A NOTE ON A RESULT OF RUZSA

MIN TANG

(Received 3 May 2007)

Abstract

Let $\sigma_{A}(n)=\left|\left\{\left(a, a^{\prime}\right) \in A^{2}: a+a^{\prime}=n\right\}\right|$, where $n \in \mathbb{N}$ and A is a subset of \mathbb{N}. Erdös and Turán conjectured that, for any basis A of $\mathbb{N}, \sigma_{A}(n)$ is unbounded. In 1990, Ruzsa constructed a basis $A \subset \mathbb{N}$ for which $\sigma_{A}(n)$ is bounded in the square mean. In this paper, based on Ruzsa's method, we show that there exists a basis A of \mathbb{N} satisfying $\sum_{n \leq N} \sigma_{A}(n)^{2} \leq 1449757928 N$ for large enough N.

2000 Mathematics subject classification: 11B13.
Keywords and phrases: Erdös-Turán conjecture, basis.

1. Introduction

For a set A of integers and $n \in \mathbb{Z}$ write

$$
\begin{aligned}
& \sigma(n)=\sigma_{A}(n)=\left|\left\{\left(a, a^{\prime}\right) \in A^{2}: a+a^{\prime}=n\right\}\right|, \\
& \delta(n)=\delta_{A}(n)=\left|\left\{\left(a, a^{\prime}\right) \in A^{2}: a-a^{\prime}=n\right\}\right| .
\end{aligned}
$$

A subset A of \mathbb{N} is called a basis of \mathbb{N} if $\sigma_{A}(n) \geq 1$ for $n \geq n_{0}$. In 1941, Erdös and Turán [2] formulated the following attractive conjecture.

Erdös-Turán Conjecture. If $A \subset \mathbb{N}$ is a basis of \mathbb{N}, then $\sigma_{A}(n)$ cannot be bounded:

$$
\limsup _{n \rightarrow+\infty} \sigma_{A}(n)=+\infty
$$

This harmless looking conjecture proved to be extremely difficult. In 1954, using probabilistic methods, Erdös [1] proved the existence of a basis of \mathbb{N} for which $\sigma(n)$ satisfies

$$
\begin{equation*}
c_{1} \log n<\sigma(n)<c_{2} \log n, \tag{1}
\end{equation*}
$$

[^0]for all n with certain positive constants c_{1}, c_{2}. It is still a challenging problem to give a constructive proof of (1). In 1990, Ruzsa [6] constructed a basis of \mathbb{N} for which $\sigma(n)$ is bounded in the square mean. In 2003, Grekos et al. [3] proved that if A is a basis of \mathbb{N}, then $\max _{n \in \mathbb{N}} \sigma_{A}(n) \geq 6$. In 2005, Borwein et al. [5] improved this result. They showed that the maximum number of representations of any basis is at least eight. For other related problems, see $[4,7,8]$.

Based on Ruzsa's method, we obtain the following result.
Theorem. There exists a set A of non-negative integers that forms a basis of \mathbb{N}, and satisfies $\sum_{n \leq N} \sigma_{A}(n)^{2} \leq 1449757928 N$ for large enough N.

Throughout this paper, let p be an odd prime, \mathbb{Z}_{p} be the set of residue classes $\bmod p$ and $G=\mathbb{Z}_{p}^{2}$. Denote $Q_{k}=\left\{\left(u, k u^{2}\right): u \in \mathbb{Z}_{p}\right\} \subset G$ and for a finite set A, let

$$
D(A)=\sum_{-\infty}^{+\infty} \sigma_{A}(n)^{2}=\left|\left\{(a, b, c, d) \in A^{4}: a+b=c+d\right\}\right|
$$

φ is a mapping

$$
\varphi: G \rightarrow \mathbb{Z}, \quad \varphi(a, b)=a+2 p b
$$

where we identify the residues $(\bmod p)$ with the integers $0 \leq j \leq p-1$.

2. Proofs

Lemma 1 (Tang and Chen [7, Lemma 4]). Let p be prime for which $p>5$ and $p \equiv 5 \bmod 8$. Put $B=Q_{3} \cup Q_{4} \cup Q_{6}$ and $V=\varphi(B)+\left\{0,2 p^{2}-p, 2 p^{2}, 2 p^{2}+p\right\}$. Then $V \subset\left[0,4 p^{2}\right)$ is a set with $|V| \leq 12 p$ and $\left[4 p^{2}, 6 p^{2}\right) \subseteq V+V, \sigma_{V}(n) \leq 256$ for all n.

