with certain signs. More formally, we define 𝑑 = 𝑑con + 𝑑col on this graded vector space by

𝑑con(Γ, ℓ, 𝜈, 𝜔
⊗𝑛) =

∑
𝑒∈𝐸𝐵 (Γ)

(Γ/𝑒, ℓ, 𝜈/𝑒, 𝜔⊗𝑛)

𝑑col(Γ, ℓ, 𝜈, 𝜔
⊗𝑛) = −

∑
𝑒∈𝐸𝐵 (Γ)

(Γ\𝑒, ℓ, 𝜈\𝑒, 𝜔⊗𝑛).

We consider these complexes as defining a functor 𝑅𝐵𝐸𝑛 : d(s)Br → Ch, by letting the morphism
[( 𝑓 , 𝑚𝑆)] ∈ d(s)Br(𝑆, 𝑇) induce the map 𝑅𝐵𝐸𝑛 (𝑆) → 𝑅𝐵𝐸𝑛 (𝑇) given by creating (oriented) red edges
according to the (ordered) matching 𝑚𝑆 and then relabelling the remaining legs according to f. (This
is well defined as a functor on d(s)Br because of the twisting by 𝔏(Γ)⊗𝑛.) Disjoint union makes 𝑅𝐵𝐸𝑛

into a commutative algebra object.

We let 𝑅𝐵𝑍𝑛 (𝑆) be the quotient of 𝑅𝐵𝐸𝑛 (𝑆) by those weighted red and black graphs having some
vertex of weight > 0. These assemble into a functor 𝑅𝐵𝑍𝑛 : d(s)Br→ Ch which is a quotient of 𝑅𝐵𝐸𝑛 ,
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having an induced augmented unital commutative algebra structure. Concretely 𝑅𝐵𝑍𝑛 (𝑆) is given by
weighted red and black graphs having all weights zero (equivalently, no weights), and the differential is
given by the same formula with the understanding that Γ/𝑒 is zero when e is a loop (as then Γ/𝑒 has a
vertex of weight > 0).

Proposition 6.6. There are weak equivalences of unital commutative algebras

𝑅𝐵𝑍𝑛
∼
−→ 𝑍𝑛 and 𝑅𝐵𝐸𝑛

∼
−→ 𝐸𝑛,

and 𝑅𝐵𝑍𝑛 and 𝑅𝐵𝐸𝑛 are cofibrant in Algaugm
Com+ (Fun(d(s)Br, Ch)).

Proof. Let 𝜙 : 𝑅𝐵𝐸𝑛 → 𝐸𝑛 be the map which

(i) kills weighted red and black graphs having any black edges, and
(ii) assigns to a graph having only red edges the induced partition of its set of legs given by the connected

components of the graph, with the part corresponding to the connected subgraph Γ𝛼 assigned weight(∑
𝑣 ∈𝑉 (Γ𝛼) 𝑤(𝑣)

)
+ 1 − 𝜒(Γ𝛼), that is, the sum of the weights of its vertices and its genus.

This is a map of commutative algebra objects. It is also – when evaluated on any S – a map of chain
complexes, as follows. If (Γ, ℓ, 𝜔⊗𝑛, 𝜈) is such that Γ has at least two black edges, then every term of
𝑑 (Γ, ℓ, 𝜔⊗𝑛, 𝜈) has a black edge and so vanishes under 𝜙; (Γ, ℓ, 𝜔⊗𝑛, 𝜈) does too. If (Γ, ℓ, 𝜔⊗𝑛, 𝜈) is
such that Γ has a single black edge e, then

𝑑 (Γ, ℓ, 𝜈, 𝜔⊗𝑛) = (Γ/𝑒, ℓ, 1, 𝜔⊗𝑛) − (Γ\𝑒, ℓ, 1, 𝜔⊗𝑛),

and Γ/𝑒 and Γ\𝑒 induce the same partition on S with the same weights so this vanishes on applying 𝜙;
(Γ, ℓ, 𝜔⊗𝑛, 𝜈) does too.

To check that 𝜙 is a weak equivalence, we consider the filtration given by letting 𝐹 𝑝𝑅𝐵𝐸𝑛 (𝑆) be
spanned by those graphs with ≤ 𝑝 edges. As 𝑑con reduces the number of edges and 𝑑col preserves the
number of edges, we have

Gr(𝑅𝐵𝐸𝑛 (𝑆), 𝑑 = 𝑑con + 𝑑col) � (𝑅𝐵𝐸𝑛 (𝑆), 𝑑col).

This complex splits over isomorphism classes of weighted graphs Γ as a sum of chain complexes
Colour∗(Γ)Aut(Γ) , where Colour∗(Γ) has basis the set of subgraphs of Γ, considered as those edges to be
coloured red: Such a subgraph has degree given by 𝑛

(∑
𝑣 ∈𝑉 (Γ) (2𝑤(𝑣) + val(𝑣) − 2)

)
+#𝐸𝐵 (Γ), and the

differential sums over all ways of adding a single edge to the red subgraph. In other words, up to a shift
of degrees Colour∗(Γ) is the reduced simplicial chain complex of the simplex Δ𝐸 (Γ) on the set of edges
of Γ. It is therefore acyclic if Γ contains any edges and has homologyQ[𝑛

∑
𝑣 ∈𝑉 (Γ) (2𝑤(𝑣) +val(𝑣) −2)]

otherwise. As it is supported on graphs with no edges, the differential 𝑑con has no effect and so the
spectral sequence for this filtration collapses, to give

𝐻∗(𝑅𝐵𝐸𝑛 (𝑆), 𝑑) �
⊕

weighted graphs Γ
with no edges

Q[𝑛
∑

𝑣 ∈𝑉 (Γ)

(2𝑤(𝑣) + val(𝑣) − 2)],

and with this description we observe that 𝜙∗ : 𝐻∗(𝑅𝐵𝐸𝑛 (𝑆), 𝑑) → 𝐸𝑛 is an isomorphism as required.
The argument for 𝑍𝑛 is completely parallel.

Neglecting for a moment the differential, let 𝑋 ⊂ 𝑅𝐵𝐸𝑛 be the subobject spanned by those weighted
red and black graphs whose black subgraphs are connected (we take this to also mean nonempty). The
commutative unital algebra structure on 𝑅𝐵𝐸𝑛 induces a map

𝐹Com+ (𝑋) =
⊕
𝑘≥0
(𝑋 ⊗𝑘 )𝔖𝑘 −→ 𝑅𝐵𝐸𝑛 (12)
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which we claim is an isomorphism. By definition of Day convolution, we have

(𝑋 ⊗𝑘 ) (𝑆) = colim
𝑓 :𝑆1�···�𝑆𝑘→𝑆
∈d(s)Br

𝑋 (𝑆1) ⊗ · · · ⊗ 𝑋 (𝑆𝑘 ).

Spelling this out, it is the space of weighted red and black graphs with legs S whose black subgraph
has precisely k components, and the components are ordered; (𝑋 ⊗𝑘 )𝔖𝑘 (𝑆) is then the same without the
ordering of components. We therefore see that (12) is indeed an isomorphism.

Reincorporating the differential, we have just shown that 𝑅𝐵𝐸𝑛 is quasi-free, and it is also nonnega-
tively graded, so a standard induction over skeleta of X shows that it is cofibrant, cf. [LV12, Proposition
B.6.6]. The same goes for 𝑅𝐵𝑍𝑛 . �

Let 𝑅𝐵𝐸𝑛
conn be the quotient of 𝑅𝐵𝐸𝑛 by the unit and those weighted red and black graphs whose black

subgraph is not connected, and 𝑅𝐵𝑍𝑛
conn be the analogous quotient of 𝑅𝐵𝑍𝑛 . As the red and black graphs

whose black subgraph is not connected are precisely the decomposables, we find the following.

Corollary 6.7. We have L𝑄Com (𝑍𝑛) � 𝑅𝐵𝑍𝑛
conn and L𝑄Com (𝐸𝑛) � 𝑅𝐵𝐸𝑛

conn.

Following Section 4.2.5, as 𝑍𝑛 and 𝐸𝑛 have trivial differential the homology groups AQ∗(𝑍𝑛) and
AQ∗(𝐸𝑛) are equipped with an additional internal grading. This may be implemented in terms of the
resolutions 𝑅𝐵𝑍𝑛 and 𝑅𝐵𝐸𝑛 , and so in the models 𝑅𝐵𝑍𝑛

conn and 𝑅𝐵𝐸𝑛
conn, by giving a (weighted) red and

black graph Γ internal degree

degint (Γ) � 𝑛
���

∑
𝑣 ∈𝑉 (Γ)

(2𝑤(𝑣) + val(𝑣) − 2)��� .
It is indeed preserved by the differential, and by the quasi-isomorphisms to 𝑍𝑛 and 𝐸𝑛. As the total
degree of Γ is 𝑛

(∑
𝑣 ∈𝑉 (Γ) (2𝑤(𝑣) + val(𝑣) − 2)

)
+ #𝐸𝐵 (Γ), its Harrison degree is then #𝐸𝐵 (Γ) + 1.

6.2. Black graphs

Definition 6.8. Let 𝐺𝐸𝑛 (𝑆) be the quotient of 𝑅𝐵𝐸𝑛
conn(𝑆) by the subcomplex spanned by those red and

black graphs having a nonzero number of red edges, and 𝐺𝑍𝑛 (𝑆) be the analogous quotient of 𝑅𝐵𝑍𝑛
conn (𝑆).

