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Abstract

Let σA(n) = |{(a, a′) ∈ A2
: a + a′

= n}|, where n ∈N and A is a subset of N. Erdös and Turán
conjectured that, for any basis A of N, σA(n) is unbounded. In 1990, Ruzsa constructed a basis A ⊂N
for which σA(n) is bounded in the square mean. In this paper, based on Ruzsa’s method, we show that
there exists a basis A of N satisfying

∑
n≤N σA(n)2

≤ 1 449 757 928N for large enough N .
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1. Introduction

For a set A of integers and n ∈ Z write

σ(n) = σA(n) = |{(a, a′) ∈ A2
: a + a′

= n}|,

δ(n) = δA(n) = |{(a, a′) ∈ A2
: a − a′

= n}|.

A subset A of N is called a basis of N if σA(n) ≥ 1 for n ≥ n0. In 1941, Erdös and
Turán [2] formulated the following attractive conjecture.

ERDÖS–TURÁN CONJECTURE. If A ⊂ N is a basis of N, then σA(n) cannot be
bounded:

lim sup
n→+∞

σA(n) = +∞.

This harmless looking conjecture proved to be extremely difficult. In 1954, using
probabilistic methods, Erdös [1] proved the existence of a basis of N for which
σ(n) satisfies

c1 log n < σ(n) < c2 log n, (1)
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for all n with certain positive constants c1, c2. It is still a challenging problem to give
a constructive proof of (1). In 1990, Ruzsa [6] constructed a basis of N for which σ(n)

is bounded in the square mean. In 2003, Grekos et al. [3] proved that if A is a basis
of N, then maxn∈N σA(n) ≥ 6. In 2005, Borwein et al. [5] improved this result. They
showed that the maximum number of representations of any basis is at least eight. For
other related problems, see [4, 7, 8].

Based on Ruzsa’s method, we obtain the following result.

THEOREM. There exists a set A of non-negative integers that forms a basis of N,
and satisfies

∑
n≤N σA(n)2

≤ 1 449 757 928N for large enough N.
Throughout this paper, let p be an odd prime, Zp be the set of residue classes mod p

and G = Z2
p. Denote Qk = {(u, ku2) : u ∈ Zp} ⊂ G and for a finite set A, let

D(A) =

+∞∑
−∞

σA(n)2
= |{(a, b, c, d) ∈ A4

: a + b = c + d}|.

ϕ is a mapping

ϕ : G → Z, ϕ(a, b) = a + 2pb,

where we identify the residues (mod p) with the integers 0 ≤ j ≤ p − 1.

2. Proofs

LEMMA 1 (Tang and Chen [7, Lemma 4]). Let p be prime for which p > 5 and
p ≡ 5 mod 8. Put B = Q3 ∪ Q4 ∪ Q6 and V = ϕ(B) + {0, 2p2

− p, 2p2, 2p2
+ p}.

Then V ⊂ [0, 4p2) is a set with |V | ≤ 12p and [4p2, 6p2) ⊆ V + V, σV (n) ≤ 256
for all n.

LEMMA 2. For g = (a, b) ∈ G, and fixed k, l ∈ Zp \ {0}, consider the equation

g = x − y, x ∈ Qk, y ∈ Ql .

If k − l 6= 0, this equation is solvable unless(
(k − l)b + kla2

p

)
= −1,

and it has at most two solutions. If k − l = 0, it has at most one solution except
for g = 0, when it has p solutions.

PROOF. Let g = (a, b). Consider the system of equations

a = u − v, (2)

b = ku2
− lv2. (3)
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Substituting the value of u from (2) into (3), we obtain the equation

b = (k − l)v2
+ 2kav + ka2. (4)

CASE 1. k − l 6= 0. Then we have

((k − l)v + ka)2
= kla2

+ (k − l)b.

This is an equation of degree two; it is solvable unless the right-hand side is a quadratic
non-residue mod p, that is, (

(k − l)b + kla2

p

)
= −1,

and it has at most two solutions.

CASE 2. k − l = 0. Then (4) is an equation of degree one. If a 6= 0, (4) has one
solution. If a = b = 0, (4) has p solutions. If a = 0, b 6= 0, (4) has no solution.

This completes the proof of Lemma 2. 2

LEMMA 3. Let p be prime for which p > 5 and p ≡ 5 mod 8. Put B = Q3 ∪ Q4 ∪

Q6 and let B − B = {b1 − b2 : b1, b2 ∈ B}. Then B − B = G, δB(g) ≤ 11 for all
g 6= 0.

PROOF. Suppose that there exists a g = (a, b) ∈ G, g /∈ Q4 − Q3, g /∈ Q6 − Q4.
By Lemma 2, we have(

b + 12a2

p

)
= −1,

(
2b + 24a2

p

)
= −1.