Lemma 2. For $g=(a, b) \in G$, and fixed $k, l \in \mathbb{Z}_{p} \backslash\{0\}$, consider the equation

$$
g=x-y, \quad x \in Q_{k}, y \in Q_{l}
$$

If $k-l \neq 0$, this equation is solvable unless

$$
\left(\frac{(k-l) b+k l a^{2}}{p}\right)=-1
$$

and it has at most two solutions. If $k-l=0$, it has at most one solution except for $g=0$, when it has p solutions.

Proof. Let $g=(a, b)$. Consider the system of equations

$$
\begin{align*}
a & =u-v \tag{2}\\
b & =k u^{2}-l v^{2} \tag{3}
\end{align*}
$$

Substituting the value of u from (2) into (3), we obtain the equation

$$
\begin{equation*}
b=(k-l) v^{2}+2 k a v+k a^{2} . \tag{4}
\end{equation*}
$$

CASE 1. $k-l \neq 0$. Then we have

$$
((k-l) v+k a)^{2}=k l a^{2}+(k-l) b .
$$

This is an equation of degree two; it is solvable unless the right-hand side is a quadratic non-residue $\bmod p$, that is,

$$
\left(\frac{(k-l) b+k l a^{2}}{p}\right)=-1
$$

and it has at most two solutions.
CASE 2. $k-l=0$. Then (4) is an equation of degree one. If $a \neq 0$, (4) has one solution. If $a=b=0$, (4) has p solutions. If $a=0, b \neq 0$, (4) has no solution.

This completes the proof of Lemma 2.
Lemma 3. Let p be prime for which $p>5$ and $p \equiv 5 \bmod 8$. Put $B=Q_{3} \cup Q_{4} \cup$ Q_{6} and let $B-B=\left\{b_{1}-b_{2}: b_{1}, b_{2} \in B\right\}$. Then $B-B=G, \delta_{B}(g) \leq 11$ for all $g \neq 0$.

Proof. Suppose that there exists a $g=(a, b) \in G, g \notin Q_{4}-Q_{3}, g \notin Q_{6}-Q_{4}$. By Lemma 2, we have

$$
\left(\frac{b+12 a^{2}}{p}\right)=-1, \quad\left(\frac{2 b+24 a^{2}}{p}\right)=-1 .
$$

Thus

$$
1=\left(\frac{\left(b+12 a^{2}\right)\left(2 b+24 a^{2}\right)}{p}\right)=\left(\frac{2}{p}\right)=-1 .
$$

Hence, $G=\left(Q_{4}-Q_{3}\right) \cup\left(Q_{6}-Q_{4}\right)$, which is stronger than the required $B-B=G$.

For any $g=(a, b) \in G(g \neq 0)$, by $p>5$ we know that $b=12 a^{2}$ and $b=-12 a^{2}$ cannot hold at the same time. Now we consider the following three cases.

CASE 1. $b \neq 12 a^{2}$ and $b \neq-12 a^{2}$. Then we have $g \notin\left(Q_{3}-Q_{4}\right) \cap\left(Q_{4}-Q_{6}\right)$ and $g \notin\left(Q_{4}-Q_{3}\right) \cap\left(Q_{6}-Q_{4}\right)$.

Indeed, if $g \in Q_{3}-Q_{4}$ and $g \in Q_{4}-Q_{6}$, by $b \neq 12 a^{2}$, we have

$$
\left(\frac{-b+12 a^{2}}{p}\right)=1, \quad\left(\frac{-2 b+24 a^{2}}{p}\right)=1
$$

Thus

$$
1=\left(\frac{\left(-b+12 a^{2}\right)\left(-2 b+24 a^{2}\right)}{p}\right)=\left(\frac{2}{p}\right)=-1
$$

Similarly, by $b \neq-12 a^{2}$, we can show that $g \notin\left(Q_{4}-Q_{3}\right) \cap\left(Q_{6}-Q_{4}\right)$.