By the discussion above, these complexes inherit an internal grading, giving homology groups
𝐻𝑝+𝑞 (𝐺

𝐸𝑛 (𝑆))𝑞 and 𝐻𝑝+𝑞 (𝐺
𝑍𝑛 (𝑆))𝑞 in total degree 𝑝 + 𝑞 and internal degree q. Moreover, 𝐺𝐸𝑛 (𝑆)

and 𝐺𝑍𝑛 (𝑆) are functorial with respect to bijections of S, and may be organised into objects 𝐺𝐸𝑛 and
𝐺𝑍𝑛 of Fun(FB, Ch). In Section 7.2.1, we explain how these are related to other graph complexes in the
literature.

Neglecting the differential, every red and black graph whose black subgraph is connected can,
tautologically, be obtained from a connected black graph by attaching some red edges. This gives the
decompositions

𝑅𝐵𝑍𝑛
conn(−) �

⊕
𝑛≥0

𝐺𝑍𝑛 (𝑛) ⊗𝔖𝑛 d(s)Br(𝑛,−)

𝑅𝐵𝐸𝑛
conn(−) �

⊕
𝑛≥0

𝐺𝐸𝑛 (𝑛) ⊗𝔖𝑛 d(s)Br(𝑛,−)
(13)

as functors to graded vector spaces, where we recall 𝑛 � {1, . . . , 𝑛}.
The inclusion 𝑖 : FB → d(s)Br of the (Q-linearised) category of finite sets and bijections has a

retraction 𝑟 : d(s)Br → FB, which is the identity on objects, and on morphisms 𝑟 : d(s)Br(𝐴, 𝐵) →
FB(𝐴, 𝐵) is the identity if |𝐴| = |𝐵 |, and is the zero map otherwise. Left Kan extension gives a functor

𝑟∗ : Fun(d(s)Br, Ch) −→ Fun(FB, Ch).
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In Lemma 4.3, we discussed the model structure on the domain, and the codomain has a similar model
structure, such that 𝑟∗ � 𝑟∗ is a Quillen adjunction, and in particular 𝑟∗ admits a total left derived functor
L𝑟∗. Unwinding definitions shows that 𝐺𝐸𝑛 = 𝑟∗(𝑅𝐵𝐸𝑛

𝑐𝑜𝑛𝑛) and 𝐺𝑍𝑛 = 𝑟∗(𝑅𝐵𝑍𝑛
𝑐𝑜𝑛𝑛), and we first argue

that these are in fact also derived left Kan extensions.

Lemma 6.9. The natural maps

L𝑟∗(𝑅𝐵𝐸𝑛
𝑐𝑜𝑛𝑛) −→ 𝑟∗(𝑅𝐵𝐸𝑛

𝑐𝑜𝑛𝑛) = 𝐺𝐸𝑛 ,

L𝑟∗(𝑅𝐵𝑍𝑛
𝑐𝑜𝑛𝑛) −→ 𝑟∗(𝑅𝐵𝑍𝑛

𝑐𝑜𝑛𝑛) = 𝐺𝑍𝑛

are equivalences.

Proof. We consider the case of 𝐸𝑛; that of 𝑍𝑛 is identical. Filtering 𝑅𝐵𝐸𝑛
𝑐𝑜𝑛𝑛 (−) by its grading, we

obtain compatible filtrations of the two sides. This gives a map of spectral sequences, which are strongly
convergent as the values of 𝑅𝐵𝐸𝑛

𝑐𝑜𝑛𝑛 are nonnegatively graded. As 𝑟∗ preserves exact sequences the map
of 𝐸1-pages is

L𝑟∗(Gr(𝑅𝐵𝐸𝑛
𝑐𝑜𝑛𝑛)) (−) −→ 𝑟∗(Gr(𝑅𝐵𝐸𝑛

𝑐𝑜𝑛𝑛)) (−).

Thus, it suffices to show that this is an equivalence. By (13), we have Gr(𝑅𝐵𝐸𝑛
𝑐𝑜𝑛𝑛) (−) = 𝑖∗(𝐺

𝐸𝑛 ) (−),
where the latter has trivial differential. As we are working over a field of characteristic zero all objects
of Fun(FB, Ch) are cofibrant, so L𝑖∗(𝐺𝐸𝑛 ) (−)

∼
→ 𝑖∗(𝐺

𝐸𝑛 ) (−). Using that 𝑟∗ ◦ 𝑖∗ = (𝑟 ◦ 𝑖)∗ = id and
similarly L𝑟∗ ◦ L𝑖∗ � id, the claim follows. �

Let us analyse L𝑟∗(𝐴) for 𝐴 : d(s)Br → Ch using the colimit description of Kan extension and the
bar construction model for homotopy colimits. This is the simplicial object with s-simplices

[𝑠] ↦−→
⊕

𝑆0 ,...,𝑆𝑠 ∈d(s)Br

𝐴(𝑆0) ⊗ d(s)Br(𝑆0, 𝑆1) ⊗ · · · ⊗ d(s)Br(𝑆𝑠−1, 𝑆𝑠) ⊗ FB(𝑟 (𝑆𝑠),−)

(implicitly replacing d(s)Br by a skeletal subcategory), and face maps given by composing morphisms
in d(s)Br, acting with them on 𝐴(−), or applying 𝑟 : d(s)Br → FB to them and composing in FB; its
geometric realisation models L𝑟∗(𝐴). Filtering this geometric realisation by skeleta gives a spectral
sequence with

𝐸1
𝑠,𝑡 =

⊕
𝑆0 ,...,𝑆𝑠 ∈d(s)Br

𝐻𝑡 (𝐴) (𝑆0) ⊗ d(s)Br(𝑆0, 𝑆1) ⊗ · · · ⊗ d(s)Br(𝑆𝑠−1, 𝑆𝑠) ⊗ FB(𝑟 (𝑆𝑠),−),

converging strongly to 𝐻𝑠+𝑡 (L𝑟∗(𝐴)) as the values of A are by definition nonnegatively graded. The
𝑑1-differential is given by the alternating sum of the face maps.

If A also has an additional grading, then this gets carried along too. Applied to 𝐴 � 𝑅𝐵𝐸𝑛
𝑐𝑜𝑛𝑛 with its

additional internal grading this gives a spectral sequence⊕
𝑆0 ,...,𝑆𝑠
∈d(s)Br

𝐻Com
𝑡−𝑞+1 (𝐸𝑛)𝑞 (𝑆0) ⊗ d(s)Br(𝑆0, 𝑆1) ⊗ · · · ⊗ d(s)Br(𝑆𝑠−1, 𝑆𝑠) ⊗ FB(𝑟 (𝑆𝑠), 𝑇)

𝐻𝑠+𝑡 (𝐺
𝐸𝑛 (𝑇))𝑞 ,

(14)

where the top expression is 𝐸1
𝑠,𝑡 ,𝑞 , and similarly for 𝑅𝐵𝑍𝑛

𝑐𝑜𝑛𝑛.
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6.3. Finishing the proof of Theorem A

Lemma 6.10. 𝐻𝑝+𝑞 (𝐺
𝑍𝑛 (𝑇))𝑞 and 𝐻𝑝+𝑞 (𝐺

𝐸𝑛 (𝑇))𝑞 vanish if 𝑛 · (𝑝 + 1) < 𝑞 and 𝑇 ≠ ∅.
Proof. We consider the case of 𝐸𝑛; that of 𝑍𝑛 is identical. We apply the spectral sequence (14) for a
fixed q and evaluated at 𝑇 ≠ ∅, which starts from

𝐸1
𝑠,𝑡 ,𝑞 =

⊕
𝑆0 ,...,𝑆𝑠
∈d(s)Br

𝐻Com
𝑡−𝑞+1 (𝐸𝑛)𝑞 (𝑆0) ⊗ d(s)Br(𝑆0, 𝑆1) ⊗ · · · ⊗ d(s)Br(𝑆𝑠−1, 𝑆𝑠) ⊗ FB(𝑟 (𝑆𝑠), 𝑇)

and converges to 𝐻𝑠+𝑡 (𝐺
𝐸𝑛 (𝑇)). For the latter tensor factors to be nonzero, we must have |𝑆0 | ≥ |𝑆1 | ≥

· · · ≥ |𝑆𝑠 | = |𝑇 |, and so if 𝑇 ≠ ∅ then 𝑆0 ≠ ∅. In this case, for the first tensor factor to be nonzero we
must have 𝑞 = 𝑛 · (𝑡 − 𝑞 + 1) by Theorem 5.1. Thus, if 𝑞 ≠ 𝑛 · (𝑡 − 𝑞 + 1) then 𝐸1

𝑠,𝑡 ,𝑞 = 0.
In particular, if 𝑡 < 𝑛+1

𝑛 𝑞 − 1 then 𝐸1
𝑠,𝑡 ,𝑞 = 0, so 𝐻𝑠+𝑡 (𝐺

𝐸𝑛 (𝑇))𝑞 = 0 if 𝑠 + 𝑡 < 𝑛+1
𝑛 𝑞 − 1. Writing

𝑠 + 𝑡 = 𝑝 + 𝑞 and rearranging, we see that 𝐻𝑝+𝑞 (𝐺
𝐸𝑛 (𝑇))𝑞 = 0 for 𝑛 · (𝑝 + 1) < 𝑞 as claimed. �

The following lemma is due to Turchin–Willwacher [TW17, Section 6.1] for 𝑍𝑛 and Chan–Galatius–
Payne [CGP22, Theorem 1.7] for 𝐸𝑛. As its proof is quite elementary, we give it, following [CGP22,
Section 5.3].
Lemma 6.11 (Turchin–Willwacher, Chan–Galatius–Payne). There are injections

𝐻𝑝+𝑞 (𝐺
𝑍𝑛 (∅))𝑞 −→ 𝐻𝑝+𝑞+𝑛 (𝐺

𝑍𝑛 (1))𝑞+𝑛,
𝐻𝑝+𝑞 (𝐺

𝐸𝑛 (∅))𝑞 −→ 𝐻𝑝+𝑞+𝑛 (𝐺
𝐸𝑛 (1))𝑞+𝑛.