Thus

1 =

(
(b + 12a2)(2b + 24a2)

p

)
=

(
2
p

)
= −1.

Hence, G = (Q4 − Q3) ∪ (Q6 − Q4), which is stronger than the required
B − B = G.

For any g = (a, b) ∈ G (g 6= 0), by p > 5 we know that b = 12a2 and b = −12a2

cannot hold at the same time. Now we consider the following three cases.

CASE 1. b 6= 12a2 and b 6= −12a2. Then we have g /∈ (Q3 − Q4) ∩ (Q4 − Q6)

and g /∈ (Q4 − Q3) ∩ (Q6 − Q4).
Indeed, if g ∈ Q3 − Q4 and g ∈ Q4 − Q6, by b 6= 12a2, we have(

−b + 12a2

p

)
= 1,

(
−2b + 24a2

p

)
= 1.

Thus

1 =

(
(−b + 12a2)(−2b + 24a2)

p

)
=

(
2
p

)
= −1.

Similarly, by b 6= −12a2, we can show that g /∈ (Q4 − Q3) ∩ (Q6 − Q4).

https://doi.org/10.1017/S0004972708000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000075


94 M. Tang [4]

CASE 2. b = 12a2 and b 6= −12a2. Then g /∈ (Q4 − Q3) ∩ (Q6 − Q4) and
g /∈ Q3 − Q6.

Indeed, if g ∈ Q4 − Q3 and g ∈ Q6 − Q4, then(
24a2

p

)
=

(
b + 12a2

p

)
= 1,

(
48a2

p

)
=

(
2b + 24a2

p

)
= 1.

By p ≡ 5 mod 8,

1 =

(
24a2

× 48a2

p

)
=

(
2
p

)
= −1.

Thus, g /∈ (Q4 − Q3) ∩ (Q6 − Q4).
Further, since (

−3b + 18a2

p

)
=

(
−18a2

p

)
=

(
−2
p

)
= −1,

by Lemma 2, we have g /∈ Q3 − Q6.

CASE 3. b = −12a2 and b 6= 12a2. Then g /∈ (Q3 − Q4) ∩ (Q4 − Q6) and
g /∈ Q6 − Q3.

Hence, there are at most four sub-equations for the equation

g = x − y, x ∈ Qi , y ∈ Q j (i, j ∈ {3, 4, 6}, i 6= j)

and three sub-equations for the equation

g = x − y, x, y ∈ Qi (i = 3, 4, 6).

By Lemma 2, we have δB(g) ≤ 11 for all g 6= 0.

This completes the proof of Lemma 3. 2

LEMMA 4. Let p be prime for which p > 5 and p ≡ 5 mod 8, B = Q3 ∪ Q4 ∪ Q6
and B ′

= ϕ(B). Then δB′(n) ≤ 11 for all n 6= 0.

PROOF. Let g = (a, b), g′
= (a′, b′), h = (c, d), h′

= (c′, d ′) ∈ B.
If ϕ(g) − ϕ(g′) = ϕ(h) − ϕ(h′), then

2p|(b + d ′
− b′

− d)| = |c + a′
− c′

− a|;

thus, b − b′
= d − d ′, a − a′

= c − c′.
Hence, ϕ(g) − ϕ(g′) = ϕ(h) − ϕ(h′) is possible only if g − g′

= h − h′. This
shows that ϕ cannot increase the value of δ. By Lemma 3, we have δB′(n) ≤ 11 for
all n 6= 0.

This completes the proof of Lemma 4. 2
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LEMMA 5. Let p be prime for which p > 5 and p ≡ 5 mod 8. Put B = Q3 ∪

Q4 ∪ Q6 and V = ϕ(B) + {0, 2p2
− p, 2p2, 2p2

+ p}. Then V ⊂ [0, 4p2) is a set
with |V | ≤ 12p and δV (n) ≤ 176 for all n with at most 11 exceptions.

PROOF. By the Proof of [7, Lemma 4], we have V ⊂ [0, 4p2) and |V | ≤ 12p.
Note that

V = ϕ(B) + {0, 2p2
− p, 2p2, 2p2

+ p},

V − V = B ′
− B ′

+ {0, ±(2p2
− p), ±2p2, ±(2p2

+ p), ±p, ±2p}.

By Lemma 4,

δV (n) ≤ 16 × max δB′(n) ≤ 16 × 11 = 176,

unless n = 0, ±(2p2
− p), ±2p2, ±(2p2

+ p), ±p, ±2p.
This completes the proof of Lemma 5. 2

The following Lemma 6 belongs to Ruzsa [6, Lemma 4.1]; here we give a stronger
version by explicit computation.