CASE 2. $b=12 a^{2}$ and $b \neq-12 a^{2}$. Then $g \notin\left(Q_{4}-Q_{3}\right) \cap\left(Q_{6}-Q_{4}\right)$ and $g \notin Q_{3}-Q_{6}$.

Indeed, if $g \in Q_{4}-Q_{3}$ and $g \in Q_{6}-Q_{4}$, then

$$
\left(\frac{24 a^{2}}{p}\right)=\left(\frac{b+12 a^{2}}{p}\right)=1, \quad\left(\frac{48 a^{2}}{p}\right)=\left(\frac{2 b+24 a^{2}}{p}\right)=1
$$

By $p \equiv 5 \bmod 8$,

$$
1=\left(\frac{24 a^{2} \times 48 a^{2}}{p}\right)=\left(\frac{2}{p}\right)=-1
$$

Thus, $g \notin\left(Q_{4}-Q_{3}\right) \cap\left(Q_{6}-Q_{4}\right)$.
Further, since

$$
\left(\frac{-3 b+18 a^{2}}{p}\right)=\left(\frac{-18 a^{2}}{p}\right)=\left(\frac{-2}{p}\right)=-1
$$

by Lemma 2, we have $g \notin Q_{3}-Q_{6}$.
CASE 3. $b=-12 a^{2}$ and $b \neq 12 a^{2}$. Then $g \notin\left(Q_{3}-Q_{4}\right) \cap\left(Q_{4}-Q_{6}\right)$ and $g \notin Q_{6}-Q_{3}$.

Hence, there are at most four sub-equations for the equation

$$
g=x-y, \quad x \in Q_{i}, y \in Q_{j}(i, j \in\{3,4,6\}, i \neq j)
$$

and three sub-equations for the equation

$$
g=x-y, \quad x, y \in Q_{i}(i=3,4,6)
$$

By Lemma 2, we have $\delta_{B}(g) \leq 11$ for all $g \neq 0$.
This completes the proof of Lemma 3.
Lemma 4. Let p be prime for which $p>5$ and $p \equiv 5 \bmod 8, B=Q_{3} \cup Q_{4} \cup Q_{6}$ and $B^{\prime}=\varphi(B)$. Then $\delta_{B^{\prime}}(n) \leq 11$ for all $n \neq 0$.

Proof. Let $g=(a, b), g^{\prime}=\left(a^{\prime}, b^{\prime}\right), h=(c, d), h^{\prime}=\left(c^{\prime}, d^{\prime}\right) \in B$.
If $\varphi(g)-\varphi\left(g^{\prime}\right)=\varphi(h)-\varphi\left(h^{\prime}\right)$, then

$$
2 p\left|\left(b+d^{\prime}-b^{\prime}-d\right)\right|=\left|c+a^{\prime}-c^{\prime}-a\right|
$$

thus, $b-b^{\prime}=d-d^{\prime}, a-a^{\prime}=c-c^{\prime}$.
Hence, $\varphi(g)-\varphi\left(g^{\prime}\right)=\varphi(h)-\varphi\left(h^{\prime}\right)$ is possible only if $g-g^{\prime}=h-h^{\prime}$. This shows that φ cannot increase the value of δ. By Lemma 3, we have $\delta_{B^{\prime}}(n) \leq 11$ for all $n \neq 0$.

This completes the proof of Lemma 4.

Lemma 5. Let p be prime for which $p>5$ and $p \equiv 5 \bmod 8$. Put $B=Q_{3} \cup$ $Q_{4} \cup Q_{6}$ and $V=\varphi(B)+\left\{0,2 p^{2}-p, 2 p^{2}, 2 p^{2}+p\right\}$. Then $V \subset\left[0,4 p^{2}\right)$ is a set with $|V| \leq 12 p$ and $\delta_{V}(n) \leq 176$ for all n with at most 11 exceptions.

Proof. By the Proof of [7, Lemma 4], we have $V \subset\left[0,4 p^{2}\right)$ and $|V| \leq 12 p$. Note that

$$
\begin{gathered}
V=\varphi(B)+\left\{0,2 p^{2}-p, 2 p^{2}, 2 p^{2}+p\right\} \\
V-V=B^{\prime}-B^{\prime}+\left\{0, \pm\left(2 p^{2}-p\right), \pm 2 p^{2}, \pm\left(2 p^{2}+p\right), \pm p, \pm 2 p\right\}
\end{gathered}
$$

By Lemma 4,

$$
\delta_{V}(n) \leq 16 \times \max \delta_{B^{\prime}}(n) \leq 16 \times 11=176
$$

unless $n=0, \pm\left(2 p^{2}-p\right), \pm 2 p^{2}, \pm\left(2 p^{2}+p\right), \pm p, \pm 2 p$.
This completes the proof of Lemma 5.
The following Lemma 6 belongs to Ruzsa [6, Lemma 4.1]; here we give a stronger version by explicit computation.