Proof. We explain the proof for 𝐺𝐸𝑛 ; the proof for 𝐺𝑍𝑛 is identical without weights.
For 𝑞 ≤ 0, there is nothing to prove: the admissibility condition for graphs in 𝐺𝐸𝑛 (∅) implies that

2𝑤(𝑣) +val(𝑣)−2 ≥ 1 for all vertices v, so the internal grading satisfies 𝑞 = 𝑛
∑

𝑣 ∈𝑉 (Γ) (2𝑤(𝑣) +val(𝑣)−
2) > 0.

We will define maps of chain complexes

𝐺𝐸𝑛
∗ (∅)

𝑡
−→ 𝐺𝐸𝑛

∗+𝑛 (1)
𝜋
−→ 𝐺𝐸𝑛

∗ (∅)

whose composition preserves the internal grading and on the summand with internal grading q is given
by multiplication by q. In particular, it is an isomorphism for 𝑞 > 0. Informally, t sums over all ways to
add a single leg and 𝜋 deletes the leg.

Suppose we are given a weighted black graph (Γ, ℓ, 𝜈, 𝜔⊗𝑛) ∈ 𝐺𝐸𝑛 (∅); Γ is the graph with w the
weights of its vertices, ℓ the labelling of its legs, and 𝜈 and 𝜔⊗𝑛 are orientations in 𝔎𝐵 (Γ) and 𝔏(Γ)⊗𝑛

respectively, as in (11). For each vertex 𝑣 ∈ 𝑉 (Γ) adding a leg at v yields a graph Γ𝑣 with𝑉 (Γ𝑣 ) = 𝑉 (Γ),
𝐸𝐵 (Γ𝑣 ) = 𝐸𝐵 (Γ), and 𝐿(Γ𝑣 ) = {𝑙}. Using the same w and 𝜈, ℓ𝑣 : {𝑙} → {1} the unique bijection and
𝜔𝑣 induced from 𝜔 by − ∧ 𝑙 : det(Q𝐿 (Γ) )

∼
→ det(Q𝐿 (Γ𝑣 ) ), we obtain (Γ𝑣 , ℓ𝑣 , 𝜈, 𝜔

⊗𝑛
𝑣 ) ∈ 𝐺𝐸𝑛 (1). Since

the valence of v has increased by 1, degint(Γ𝑣 ) = degint(Γ) + 𝑛 and the same is true for the total degree
since the number of black edges did not change. Introducing the notation 𝜒(𝑣) � 𝑛(2𝑤(𝑣) +val(𝑣) −2),
then t is defined by

𝑡 : 𝐺𝐸𝑛
𝑝+𝑞 (∅) −→ 𝐺𝐸𝑛

𝑝+𝑞+𝑛 (1)

(Γ, ℓ, 𝜈, 𝜔⊗𝑛) ↦−→
∑

𝑣 ∈𝑉 (Γ)

𝜒(𝑣) · (Γ𝑣 , , ℓ𝑣 , 𝜈, 𝜔
⊗𝑛
𝑣 ).

To verify t is a chain map, we need to show it commutes with 𝑑con (since 𝑑col vanishes upon taking the
quotient by graphs with at least one red edge). This follows by observing that if an edge e connecting
vertices 𝑣′ and 𝑣′′ (these can be equal, when e is a loop) is collapsed to a vertex v, then (Γ/𝑒)𝑣 = Γ𝑣′/𝑒 =
Γ𝑣′′/𝑒 and 𝜒(𝑣) = 𝜒(𝑣′) + 𝜒(𝑣′′).
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Figure 6. This figure illustrates that 𝜋 is a chain map when deleting the unique leg creates inadmissible
graphs, in case (a). Weights are not displayed.

Suppose we are given a weighted black graph (Γ, ℓ, 𝜈, 𝜔⊗𝑛) ∈ 𝐺𝐸𝑛 (1). Removing the unique leg l
from Γ yields a graph Γ𝑙 with𝑉 (Γ𝑙) = 𝑉 (Γ), 𝐸𝐵 (Γ𝑙) = 𝐸𝐵 (Γ), and 𝐿(Γ𝑙) = ∅. Using the same w and 𝜈,
ℓ𝑙 the unique map between empty sets, and 𝜔𝑙 induced from 𝜔 by the map det(Q𝐿 (Γ) )

∼
→ det(Q𝐿 (Γ𝑙 ) ) that

contracts with l, we obtain (Γ𝑙 , ℓ𝑙 , 𝜈, (𝜔𝑙)⊗𝑛) ∈ 𝐺𝐸𝑛 (∅). Since the valence of 𝑣𝑙 � 𝜕 (𝑙) has decreased
by 1, degint (Γ

𝑙) = degint (Γ) −𝑛 and the same is true for the total degree since the number of black edges
did not change. This weighted graph is admissible if and only if 2𝑤(𝑣𝑙) + val(𝑣𝑙) ≥ 3. Then define

𝜋 : 𝐺𝐸𝑛
𝑝+𝑞+𝑛 (1) −→ 𝐺𝐸𝑛

𝑝+𝑞 (∅)

(Γ, ℓ, 𝜈, 𝜔⊗𝑛) ↦−→

{
(Γ𝑙 , ℓ𝑙 , 𝜈, (𝜔𝑙)⊗𝑛) if 2𝑤(𝑣𝑙) + val(𝑣𝑙) ≥ 3,
0 otherwise.

To verify that 𝜋 is a chain map, we observe that (Γ/𝑒)𝑙 = Γ𝑙/𝑒. A subtlety is that deleting a leg may
make a graph inadmissible; this occurs either when (a) the leg l is at a trivalent vertex of weight 0, or
(b) the leg l is at a univalent vertex with weight 1. The case (a) is verified in Figure 6, and case (b) is
left to the reader.

The composition 𝜋 ◦ 𝑡 is given on the element (Γ, ℓ, 𝜈, 𝜔⊗𝑛) by multiplication by
∑

𝑣 ∈𝑉 (Γ) 𝜒(𝑣) =
degint(Γ); the result follows. �

Combining this with Lemma 6.10 shows that the conclusion of that lemma holds for 𝑇 = ∅ too, with
a slightly better range.

Corollary 6.12. 𝐻𝑝+𝑞 (𝐺
𝑍𝑛 (∅))𝑞 and 𝐻𝑝+𝑞 (𝐺

𝐸𝑛 (∅))𝑞 vanish if 𝑛 · 𝑝 < 𝑞.

Proof. By Lemma 6.11, 𝐻𝑝+𝑞 (𝐺
𝑍𝑛 (∅))𝑞 injects into 𝐻𝑝+𝑞+𝑛 (𝐺

𝑍𝑛 (1))𝑞+𝑛 for 𝑞 ≠ 0. By Lemma 6.10
for 𝑇 = 1, this vanishes as long as 𝑛(𝑝 + 1) < 𝑞 + 𝑛. Rearranging gives the result. �

Using this we can reverse the logic of the proof of Lemma 6.10 to access 𝐻Com
𝑝 (𝑍𝑛)𝑞 (∅) and

𝐻Com
𝑝 (𝐸𝑛)𝑞 (∅).

Theorem 6.13. 𝐻Com
𝑝 (𝑍𝑛)𝑞 (∅) and 𝐻Com

𝑝 (𝐸𝑛)𝑞 (∅) vanish if 𝑞 ≠ 𝑛 · 𝑝.

Proof. We consider the case of 𝐸𝑛; that of 𝑍𝑛 is identical. Consider the spectral sequence of (14) for
𝑇 = ∅. This has

𝐸1
𝑠,𝑡 ,𝑞 =

⊕
𝑆0 ,...,𝑆𝑠
∈d(s)Br

𝐻Com
𝑡−𝑞+1 (𝐸𝑛)𝑞 (𝑆0) ⊗ d(s)Br(𝑆0, 𝑆1) ⊗ · · · ⊗ d(s)Br(𝑆𝑠−1, 𝑆𝑠) ⊗ FB(𝑟 (𝑆𝑠),∅)
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and converges strongly to 𝐻𝑠+𝑡 (𝐺
𝐸𝑛 (∅))𝑞 . The terms with 𝑆0 = ∅ form a subcomplex 𝐷∗,𝑡 ,𝑞 of

(𝐸1
∗,𝑡 ,𝑞 , 𝑑

1), as in this case for the latter tensor factors to be nonzero we must have∅ = 𝑆0 = 𝑆1 = · · · = 𝑆𝑠 ,
and 𝑑1 preserves this property. Furthermore, this subcomplex is

𝐻Com
𝑡−𝑞+1 (𝐸𝑛)𝑞 (∅)

0
← 𝐻Com

𝑡−𝑞+1 (𝐸𝑛)𝑞 (∅)
id
← 𝐻Com

𝑡−𝑞+1 (𝐸𝑛)𝑞 (∅)
0
← 𝐻Com

𝑡−𝑞+1 (𝐸𝑛)𝑞 (∅)
id
← · · ·

so is acyclic in degrees 𝑠 > 0. The quotient complex 𝐸1
∗,𝑡 ,𝑞/𝐷∗,𝑡 ,𝑞 is given by the analogous formula

to the above but only summing over 𝑆0 ≠ ∅. In this case, for 𝐻Com
𝑡−𝑞+1 (𝐸𝑛)𝑞 (𝑆0) to be nonzero we must

have 𝑞 = 𝑛 · (𝑡 − 𝑞 + 1). In total we find that 𝐸2
0,𝑡 ,𝑞 = 𝐻Com

𝑡−𝑞+1 (𝐸𝑛)𝑞 (∅) and if 𝑞 ≠ 𝑛 · (𝑡 − 𝑞 + 1) and
𝑠 > 0, then 𝐸2

𝑠,𝑡 ,𝑞 = 0.
We combine these properties as follows. By Lemma 4.14, we already know that the claimed vanishing

occurs for 𝑞 < 𝑛 · 𝑝, so suppose that 𝑞 > 𝑛 · 𝑝 and consider 𝐻Com
𝑝 (𝐸𝑛)𝑞 (∅) = 𝐸2

0, 𝑝+𝑞−1,𝑞 . There are
no differentials leaving this position in the spectral sequence. Differentials arriving at it come from
𝐸𝑟
𝑟 , 𝑝+𝑞−𝑟 ,𝑞 with 𝑟 ≥ 2, but for this to be nontrivial we must have 𝑞 = 𝑛 · (𝑝 − 𝑟 + 1) ≤ 𝑛 · 𝑝, which is not

possible by our assumption that 𝑞 > 𝑛 · 𝑝. Thus, no differentials can enter this position either, and so

𝐻Com
𝑝 (𝐸𝑛)𝑞 (∅) � 𝐸∞0, 𝑝+𝑞−1,𝑞 .