LEMMA 6. Let X be a finite set of integers and p be a prime for which p > 5
and p ≡ 5 mod 8. There is a set Y such that

Y ⊂

(
p2

2
, 5p2

)
, |Y | ≤ 12p, [6p2, 7p2) ⊂ Y + Y, (5)

and

D(X ∪ Y ) < D(X) +
24
p

|X |
3
+ 928|X |

2
+ 6672p|X | + 73 728p2. (6)

PROOF. Let V be the set of Lemma 5, and put Y = V + t with an integer
t ∈ ((p2/2), p2

]. Equation (5) holds for any choice of t ; we show that (6) holds for a
suitable choice.

Let Z = X ∪ Y. D(Z) is the number of quadruples (z1, z2, z3, z4) of elements of Z
satisfying

z1 + z2 = z3 + z4. (7)

We split equation (7) into the following five classes.
(a) All four unknowns are from X . This gives the term D(X).
(b) One comes from Y , three from X . Equation (7) can be written as

t = x1 + x2 − x3 − v, v ∈ V .

Let St be the number of solutions; so we have∑
St ≤ 12p|X |

3,

https://doi.org/10.1017/S0004972708000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000075


96 M. Tang [6]

thus ([
p2

2

]
+ 1

)
min St ≤ 12p|X |

3,

and hence

min St ≤
24|X |

3

p
.

(c) Two come from Y , two come from X .

CASE 1. The two y are on the same side. Equation (7) can be written as

y1 + y2 = x1 + x2, yi ∈ Y, xi ∈ X.

By Lemma 1, for every pair x1, x2, there are at most 256 solutions which give a total
of 256|X |

2. According to the position of the y’s in (7), the contribution of this term is
at most 2 × 256|X |

2
= 512|X |

2.

CASE 2. The y are on different sides, that is,

y1 − y2 = x1 − x2, yi ∈ Y, xi ∈ X.

By Lemma 5, if x1 − x2 is none of the 11 exceptional numbers, then the contribution
of this term is at most 2 × 176|X |

2
= 352|X |

2; if x1 − x2 is one of the 11 exceptional
numbers, then, after fixing the value of x1 − x2, the numbers x1 and y1 determine
x2 and y2 uniquely; thus the contribution of this term is at most 4 × 11 × |X | × |Y |

≤ 528p|X |.

(d) Three come from Y , one comes from X . Equation (7) can be written as

y1 + y2 = y3 + x, yi ∈ Y, x ∈ X.

In this case, the contribution of this term is at most 2 × 256 × |X | × 12p
= 6144p|X |.
(e) Four unknowns are from Y . The contribution of this term is at most 2 × 256
× (12p)2

= 73 728p2.
Hence

D(X ∪ Y ) < D(X) +
24
p

|X |
3
+ 864|X |

2
+ 6672p|X | + 73 728p2.

This completes the proof of Lemma 6. 2

PROOF OF THEOREM. By the Prime number theorem in arithmetic progression,
there exists an M such that if x > M , there is a prime p for which 1.08x < p
<

√
7/6x . Thus we can take a sequence p1, p2, . . . of primes such that p ≡ 5 mod 8
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and 1.08 < pi+1/pi <
√

7/6 for all i . This ensures that the intervals [6p2
i , 7p2

i )

overlap and together cover [6p2
1, +∞). Apply Lemma 6 to p = pi , we obtain the

set Yi . Let X0 = [0, 6p2
1] and X i = X i−1 ∪ Yi . Then the set A =

⋃
∞

i=0 X i will be a
basis of N.

For large enough N (> (7/12)(6p1
2
+ 1)4), there exists i > 1 such that p2

i < 2N
< p2

i+1, so

|X i−1| ≤ |X0| + 12(p1 + p2 + · · · + pi−1)

= |X0| + 12pi

(
25
27

+ · · · +

(
25
27

)i−1)
< 151pi .

By Lemma 6,

D(X i ) = D(X i−1 ∪ Yi )

< D(X i−1) +
24
pi

|X i−1|
3
+ 864|X i−1|

2
+ 6672pi |X i−1| + 73 728p2

i

< D(X i−1) + 103 412 088pi
2.

By induction,

D(X i ) < D(X0) + 103 412 088(p2
i + · · · + p2

1)

= D(X0) + 103 412 088p2
i

(
1 +

(
25
27

)2

+ · · · +

(
25
27

)2i−2)
< (6p2

1 + 1)4
+ 724 878 963p2

i

< 724 878 964p2
i .

Therefore, ∑
n≤N

σ(n)2
≤ D(X i ) < 724 878 964p2

i ≤ 1 449 757 928N . 2
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