Lemma 6. Let X be a finite set of integers and p be a prime for which $p>5$ and $p \equiv 5 \bmod 8$. There is a set Y such that

$$
\begin{equation*}
Y \subset\left(\frac{p^{2}}{2}, 5 p^{2}\right), \quad|Y| \leq 12 p, \quad\left[6 p^{2}, 7 p^{2}\right) \subset Y+Y \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D(X \cup Y)<D(X)+\frac{24}{p}|X|^{3}+928|X|^{2}+6672 p|X|+73728 p^{2} \tag{6}
\end{equation*}
$$

Proof. Let V be the set of Lemma 5, and put $Y=V+t$ with an integer $t \in\left(\left(p^{2} / 2\right), p^{2}\right]$. Equation (5) holds for any choice of t; we show that (6) holds for a suitable choice.

Let $Z=X \cup Y . D(Z)$ is the number of quadruples $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ of elements of Z satisfying

$$
\begin{equation*}
z_{1}+z_{2}=z_{3}+z_{4} \tag{7}
\end{equation*}
$$

We split equation (7) into the following five classes.
(a) All four unknowns are from X. This gives the term $D(X)$.
(b) One comes from Y, three from X. Equation (7) can be written as

$$
t=x_{1}+x_{2}-x_{3}-v, \quad v \in V
$$

Let S_{t} be the number of solutions; so we have

$$
\sum S_{t} \leq 12 p|X|^{3}
$$

thus

$$
\left(\left[\frac{p^{2}}{2}\right]+1\right) \min S_{t} \leq 12 p|X|^{3}
$$

and hence

$$
\min S_{t} \leq \frac{24|X|^{3}}{p}
$$

(c) Two come from Y, two come from X.

CASE 1. The two y are on the same side. Equation (7) can be written as

$$
y_{1}+y_{2}=x_{1}+x_{2}, \quad y_{i} \in Y, \quad x_{i} \in X
$$

By Lemma 1, for every pair x_{1}, x_{2}, there are at most 256 solutions which give a total of $256|X|^{2}$. According to the position of the y 's in (7), the contribution of this term is at most $2 \times 256|X|^{2}=512|X|^{2}$.

CASE 2. The y are on different sides, that is,

$$
y_{1}-y_{2}=x_{1}-x_{2}, \quad y_{i} \in Y, \quad x_{i} \in X
$$

By Lemma 5, if $x_{1}-x_{2}$ is none of the 11 exceptional numbers, then the contribution of this term is at most $2 \times 176|X|^{2}=352|X|^{2}$; if $x_{1}-x_{2}$ is one of the 11 exceptional numbers, then, after fixing the value of $x_{1}-x_{2}$, the numbers x_{1} and y_{1} determine x_{2} and y_{2} uniquely; thus the contribution of this term is at most $4 \times 11 \times|X| \times|Y|$ $\leq 528 p|X|$.
(d) Three come from Y, one comes from X. Equation (7) can be written as

$$
y_{1}+y_{2}=y_{3}+x, \quad y_{i} \in Y, \quad x \in X .
$$

In this case, the contribution of this term is at most $2 \times 256 \times|X| \times 12 p$ $=6144 p|X|$.
(e) Four unknowns are from Y. The contribution of this term is at most 2×256 $\times(12 p)^{2}=73728 p^{2}$.