But 𝐸∞0, 𝑝+𝑞−1,𝑞 is a filtration quotient of 𝐻𝑝+𝑞−1(𝐺
𝐸𝑛 (∅))𝑞 , which by Corollary 6.12 vanishes for

𝑛 · (𝑝 − 1) < 𝑞 so in particular for 𝑞 > 𝑛 · 𝑝 which is what we assumed. �

Remark 6.14. The reader may wonder why we did not apply a transfer argument as in Lemma 6.11
directly to 𝑅𝐵𝑍𝑛

𝑐𝑜𝑛𝑛 and 𝑅𝐵𝐸𝑛
𝑐𝑜𝑛𝑛 to deduce Theorem 6.13 from the corresponding result with 1 in place

of ∅. The reason is that the analogue of the map 𝜋, which removes the unique leg from a red-and-black
graph whose legs are labelled by 1, is not a chain map in this case. We invite the reader to verify this
for the following red-and-black graph:

Recalling that the internal degree is n times the weight, Theorem 5.1 and Theorem 6.13 together
show that the 𝑍𝑛 and 𝐸𝑛 are all Koszul, and hence by Corollary 4.27 imply that Gr•LCS 𝔱𝑔,1 is Koszul in
gradings ≤ 𝑔

3 , and hence by Proposition 3.4 imply Theorem 3.3.

7. Applications of Koszulness

In this section, we give two applications of Theorem A, to high-dimensional manifolds and graph
complexes respectively.

7.1. Applications to high-dimensional manifolds

In this subsection, we follow Section 5 in refraining from mentioning the weight grading (as it coincides
with the homological grading divided by n). Given the Koszulness of 𝑍𝑛, we can now revisit Section 5.2
and determine the rational homotopy groups of 𝑋1(𝑔) in a stable range of degrees. Let 2𝑛 ≥ 6 and recall
that by Theorem 5.2 (iii) the construction of twisted MMM-classes yields an algebra homomorphism

𝜓 : 𝐾∨ ⊗d(s)Br 𝑍𝑛 −→ 𝐻∗(𝑋1(𝑔);Q)

which is an isomorphism of 𝐺fr, [ℓ ]
𝑔 -representations in a stable range; in fact, ∗ ≤ 𝑔−3

2 suffices by
[KRW20c, Section 9.2]. The discussion in [KRW20c, Section 5] gives in degrees ∗ ≤ 𝑛 · 𝑔 (cf.
Theorem 4.25) an expression for the left side as a quadratic commutative algebra:
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Λ∗ [𝑊 [𝑛]]/(𝑅′) −→ 𝐾∨ ⊗d(s)Br 𝑍𝑛 with 𝑊 �

{
𝑉13 if 𝑛 is odd,
𝑉3 if 𝑛 is even,

and 𝑅′ � 〈(IH)〉 ≤ Λ2 [𝑊 [𝑛]]. We write 𝑅′⊥ ⊂ Λ2 [𝑊 [𝑛]]∨ � Λ2 [𝑊 [𝑛]] for its annihilator.

Remark 7.1. When n is odd, as long as 𝑔 ≥ 6 we have the decomposition

Λ2 [𝑉13 ] = 𝑉0 +𝑉12 +𝑉14 +𝑉16 +𝑉22 +𝑉22 ,12 .

into irreducible Sp2𝑔 (Z)-representations. The vectors (IH) generate the representation𝑉0+𝑉12 +𝑉22 (c.f.
Remark 3.13), so 𝑅′⊥ � 𝑉14 +𝑉16 +𝑉22 ,12 . For n even, one takes the transpose [KRW20b, Remark 4.23].

Theorem 7.2. In degrees ∗ ≤ 𝑔−3
2 , there is a Lie algebra isomorphism

Lie(𝑊 [𝑛−1])/(𝑅′⊥ [−2]) � 𝜋∗+1 (𝑋1(𝑔)) ⊗ Q.

Proof. The map 𝜓 : 𝐾∨ ⊗d(s)Br 𝑍𝑛 → 𝐻∗(𝑋1 (𝑔);Q) of 𝐺fr, [ℓ ]
𝑔 -representations is an isomorphism in

degrees ∗ ≤ 𝑔−3
2 . The left side is Koszul in degrees ∗ ≤ 𝑛 · 𝑔3 by Theorem 6.13 and Lemma 4.19. Thus,

the unstable rational Adams spectral sequence of the proof of Theorem 5.1 (see Section 5.3)

𝐸2
𝑠,𝑡 = 𝐻Com

𝑠 (𝐻∗(𝑋1 (𝑔);Q))𝑡 =⇒ Hom(𝜋𝑡−𝑠 (Ω𝑋1 (𝑔)),Q),

vanishes except when 𝑡 = 𝑠 · 𝑛 as long as 𝑡 ≤ min( 𝑔−3
2 , 𝑛 · 𝑔3 ) but since 2𝑛 ≥ 6 the first term is always

smaller. Moreover, in this range the 𝐸2-page is dual to the quadratic dual of Λ∗ [𝑊 [𝑛]]/(𝑅′) and the
spectral sequence collapses for degree reasons because the differentials have bidegree (−𝑟,−𝑟 + 1). �

This in turn has consequences for diffeomorphisms of the disc 𝐷2𝑛 and homeomorphisms of the
Euclidean space R2𝑛. The fundamental diagram of [KRW20b] is (30) in Section 6.1 of loc. cit.:

𝐵Diff
fr
𝜕 (𝐷

2𝑛)ℓ0

𝑋1 (𝑔) 𝐵Torfr
𝜕 (𝑊𝑔,1)ℓ 𝑋0

𝐵TorEmb
fr,�
1/2𝜕 (𝑊𝑔,1)ℓ .

(15)

The row and column are fibration sequences, and all spaces are nilpotent, connected and of finite type.
The common homotopy fibre 𝐹𝑛 of the rationalisations of the dashed maps [KRW20b, Definition 6.1]
fits into a map of fibration sequences (cf. [KRW20b, (3)])

𝐹𝑛 (𝐵Diff
fr
𝜕 (𝐷

2𝑛)ℓ0)Q (𝑋0)Q

(
Ω2𝑛+1

0
Top

Top(2n)

)
Q

(
Ω2𝑛

0 Top(2𝑛)
)
Q

(
Ω2𝑛

0 Top
)
Q
.

� � �

In particular, (𝑋0)Q �
∏

𝐾 (Q, 𝑑) with product indexed by integers 𝑑 > 0 such that 𝑑 ≡ 2𝑛− 1(mod 4).
This directly yields the following improvement of Theorem C of [KRW20b], also improving Theorem
B of loc. cit.

Corollary 7.3. The rational homotopy groups ofΩ2𝑛+1
0

Top
Top(2𝑛) are supported in degrees ∗ ∈

⋃
𝑟 ≥2 [2𝑟 (𝑛−

2) − 1, 2𝑟 (𝑛 − 1) + 1].
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7.2. Applications to graph complexes

7.2.1. Relation to classical graph complexes
Up to a change of degrees the chain complex 𝐺𝑍𝑛 (𝑆) may be identified with the sum

⊕
𝑔 𝐺
(𝑔, |𝑆 |)

of the graph complexes studied by Chan–Galatius–Payne [CGP21, CGP22]. When 𝑆 = ∅, this is
predual to Kontsevich’s graph complex GC2 as studied by Willwacher [Wil15], and for general S it is
predual to the ‘hairy graph complex’ HGC𝑆

2 of Andersson–Willwacher–Zivkovic [AWZ20]. Similarly,
the chain complex 𝐺𝐸𝑛 (𝑆) may be identified with the sum

⊕
𝑔 𝐶∗(Δ𝑔, |𝑆 |;Q) of the reduced chains on

the moduli spaces of tropical curves of genus g with |𝑆 | marked points from [CGP22], or the predual of
HGC𝑆,mod

2 from [AWZ20].
In the degree convention of [CGP22], a connected (weighted) graph Γ is given degree deg𝐶𝐺𝑃 (Γ) :=

#𝐸 (Γ) − 2𝑔(Γ), where 𝑔(Γ) is the sum of the first Betti number of Γ and the weights at all its vertices.
Our internal degree can be compared to 𝑔(Γ) via

degint(Γ) = 𝑛
∑

𝑣 ∈𝑉 (Γ)

(2𝑤(𝑣) + val(𝑣) − 2) = 𝑛(2𝑔(Γ) + |𝑆 | − 2)

and our total degree is deg(Γ) = #𝐸 (Γ) + degint(Γ), so

deg𝐶𝐺𝑃 (Γ) = deg(Γ) − (1 + 1
𝑛 ) degint(Γ) + |𝑆 | − 2.

7.2.2. An alternative approach
Complementary to the filtration used in the proof of Proposition 6.6 by number of edges, we may filter
𝑅𝐵𝐸𝑛

conn by the number of red edges: This kills the 𝑑col part of the differential, leaving

Gr(𝑅𝐵𝐸𝑛
conn) (𝑇) �

⊕
𝑛≥0
(𝐺𝐸𝑛 (𝑛), 𝑑con) ⊗𝔖𝑛 d(s)Br(𝑛, 𝑇).

In particular, it gives a spectral sequence

𝐸1
𝑝,𝑞 =

⊕
𝑛≥0 𝐻𝑝+𝑞 (𝐺

𝐸𝑛 (𝑛))𝑞 ⊗𝔖𝑛 d(s)Br(𝑛, 𝑇)

𝐻𝑝+𝑞 (𝑅𝐵𝐸𝑛
conn(𝑇))𝑞 𝐻Com

𝑝+1 (𝐸𝑛)𝑞 (𝑇).
�

Using this and the spectral sequence (14), it follows that Koszulness of 𝐸𝑛 is equivalent to the
vanishing range

𝐻𝑝+𝑞 (𝐺
𝐸𝑛 (𝑇))𝑞 = 0 for 𝑛 · (𝑝 + 1) < 𝑞 and all 𝑇.

The same goes with 𝐸𝑛 replaced by 𝑍𝑛.

Remark 7.4. Willwacher has pointed out the following line of reasoning to us, which is essentially the
argument of [FNW23]: Combining the above with the discussion of Chan–Galatius–Payne’s complexes
in the last section, it follows that Koszulness of 𝑍𝑛 is equivalent to 𝐻∗(𝐺

(𝑔,𝑛) ) = 0 for ∗ < 𝑛 − 3, and
Koszulness of 𝐸𝑛 is equivalent to 𝐻∗(Δ𝑔,𝑛;Q) = 0 for ∗ < 𝑛−3+2𝑔−1, but both follow from [CGP22,
Theorem 1.6].

7.2.3. Comparing 𝑬𝒏 and 𝒁𝒏

We can use our results to give a new proof of [CGP21, Theorem 1.3] and [CGP22, Theorem 1.4] (another
has been sketched in [AWZ20, Lemma 5]). As explained in Section 4.4, there is a map of commutative
algebra objects 𝐸𝑛 → 𝑍𝑛, and by Theorem 4.22 we have

𝐻Com
𝑝 (𝑍𝑛, 𝐸𝑛)𝑞 (𝑆) =

{
Q if |𝑆 | = 1 and (𝑝, 𝑞) = (2, 𝑛),
0 otherwise.

(16)
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Corollary 7.5. We have

𝐻𝑝+𝑞 (𝐺
𝑍𝑛 (𝑆), 𝐺𝐸𝑛 (𝑆))𝑞 =

{
Q if |𝑆 | = 1 and (𝑝, 𝑞) = (1, 𝑛),
0 otherwise.

Proof. There is a relative form of the spectral sequence (14), obtained by taking mapping cones of
filtered chain complexes, starting with 𝐸1

𝑠,𝑡 ,𝑞 given by⊕
𝑆0 ,...,𝑆𝑠
∈d(s)Br

𝐻Com
𝑡−𝑞+1 (𝑍𝑛, 𝐸𝑛)𝑞 (𝑆0) ⊗ d(s)Br(𝑆0, 𝑆1) ⊗ · · · ⊗ d(s)Br(𝑆𝑠−1, 𝑆𝑠) ⊗ FB(𝑟 (𝑆𝑠), 𝑇)

and converging to 𝐻𝑠+𝑡 (𝐺
𝑍𝑛 (𝑇), 𝐺𝐸𝑛 (𝑇))𝑞 . If |𝑇 | ≥ 2, then only terms with |𝑆0 | ≥ 2 can contribute,

but then 𝐻Com
∗ (𝑍𝑛, 𝐸𝑛) (𝐴0) = 0 by (16).

If 0 ≤ |𝑇 | < 2, then we may argue as in the proof of Theorem 6.13 that the subcomplex with
|𝑇 | = |𝑆0 | = · · · = |𝑆𝑠 | is acyclic in degrees 𝑠 > 0. Once we quotient by this complex, the remaining
terms must have |𝑆0 | ≥ |𝑇 | + 2 and the above argument still applies. Thus, the 𝐸2-page of the spectral
sequence is supported along 𝑠 = 0 so collapses to give an isomorphism

𝐻Com
𝑝+1 (𝑍𝑛, 𝐸𝑛)𝑞 (𝑇) � 𝐻𝑝+𝑞 (𝐺

𝑍𝑛 (𝑇), 𝐺𝐸𝑛 (𝑇))𝑞 .

The result then follows from (16). �

8. Injectivity of the geometric Johnson homomorphism

8.1. The geometric Johnson homomorphism

8.1.1. Construction
Recall from Lemma 3.2 that there is an extension of Lie algebras with additional grading

Gr•LCS 𝔭
𝑟
𝑔,𝑛 −→ Gr•LCS 𝔱

𝑟
𝑔,𝑛 −→ Gr•LCS 𝔱𝑔 .

This exhibits Gr•LCS 𝔭
𝑟
𝑔,𝑛 as a Lie ideal in Gr•LCS 𝔱

𝑟
𝑔,𝑛 and hence the adjoint representation induces a map

Gr•LCS 𝔱
𝑟
𝑔,𝑛 −→ Der(Gr•LCS 𝔭

𝑟
𝑔,𝑛).

Specializing toΣ𝑔,1, we have Gr•LCS 𝔭𝑔,1 = Lie(𝐻), the free Lie algebra on 𝐻 � 𝐻1(Σ𝑔,1;Q) in weight 1.
The map Gr•LCS 𝔱𝑔,1 → Der(Lie(𝐻)) has image in the derivations which increase the weight and
annihilate the element 𝜔 =

∑𝑔
𝑖=1 [𝑒𝑖 , 𝑓𝑖] with 𝑒1, . . . , 𝑒𝑔, 𝑓1, . . . , 𝑓𝑔 a symplectic basis of 𝐻1(Σ𝑔,1;Q) =

𝐻1 (Σ𝑔;Q) [Mor93, Corollary 3.2]. This is denoted by 𝔥𝑔,1 ⊂ Der(Lie(𝐻)) and called the Lie algebra
of positive degree symplectic derivations.

Following Hain, we refer to the resulting map

𝜏𝑔,1 : Gr•LCS 𝔱𝑔,1 −→ 𝔥𝑔,1

as the geometric Johnson homomorphism. Since this is a map of Lie algebras and its domain is generated
in weight 1 as long as 𝑔 ≥ 4 (see Corollary 3.14), it is determined by its restriction to Gr1

LCS 𝔱𝑔,1.
Furthermore, it is a map of algebraic Sp2𝑔 (Z)-representations, and Gr1

LCS 𝔱𝑔,1 and (𝔥𝑔,1)1 are both given
by 𝑉1 ⊕ 𝑉13 by Corollary 3.14 and [KRW20b, Computation 5.8]. This map Gr1

LCS 𝔱𝑔,1 → (𝔥𝑔,1)1 is an
isomorphism, essentially by construction of 𝔱𝑔,1, and thus up to isomorphism 𝜏𝑔,1 is the unique map of
Lie algebras that is injective in weight 1. Theorem B asserts that in weight ≤ 1

3𝑔 the kernel of 𝜏𝑔,1 lies
in the centre of Gr•LCS 𝔱𝑔,1 and consists of trivial representations of Sp2𝑔 (Z).
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Remark 8.1. Theorem B may be rephrased as saying that in weight ≤ 1
3𝑔 the kernel of 𝜏𝑔,1 lies

in the centre of Gr•LCS 𝔤𝑔,1, the lower central series Lie algebra of the pro-algebraic group G𝑔,1 of
Section 3.1.1. See [Hai20, Question 5.11] for a question about this centre.

We know that 𝐾∨ ⊗dsBr 𝐸1 and 𝐾∨ ⊗dsBr 𝑍1 are Koszul in weight ≤ 1
3𝑔 by Theorem 6.13 and the

argument of Corollary 4.27. In particular, they are quadratic in this range and as long as 𝑔 ≥ 6 we let
(𝐾∨ ⊗dsBr 𝐸1)

quad and (𝐾∨ ⊗dsBr 𝑍1)
quad denote the quadratic algebras given by the quadratic duals of

the presentations of 𝐾∨ ⊗dsBr 𝐸1 and 𝐾∨ ⊗dsBr 𝑍1 in weights ≤ 2. These are explicitly described by (see
the proofs of Theorem 4.25 and Theorem 7.2)

(𝐾∨ ⊗dsBr 𝐸1)
quad �

Lie(Λ3(𝑉1) [0, 1])
((𝐼𝐻)⊥)

and (𝐾∨ ⊗dsBr 𝑍1)
quad �

Lie(𝑉13 [0, 1])
((𝐼𝐻)⊥)

;

in both cases the generators are in homological degree 0 and weight 1, so in particular these Lie algebras
are supported in homological degree 0. For 𝑔 ≥ 6, there is therefore a commutative diagram

((𝐾∨ ⊗dsBr 𝑍1)
quad)0,𝑤

[
𝐻Com

𝑤 (𝐾∨ ⊗dsBr 𝑍1)𝑤,𝑤

]∨
((𝐾∨ ⊗dsBr 𝐸1)

quad)0,𝑤
[
𝐻Com

𝑤 (𝐾∨ ⊗dsBr 𝐸1)𝑤,𝑤

]∨
with horizontal maps isomorphisms for 𝑤 ≤ 1

3𝑔.