Hence

$$
D(X \cup Y)<D(X)+\frac{24}{p}|X|^{3}+864|X|^{2}+6672 p|X|+73728 p^{2}
$$

This completes the proof of Lemma 6.
Proof of Theorem. By the Prime number theorem in arithmetic progression, there exists an M such that if $x>M$, there is a prime p for which $1.08 x<p$ $<\sqrt{7 / 6} x$. Thus we can take a sequence p_{1}, p_{2}, \ldots of primes such that $p \equiv 5 \bmod 8$
and $1.08<p_{i+1} / p_{i}<\sqrt{7 / 6}$ for all i. This ensures that the intervals $\left[6 p_{i}^{2}, 7 p_{i}^{2}\right.$) overlap and together cover $\left[6 p_{1}^{2},+\infty\right)$. Apply Lemma 6 to $p=p_{i}$, we obtain the set Y_{i}. Let $X_{0}=\left[0,6 p_{1}^{2}\right]$ and $X_{i}=X_{i-1} \cup Y_{i}$. Then the set $A=\bigcup_{i=0}^{\infty} X_{i}$ will be a basis of \mathbb{N}.

For large enough $N\left(>(7 / 12)\left(6 p_{1}^{2}+1\right)^{4}\right)$, there exists $i>1$ such that $p_{i}^{2}<2 N$ $<p_{i+1}^{2}$, so

$$
\begin{aligned}
\left|X_{i-1}\right| & \leq\left|X_{0}\right|+12\left(p_{1}+p_{2}+\cdots+p_{i-1}\right) \\
& =\left|X_{0}\right|+12 p_{i}\left(\frac{25}{27}+\cdots+\left(\frac{25}{27}\right)^{i-1}\right) \\
& <151 p_{i}
\end{aligned}
$$

By Lemma 6,

$$
\begin{aligned}
D\left(X_{i}\right) & =D\left(X_{i-1} \cup Y_{i}\right) \\
& <D\left(X_{i-1}\right)+\frac{24}{p_{i}}\left|X_{i-1}\right|^{3}+864\left|X_{i-1}\right|^{2}+6672 p_{i}\left|X_{i-1}\right|+73728 p_{i}^{2} \\
& <D\left(X_{i-1}\right)+103412088 p_{i}^{2} .
\end{aligned}
$$

By induction,

$$
\begin{aligned}
D\left(X_{i}\right) & <D\left(X_{0}\right)+103412088\left(p_{i}^{2}+\cdots+p_{1}^{2}\right) \\
& =D\left(X_{0}\right)+103412088 p_{i}^{2}\left(1+\left(\frac{25}{27}\right)^{2}+\cdots+\left(\frac{25}{27}\right)^{2 i-2}\right) \\
& <\left(6 p_{1}^{2}+1\right)^{4}+724878963 p_{i}^{2} \\
& <724878964 p_{i}^{2} .
\end{aligned}
$$

Therefore,

$$
\sum_{n \leq N} \sigma(n)^{2} \leq D\left(X_{i}\right)<724878964 p_{i}^{2} \leq 1449757928 N
$$

References

[1] P. Erdös, 'On a problem of Sidon in additive number theory', Acta Sci. Math. (Szeged) 15 (1954), 255-259.
[2] P. Erdös and P. Turán, 'On a problem of Sidon in additive number theory, and on some related problems', J. London Math. Soc. 16 (1941), 212-215.
[3] G. Grekos, L. Haddad, C. Helou and J. Pihko, 'On the Erdös-Turán Conjecture', J. Number Theory 102 (2003), 339-352.
[4] J. Nes̆etřil and O. Serra, 'The Erdös-Turán property for a class of bases', Acta Arith. 115 (2004), 245-254.
[5] P. Borwein, S. Choi and F. Chu, 'An old conjecture of Erdös-Turán on additive bases', Math. Comp. 75 (2005), 475-484.
[6] I. Z. Ruzsa, 'A just basis', Monatsh. Math. 109 (1990), 145-151.
[7] M. Tang and Y. G. Chen, 'A basis of \mathbb{Z}_{m} ', Colloq. Math. 104 (2006), 99-103.
[8] ——, 'A basis of \mathbb{Z}_{m}. II', Colloq. Math. 108 (2007), 141-145.
Department of Mathematics
Anhui Normal University
Wuhu 241000
China
e-mail: tmzzz2000@163.com

[^0]: The author was supported by the Youth Foundation of Mathematical Tianyuan, Grant No. 10726074, the SF of the Education Department of Anhui Province, Grant No. KJ2007B029 and the Youth Foundation of the Education Department of Anhui Province, Grant No. 2007jq1056zd.
 (C) 2008 Australian Mathematical Society 0004-9727/08 \$A2.00 +0.00