Lemma 8.2. Suppose 𝑔 ≥ 6, then the map

((𝐾∨ ⊗dsBr 𝑍1)
quad)0,𝑤 −→ ((𝐾

∨ ⊗dsBr 𝐸1)
quad)0,𝑤

is injective for 𝑤 = 1 and an isomorphism for 2 ≤ 𝑤 ≤ 1
3𝑔

Proof. Since the weight w parts of 𝑍1 and 𝐸1 are supported on sets of size ≤ 3𝑤, by Lemma 4.19 the
right vertical map is dual to

𝐾∨ ⊗dsBr 𝐻Com
𝑤 (𝐸1)𝑤,𝑤 −→ 𝐾∨ ⊗dsBr 𝐻Com

𝑤 (𝑍1)𝑤,𝑤

as long as 𝑤 ≤ 1
3𝑔. By Theorem 4.22, the map 𝐻Com

𝑝 (𝐸1)𝑞,𝑤 → 𝐻Com
𝑝 (𝑍1)𝑞,𝑤 is an isomorphism except

when (𝑝, 𝑞, 𝑤) = (1, 1, 1) and evaluated on sets of size 1, in which case it is surjective by the proof of
Corollary 4.23. The lemma is then obtained by dualising. �

By the proof of Proposition 4.26, the map

(𝐾∨ ⊗dsBr 𝐸1)
quad −→ (𝐾∨ ⊗dsBr 𝐸1/(𝜅𝑒2))quad � Gr•LCS 𝔱𝑔,1

is injective with cokernel a single trivial representation in weight 2. Since the geometric Johnson
homomorphism is injective in weight 1 and we work up to trivial representations, we thus may as well
study the composition

(𝐾∨ ⊗dsBr 𝑍1)
quad −→ Gr•LCS 𝔱𝑔,1 −→ 𝔥𝑔,1. (17)

Up to isomorphism, this is the unique map of Lie algebras with additional weight grading which is
injective in weight 1.
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8.1.2. A high-dimensional geometric Johnson homomorphism
We next describe a higher-dimensional incarnation of (17), and first give its domain and codomain. By
Theorem 7.2, for n odd and degrees 𝑤(𝑛 − 1) ≤ 𝑔−3

2 [KRW20c, Section 9.2], there is an isomorphism

((𝐾∨ ⊗dsBr 𝑍𝑛)
quad)𝑤 (𝑛−1) ,𝑤

�
−→ 𝜋𝑤 (𝑛−1)+1 (𝑋1 (𝑔)) ⊗ Q

of algebraic 𝐺fr, [ℓ ]
𝑔 -representations, with 𝐺fr, [ℓ ]

𝑔 ⊂ Sp2𝑔 (Z) a finite index subgroup. The left-hand side
is identified with ((𝐾∨ ⊗dsBr 𝑍1)

quad)0,𝑤 , so the domain of our higher-dimensional geometric Johnson
homomorphism is the rational homotopy Lie algebra of 𝑋1(𝑔) with a certain regrading.

For the codomain, we let Der+(Lie(𝐻 [𝑛 − 1])) denote the graded Lie algebra of positive degree
derivations of the free graded Lie algebra on 𝐻 = 𝐻𝑛 (𝑊𝑔,1;Q) placed in degree 𝑛 − 1 and weight 1.
Writing Der+𝜔 (Lie(𝐻 [𝑛 − 1]) ⊂ Der+(Lie(𝐻 [𝑛 − 1]) for those derivations which annihilate 𝜔, we
get a graded Lie algebra which agrees with 𝔥𝑔,1 up to regrading; that is, (𝔥𝑔,1)0,𝑤 is identified with
Der+𝜔 (Lie(𝐻 [𝑛 − 1])𝑤 (𝑛−1) ,𝑤 . It is well known that there is an isomorphism of graded Lie algebras

𝜋∗+1(𝐵hAutid𝜕 (𝑊𝑔,1)) ⊗ Q � Der+𝜔 (Lie(𝐻 [𝑛 − 1])),

in algebraic 𝐺fr, [ℓ ]
𝑔 -representations (see [BM20, Corollary 3.3]), with the superscript id indicating the

identity component. So the codomain of our higher-dimensional geometric Johnson homomorphism is
the rational homotopy Lie algebra of 𝐵hAutid𝜕 (𝑊𝑔,1).

There are maps

𝑋1(𝑔) −→ 𝐵Difffr
𝜕 (𝑊𝑔,1)ℓ −→ 𝐵hAut𝜕 (𝑊𝑔,1), (18)

which induce a map 𝜋∗+1 (𝑋1 (𝑔)) ⊗ Q→ 𝜋∗+1(𝐵hAutid𝜕 (𝑊𝑔,1)) ⊗ Q of graded Lie algebras in algebraic
𝐺fr, [ℓ ]

𝑔 -representations. This is the higher-dimensional geometric Johnson homomorphism. To see that
it coincides with 𝜏𝑔,1, in a stable range and up to isomorphism and regrading, it suffices to verify that it
is injective in degree ∗ = 𝑛 − 1 in a stable range. This is the content of [KRW20b, Proposition 5.10]. To
prove Theorem B, we may thus use this higher-dimensional incarnation instead.

8.2. Proof of Theorem B

Translated to high dimensions, Theorem B says that in a stable range the kernel of the map induced
by (18) on rational homotopy groups consists solely of trivial 𝐺fr, [ℓ ]

𝑔 -representations in the centre of
𝜋∗+1 (𝑋1 (𝑔)) ⊗ Q.

We need to recall some of the setup from [KRW20b, Section 3]. Let us write 1/2𝜕𝑊𝑔,1 for a fixed subset
𝐷2𝑛−1 ⊂ 𝑆2𝑛−1 = 𝜕𝑊𝑔,1. Then we let 𝐵Embfr

1/2𝜕 (𝑊𝑔,1) denote the path component of the homotopy
quotient

Bun1/2𝜕 (𝑇𝑊𝑔,1, 𝜃
∗
fr𝛾) � Emb1/2𝜕 (𝑊𝑔,1)

×

containing ℓ. Let us consider the commutative diagram

𝑋1 (𝑔) 𝐵Difffr
𝜕 (𝑊𝑔,1)ℓ 𝐵Embfr

1/2𝜕 (𝑊𝑔,1)ℓ

𝐵hAut𝜕 (𝑊𝑔,1) 𝐵hAut1/2𝜕 (𝑊𝑔,1).

(18) 2©
1©
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The map 1© is injective on rational homotopy groups in all degrees, as the following commutes

𝜋∗+1(𝐵hAutid𝜕 (𝑊𝑔,1)) ⊗ Q 𝜋∗+1 (𝐵hAutid∗ (𝑊𝑔,1)) ⊗ Q

Der+𝜔 (Lie(𝐻 [𝑛 − 1])) Der+(Lie(𝐻 [𝑛 − 1])).

� �

We claim that 2© is also injective. To see this is the case, we use the Bousfield–Kan spectral sequence
for the embedding calculus Taylor tower [KRW20b, Section 5.2.3]. This is an extended spectral sequence
in the sense of [BK72], given by

𝐵𝐾𝐸1
𝑝,𝑞 =

{
𝜋𝑞−𝑝 (𝐵hAut1/2𝜕 (𝑊𝑔,1)) if 𝑝 = 0,
𝜋𝑞−𝑝 (𝐵𝐿𝑝+1Emb1/2𝜕 (𝑊𝑔,1)

×
id) if 𝑝 ≥ 1,

and converging completely to 𝜋𝑞−𝑝 (𝐵Embfr
1/2𝜕 (𝑊𝑔,1)

×). In [KRW20b, Proposition 5.32], we described
which entries on the 𝐸1-page can be nonzero. In particular, there is a pattern of ‘bands’: for 𝑟 ≥ 1
there are nonzero entries only in bidegrees (𝑝, 𝑞) lying in the intervals [0, 𝑟 + 1] × {𝑟 (𝑛 − 1) + 1} with
𝑟 ≥ 1. Since the differentials have bidegree (𝑟, 𝑟 − 1), the spectral sequence collapses rationally at the
𝐸2-page in a range. As we increase n, the number of intervals in which this collapse occurs increases.
Thus, by making n large enough, we see that the map 𝐵Embfr

𝜕 (𝑊𝑔,1)ℓ → 𝐵hAut1/2𝜕 (𝑊𝑔,1)
× induces an

identification

𝜋𝑟 (𝑛−1)+1(𝐵Embfr
1/2𝜕 (𝑊𝑔,1)

×) ⊗ Q

ker
[
𝜋𝑟 (𝑛−1)+1(𝐵hAut1/2𝜕 (𝑊𝑔,1)

×) ⊗ Q
𝑑1

−→ 𝜋𝑟 (𝑛−1) (𝐵𝐿2Embfr
1/2𝜕 (𝑊𝑔,1)

×
id) ⊗ Q

]
,

�

so in particular is injective.
Thus, the kernel of (18) coincides with that of the map induced on rational homotopy by the

composition

𝑋1 (𝑔) −→ 𝐵Difffr
𝜕 (𝑊𝑔,1)ℓ −→ 𝐵Embfr

1/2𝜕 (𝑊𝑔,1)ℓ .

The kernel of the left map coincides with the image of the rational homotopy of 𝑋0 under the connecting
homomorphism and hence consists of trivial representations in the centre of 𝜋∗+1(𝑋1 (𝑔)) ⊗ Q. Using
the framed Weiss fibre sequence [KRW20b, Theorem 3.12]

𝐵Difffr
𝜕 (𝑊𝑔,1) −→ 𝐵Embfr

1/2𝜕 (𝑊𝑔,1) −→ 𝐵2Difffr
𝜕 (𝐷

2𝑛),

the kernel of the right map coincides with the image of the rational homotopy of 𝐵2Difffr
𝜕 (𝐷

2𝑛)ℓ0

under the connecting homomorphism and hence consists of trivial representations in the centre of
𝜋∗+1 (𝐵Difffr

𝜕 (𝑊𝑔,1)ℓ) ⊗ Q.
To complete the proof of Theorem B, it remains to establish the explicit ranges. To do so, we use a

version of representation stability (cf. [Hai20, Proposition 15.1]) for the domain and codomain of 𝜏𝑔,1.
By Corollary 3.14, the Lie algebra Gr•LCS 𝔱𝑔,1 is quadratically generated by Λ3𝑉1 in weight 1, so by
stability for symplectic Schur functors and the branching rule (e.g., [KT87]), its decomposition into
nonzero irreducibles stabilises in weight ≤ 1

3𝑔. The Lie algebra 𝔥𝑔,1 fits into the short exact sequence

0 −→ 𝔥𝑔,1 −→ 𝐻 [−1] ⊗ Lie(𝐻 [1]) −→ Lie≥2 (𝐻 [1]) [−2] −→ 0,
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where Lie≥2 means we discard bracketings of < 2 elements. Once more invoking stability for symplectic
Schur functors and the branching rule, its decomposition into nonzero irreducibles stabilises in weight
≤ 𝑔 − 2. These observations imply that for 𝑔′ > 𝑔, in the commutative diagram

Gr•LCS 𝔱𝑔,1 𝔥𝑔,1

Gr•LCS 𝔱𝑔′,1 𝔥𝑔′,1

induced by the inclusion Σ𝑔,1 ⊂ Σ𝑔′,1, the left vertical map is an isomorphism in weight ≤ 1
3𝑔 and

the right vertical map is in weight ≤ 𝑔 − 2. Since we can make the bottom horizontal map have
kernel consisting of trivial representations that are contained in the centre for arbitrary large weight by
increasing 𝑔′, we conclude that the same is true for the top horizontal map in weight ≤ min( 1

3𝑔, 𝑔 − 2).
Since 𝑔−2 ≥ 1

3𝑔 unless 𝑔 ≤ 2 —in which case the injectivity of the geometric Johnson homomorphism
in weight ≤ 𝑔

3 is clear — we conclude that the top map has a kernel consisting of trivial representations
that are contained in the centre for weight ≤ 1

3𝑔.
Remark 8.3. The proof of Theorem B also gives a version of this theorem for n even.

8.3. Further remarks

8.3.1. The Euler tangential structure
To prove Theorem B, we could have used the Euler tangential structure of Section 5.4 instead of framings.
Doing so, the space 𝑋1(𝑔) gets replaced by 𝑋𝑒

1 (𝑔) and 𝐾∨ ⊗d(s)Br 𝑍𝑛 by (𝐾∨ ⊗d(s)Br 𝐸𝑛)/(𝜅𝑒 𝑗 | 𝑗 > 1),
but otherwise the proof proceeds in a similar manner. From this point of view, Lemma 8.2 amounts to
the statement that map induced on rational homotopy groups by

Bun𝜕 (𝑇𝑊𝑔,1, 𝜃
∗
fr𝛾2𝑛) −→ Bun𝜕 (𝑇𝑊𝑔,1, 𝜃

∗
𝑒𝛾2𝑛)

is an isomorphism in degrees ∗ > 𝑛.

8.3.2. Computing the Johnson cokernel
Both Gr•LCS 𝔱𝑔,1 and 𝔥𝑔,1 are accessible to computer calculations: More precisely, one can compute the
multiplicities of the irreducibles in each degree. As pointed out in the introduction, for Gr•LCS 𝔱𝑔,1 one
uses the computation of the stable character of Gr•LCS 𝔱𝑔 of Garoufalidis–Getzler [GG17], which was
conditional on Theorem A (or rather Theorem 3.3), while 𝔥𝑔,1 admits a description in terms of Schur
functors (see [KRW20b, Section 5.4.1]). Then Theorem B implies that, up to trivial representations, the
Johnson cokernel coker(𝜏𝑔,1 : Gr•LCS 𝔱𝑔,1 → 𝔥𝑔,1) is also accessible to computer calculations in a stable
range.

In fact, up to trivial representations the Johnson image is the kernel of the restriction to 𝔥𝑔,1 of the
connecting homomorphism

𝜕 : 𝜋∗+1(𝐵hAut∗(𝑊𝑔,1)) ⊗ Q −→ 𝜋∗(𝐵𝐿2Embfr
1/2𝜕 (𝑊𝑔,1)) ⊗ Q

in the fibration sequence 𝐵𝐿2Embfr
1/2𝜕 (𝑊𝑔,1) → 𝐵𝑇2Embfr

1/2𝜕 (𝑊𝑔,1) → 𝐵hAut∗(𝑊𝑔,1) arising from the
framed embedding calculus Taylor tower. It would be interesting to relate 𝜕 to Morita’s trace maps and
its variants, and to approach Question 12.8 of [Hai20] from this perspective (cf. part (ii) of ‘the most
optimistic landscape’ in Section 1.9 of loc. cit.).

8.3.3. Variants
Let us next consider the analogous geometric Johnson homomorphisms

𝜏1
𝑔 : Gr•LCS 𝔱

1
𝑔 −→ 𝔥1

𝑔 and 𝜏𝑔 : Gr•LCS 𝔱𝑔 −→ 𝔥𝑔,
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where 𝔥1
𝑔 (also denoted 𝔥𝑔,∗ in the literature) is the Lie algebra of the positive degree symplectic

derivations of Gr•LCS 𝔭
1
𝑔 and 𝔥𝑔 is the quotient of 𝔤1

𝑔 by the inner derivations [Mor99, p. 370].

Corollary 8.4. In weight ≤ 1
3𝑔, the kernels of 𝜏1

𝑔 : Gr•LCS 𝔱
1
𝑔 → 𝔥1

𝑔 and 𝜏𝑔 : Gr•LCS 𝔱𝑔 → 𝔥𝑔 lie in the
centre and consists of trivial Sp2𝑔 (Z)-representations.

Proof. For 𝜏1
𝑔 , we use the extension Q[2 → Gr•LCS 𝔱𝑔,1 → Gr•LCS 𝔱

1
𝑔 of Lemma 3.2. The statement in

weight ≠ 2 follows because the images of 𝜏𝑔,1 and 𝜏1
𝑔 coincide by [MSS15, Proposition 3.5 (ii)]. In

weight 2, 𝔥𝑔,1 and 𝔥1
𝑔 differ only in a trivial representation, by [MSS15, Table 1] (𝔧𝑔,1 is the kernel of

the surjection 𝔥𝑔,1 → 𝔥1
𝑔 [MSS15, p. 307]).

For 𝜏𝑔, we use the diagram of extensions

Gr•LCS 𝔭
1
𝑔 Gr•LCS 𝔱

1
𝑔 Gr•LCS 𝔱𝑔

Gr•LCS 𝔭
1
𝑔 𝔥1

𝑔 𝔥𝑔 .

𝜏1
𝑔 𝜏𝑔

The top row appears in Lemma 3.2, the bottom row appears on p. 370 of [Mor99] (Morita uses L𝑔 and
𝔥𝑔,∗ in place of Gr•LCS 𝔭

1
𝑔 and 𝔥1

𝑔). See also p. 643 of [Hai97]. �

Remark 8.5. Theorem B and Corollary 8.4 remain true when we replace the unipotent completions
𝔱𝑔,1, 𝔱1

𝑔 and 𝔱𝑔 with the relative unipotent completions 𝔲𝑔,1, 𝔲1
𝑔 and 𝔲𝑔 respectively since these only

differ by trivial representations in the centre by Lemma 3.1.

Remark 8.6. Let C𝑔,1 be the monoid of 3-dimensional homology cylinders under concatenation, which
has a filtration by Y-equivalence. There is a map of filtered monoids 𝑇𝑔,1 → 𝐶𝑔,1, if the left side is
given the lower central series filtration. Taking associated gradeds and rationalising, we get a map of
Lie algebras with additional weight grading

Gr•LCS 𝑇𝑔,1 −→ Gr•𝑌 C𝑔,1.

In [HM09, Question 1.3], Habiro and Massuyeau ask whether this map is injective. Rationally, in a
stable range, and up to trivial representations in the centre, it follows from Theorem B that it is. To see
this, consider Figure 8.1 of [HM09] and observe that the map denoted by GrΓI𝑔,1 ⊗Q→ Gr[−]I𝑔,1 ⊗Q
is 𝜏𝑔,1.

Acknowledgements. The authors thank M. Kassabov and T. Willwacher for useful discussions, and both anonymous referees for
helpful comments.

Conflicts of Interest. The authors have no conflict of interest to declare.

Financial Support. AK acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC)
[funding reference number 512156 and 512250], as well as the Research Competitiveness Fund of the University of Toronto at
Scarborough. AK was supported by an Alfred J. Sloan Research Fellowship. ORW was partially supported by the ERC under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 756444) and by a Philip Leverhulme
Prize from the Leverhulme Trust.

References

[Aka05] H. Akazawa, ‘Symplectic invariants arising from a Grassmann quotient and trivalent graphs’, Math. J. Okayama
Univ. 47 (2005), 99–117.

[Ati69] M. F. Atiyah, The Signature of Fibre-Bundles, Global Analysis (Papers in Honor of K. Kodaira) (Univ. Tokyo Press,
Tokyo, 1969), 73–84.

[AWZ20] A. Andersson, T. Willwacher and M. Zivkovic, ‘Oriented hairy graphs and moduli spaces of curves’, Preprint, 2020,
arXiv.org:2005.00439.

https://doi.org/10.1017/fmp.2023.10 Published online by Cambridge University Press

https://arxiv.org/abs/2005.00439
https://doi.org/10.1017/fmp.2023.10


46 A. Kupers and O. Randal-Williams

[BK72] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics,
vol. 304 (Springer-Verlag, Berlin-New York, 1972).

[BM20] A. Berglund and I. Madsen, ‘Rational homotopy theory of automorphisms of manifolds’, Acta Math. 224(1) (2020),
67–185.

[CGP21] M. Chan, S. Galatius and S. Payne, ‘Tropical curves, graph complexes, and top weight cohomology of M𝑔’, J. Amer.
Math. Soc. 34(2) (2021), 565–594.

[CGP22] M. Chan, S. Galatius and S. Payne, Topology of Moduli Spaces of Tropical Curves with Marked Points, Facets of
Algebraic Geometry. Vol. I, London Math. Soc. Lecture Note Ser., vol. 472, (Cambridge Univ. Press, Cambridge,
2022), 77–131. 4381898.

[FNW23] M. Felder, F. Naef and T. Willwacher, ‘Stable cohomology of graph complexes’, Sel. Math., New Ser. 29(2) (2023),
No 23.

[GG17] S. Garoufalidis and E. Getzler, ‘Graph complexes and the symplectic character of the Torelli group’, Preprint, 2017,
arxiv.org:1712.03606.

[GK94] V. Ginzburg and M. Kapranov, ‘Koszul duality for operads’, Duke Math. J. 76(1) (1994), 203–272.
[GN98] S. Garoufalidis and H. Nakamura, ‘Some IHX-type relations on trivalent graphs and symplectic representation theory’,

Math. Res. Lett. 5(3) (1998), 391–402.
[GRW19] S. Galatius and O. Randal-Williams, ‘Moduli spaces of manifolds: A user’s guide’, in Handbook of Homotopy Theory

(Chapman & Hall/CRC , CRC Press, Boca Raton, FL, 2019), 445–487.
[GS07] P. Goerss and K. Schemmerhorn, ‘Model categories and simplicial methods’, in Interactions between Homotopy

Theory and Algebra, Contemp. Math., vol. 436 (Amer. Math. Soc., Providence, RI, 2007), 3–49. 2355769.
[Hai87] R. Hain, ‘The de Rham homotopy theory of complex algebraic varieties. I’, 𝐾 -Theory 1(3) (1987), 271–324. 908993.
[Hai93] R. Hain, ‘Completions of mapping class groups and the cycle 𝐶 −𝐶−’, in Mapping Class Groups and Moduli Spaces

of Riemann Surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math., vol. 150 (Amer. Math. Soc., Providence,
RI, 1993), 75–105. 1234261.

[Hai97] R. Hain, ‘Infinitesimal presentations of the Torelli groups’, J. Amer. Math. Soc. 10(3) (1997), 597–651.
[Hai15] R. Hain, ‘Genus 3 mapping class groups are not Kähler’, J. Topol. 8(1) (2015), 213–246.
[Hai20] R. Hain, ‘Johnson homomorphisms’, EMS Surv. Math. Sci. 7(1) (2020), 33–116. 4195745.
[Hir03] P. S. Hirschhorn, Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99

(American Mathematical Society, Providence, RI, 2003). 1944041.
[HL97] R. Hain and E. Looijenga, ‘Mapping class groups and moduli spaces of curves’, in Algebraic geometry—Santa Cruz

1995, Proc. Sympos. Pure Math., vol. 62 (Amer. Math. Soc., Providence, RI, 1997), 97–142. 1492535.
[HM09] K. Habiro and G. Massuyeau, ‘Symplectic Jacobi diagrams and the Lie algebra of homology cylinders’, J. Topol. 2(3)

(2009), 527–569. 2546585.
[HS00] N. Habegger and C. Sorger, ‘An infinitesimal presentation of the Torelli group of a surface with boundary’, 2000,

http://www.math.sciences.univ-nantes.fr/ habegger/PS/inf180300.ps.
[Isa09] S. B. Isaacson, Cubical Homotopy Theory and Monoidal Model Categories (ProQuest LLC, Ann Arbor, MI, 2009).

Thesis (Ph.D.)–Harvard University. 2713397.
[Joh85] D. Johnson, ‘The structure of the Torelli group. III. The abelianization of T ’, Topology 24(2) (1985), 127–144.
[KM96] N. Kawazumi and S. Morita, ‘The primary approximation to the cohomology of the moduli space of curves and

cocycles for the stable characteristic classes’, Math. Res. Lett. 3(5) (1996), 629–641.
[KO87] T. Kohno and T. Oda, ‘The lower central series of the pure braid group of an algebraic curve’, in Galois Representations

and Arithmetic Algebraic Geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., vol. 12 (North-Holland,
Amsterdam, 1987), 201–219.

[KRW20a] A. Kupers and O. Randal-Williams, ‘The cohomology of Torelli groups is algebraic’, Forum of Mathematics, Sigma
8 (2020), e64.

[KRW20b] A. Kupers and O. Randal-Williams, ‘On diffeomorphisms of even-dimensional discs’, Preprint, 2020,
arxiv.org:2007.13884.

[KRW20c] A. Kupers and O. Randal-Williams, ‘On the cohomology of Torelli groups’, Forum of Mathematics, Pi 8 (2020), e7.
[KT87] K. Koike and I. Terada, ‘Young-diagrammatic methods for the representation theory of the classical groups of type

𝐵𝑛 , 𝐶𝑛 , 𝐷
′
𝑛 , J. Algebra 107(2) (1987), 466–511.

[LV12] J.-L. Loday and B. Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 346 (Springer, Heidelberg, 2012).

[Mil12] J. Millès, The Koszul complex is the cotangent complex, Int. Math. Res. Not. IMRN (3) (2012), 607–650.
[Mor93] S. Morita, ‘Abelian quotients of subgroups of the mapping class group of surfaces’, Duke Math. J. 70(3) (1993),

699–726. 1224104.
[Mor99] S. Morita, ‘Structure of the mapping class groups of surfaces: a survey and a prospect’, in Proceedings of the Kirbyfest

(Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2 (Geom. Topol. Publ., Coventry, 1999), 349–406. 1734418.
[Mor06] S. Morita, ‘Cohomological structure of the mapping class group and beyond’, in Problems on Mapping Class Groups

and Related Topics, Proc. Sympos. Pure Math., vol. 74 (Amer. Math. Soc., Providence, RI, 2006), 329–354. 2264550.
[MSS15] S. Morita, T. Sakasai and M. Suzuki, ‘Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie

algebras’, Adv. Math. 282 (2015), 291–334.

https://doi.org/10.1017/fmp.2023.10 Published online by Cambridge University Press

https://arxiv.org/abs/1712.03606
http://www.math.sciences.univ-nantes.fr/%20habegger/PS/inf180300.ps
https://arxiv.org/abs/2007.13884
https://doi.org/10.1017/fmp.2023.10


Forum of Mathematics, Pi 47

[MSS20] S. Morita, T. Sakasai and M. Suzuki, ‘Torelli group, Johnson kernel, and invariants of homology spheres’, Quantum
Topol. 11(2) (2020), 379–410. 4118638.

[SS15] S. V. Sam and A. Snowden, ‘Stability patterns in representation theory’, Forum Math. Sigma 3 (2015), e11, 108.
[TW17] V. Turchin and T. Willwacher, ‘Commutative hairy graphs and representations of Out (𝐹𝑟 )’, J. Topol. 10(2) (2017),

386–411. 3653316.
[Wil15] T. Willwacher, ‘M. Kontsevich’s graph complex and the Grothendieck–Teichmüller Lie algebra’, Invent. Math. 200(3)

(2015), 671–760. 3348138.

https://doi.org/10.1017/fmp.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.10

	1 Introduction
	2 Preliminaries
	2.1 Commutative algebras
	2.2 Lie algebras
	2.3 Koszul duality
	2.4 Orthogonal and symplectic representation theory

	3 The Torelli Lie algebra
	3.1 Basic results
	3.1.1 Definitions
	3.1.2 Mixed Hodge structures and lower central series
	3.1.3 Koszulness
	3.1.4 Quadratic presentations

	3.2 Cohomology of tg,1 in low degrees

	4 Representations of the downward Brauer category
	4.1 The downward Brauer category
	4.1.1 Homotopy theory of representations of the downward Brauer category

	4.2 Commutative algebras on the downward Brauer category
	4.2.1 Unital commutative algebras
	4.2.2 Homotopy theory of commutative algebras and André–Quillen homology
	4.2.3 Regular sequences
	4.2.4 The Harrison complex
	4.2.5 Additional gradings and Koszulness

	4.3 Realisation
	4.3.1 Realisation and Koszulness

	4.4 The main examples
	4.5 Relation to Torelli Lie algebras

	5 High-dimensional manifolds: starting the proof of Theorem theorem1A
	5.1 Torelli groups of high-dimensional manifolds
	5.2 Zn and high-dimensional manifolds with framings
	5.3 Proof of Theorem theorem85.1
	5.4 En and high-dimensional manifolds with Euler structure

	6 Graph complexes: finishing the proof of Theorem theorem1A
	6.1 Red and black graphs
	6.2 Black graphs
	6.3 Finishing the proof of Theorem theorem1A

	7 Applications of Koszulness
	7.1 Applications to high-dimensional manifolds
	7.2 Applications to graph complexes
	7.2.1 Relation to classical graph complexes
	7.2.2 An alternative approach
	7.2.3 Comparing En and Zn


	8 Injectivity of the geometric Johnson homomorphism
	8.1 The geometric Johnson homomorphism
	8.1.1 Construction
	8.1.2 A high-dimensional geometric Johnson homomorphism

	8.2 Proof of Theorem theorem2B
	8.3 Further remarks
	8.3.1 The Euler tangential structure
	8.3.2 Computing the Johnson cokernel
	8.3.3 Variants


	References

