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ON CLOSURE CONDITIONS 

BY 

PL KANNAPPAN AND M. A. TAYLOR 

Quasigroups and groupoids with one or other of the Reidemeister or 
Thomsen closure conditions, the relationship among them with emphasis on 
their relationship to associativity viz groups, Abelian groups, have been 
investigated in [2], [3], [4], [5], [6], [12], and others. In [10] R- and T-
groupoids, (that is, groupoids possessing one of the first two closure conditions 
mentioned above) which are generalizations of groups and Abelian groups 
were investigated. In this paper, we show that groupoids with the given 
identities may be described in terms of R- and T-groupoids. These results and 
others are used to give another proof of theorems given in [1], [7], and [5] 
describing the variety of all groups and Abelian groups defined by single laws. 

1. In [8], [9] groupoids G(-) satisfying one or more of the identities 

(1) xz • yz = xy 

(2) xy - xz = zy 

(3) xy • xz = yz 

(4) xy • zy = zx 

had been investigated. It was shown that a groupoid G(-) possessing an 
element aeG with the property G • a = G is an iso-group (i.e. a particular 
isotope of a group) if (3) holds in G(-)« If, in addition (4) holds in G(-) or G(-) 
satisfies (4) with G • a = G, for some aeG, then G(-) is an iso-abelian group. 
The proof relies heavily upon the condition G • a = G. Indeed the condition is 
essential for these results, because the groupoid with the multiplication table 
given in example 1 satisfies (1), (2), (3), and (4), but is not even a quasigroup: 
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We will show that groupoids with these given identities may be described in 
terms of JR- and T-groupoids and use these results to characterize groups, 
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Abelian groups, etc. By defining x * y = z iff y • x = z, it is easy to see that (1) 
and (3) and (2) and (4) are equivalent. So, we will consider only (1) and (2). 

2. Definitions. A groupoid G(-) with the property that for all xu yteG, 
(i = 1, 2, 3,4), the equations 

x1y2 = x2yu x1y4 = x2y3, x4y1 = x3y2 

imply 
x 3y 4

: =^4y3, 

is called an R-groupoid. This closure condition is the Reidemeister condition. 
G(') is called a T-groupoid if for all xi9 y* e G, (i = 1, 2, 3) the equations 

Xiy2=zx2yu x1y3 = x3y1 

imply 

x2y3 = x3y2. 

This closure condition is the Thomsen condition. 
Elements Xi, x2 of a groupoid G(-) are said to be left cancellative equivalent 

(l.c.e.) if yjci = yx2 for all y G G. 
A groupoid is said to be left cancellative equivalent if axx = ax2, aeG, implies 

that JCI, x2 are left concellative equivalent. 
Right cancellative equivalent (r.c.e.) of both elements and groupoids is 

similarly defined. 
For any groupoid G(-) we may define a congruence p by xxpx2 iff xu x2 are 

l.c.e. and r.c.e. The quotient groupoid G/p is called the reduction of G. Let 
h:G-> G/p be the canonical homomorphism then h(xi) = h(x2), for xu x2e G 
iff JCiy = x2y, and yxi = yx2, for all y e G. 

Two groupoids G(-) and H(*) are said to be isotopic, if there exist three 
one-one, onto mappings a, j8, y: G —» H such that y(x • y) = ax * j3y holds for 
all x, y G G. 

3. LEMMA 3.1. If G(-) satisfies either (1) or (2), tfien the reduction of G(-) 
a/so satisfies (1) or (2) respectively. 

The proof of the lemma is straightforward. 

THEOREM 3.1. Let G(-) be a groupoid which satisfies (1). Then G(-) is r.c.e. 
and the reduction H(°) of G is an R-groupoid. 

Proof. First we show that G(-) is r.c.e. Suppose xxa = x2a, for a, JCI, x2e G. 
Then xxa - xa ~ x2a - xa, for all xeG. Hence by (1), Xi* = x2x for all JC e G. 

If *i and x2 are r.c.e., then xx • xxx = xx • x2x, for all x G G. It then follows by 
(1) that Xi, x2 are l.c.e. Thus, because every pair of elements that are r.c.e. are 
l.c.e. and G(-) is itself l.c.e., its reduction H(°) is right cancellative. 
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Assume 
( 3 . 1 ) J C l o y 2 = X 2 o y 1 > X l o y 4 = X 2 o y 3 a i l d X 3 ° V 2 = X 4 ° y i , 

for Xi j jGH (i = l , 2 ,3 ,4 ) . 

Since H(°) satisfies (1) (by Lemma 3.1), from (3.1) we obtain (x3°y2)° 
(*i°y2) = (x4oyi)°(x2oyi), that is, x3ox1 = x4°x2. Using (1) again, 
(*3°y4)0(xioy4) = (x4

oy3)o(x2°y3) which by the right cancellativity yields x3° 
y4 = x4°y3. Thus H(°) is an R-groupoid. This completes the proof of this 
theorem. 

LEMMA 3.2. If G(-) satisfies (1) and if G(-) is either Ice. or left cancellative 
(Lc) or right cancellative (r.c) in G(-) or xx = constant holds for all x, then G is 
an R-groupoid. 

Proof. Let G(-) be a groupoid satisfying (1). Suppose G(-) is l.c.e. (I.e.). 
Assume (3.1) to hold in G for xh yteG (i = 1,2, 3,4). From the last equality of 
(3.1) and (1) result x3x3 = x4x4. Now (1) and (3.1) give, Xiy2 • x3y2 = x2yi • x4yi5 

that is x1x3 = x2x4. Since Xiy4 = x2y3, we have xtx3 • y4x3 = x2x4 • y3x4. Thus, 
since G is l.c.e. (I.e.), x3x3 • y4x3 = x4x4 • x3x4, that is x3y4 = x4y3. Hence, 
JR-condition holds in G(-)-

The latter part of Theorem 3.1 shows that G(-) is an R-groupoid if G(-) is 
right cancellative. 

Finally, suppose xx = e, for every xeG. If ab = cd, then by (1), bb • ab = 
dd - cd implies ba = dc Thus, x1x3 = x2x4 and Xiy4 = jc2y3 imply x3Xi • y4*i = 
*4*2 • y3*2> that is, x3y4 = x4y3. This proves Lermma 3.2. 

THEOREM 3.2. If G(-) satisfies both (1) and (2), then its reduction H(°), is a 
cancellative T-groupoid. 

Proof. Under (1), G(-) is r.c.e. Suppose ax1 = ax2, a, xu x2e G. Then 
ax\ • ax = ax2 • ax and by (2), XX\ — XX2. Thus G(-) is l.c.e. Hence the reduc
tion H(°) is cancellative. 

Now, to prove that the T-condition holds in H(°). Suppose 

(3.2) x1oy2 = x2°yi and Xi°y3 = x3°yi, 

hold for xt, yt eH, (i = 1, 2, 3). 
Then (xioy2)o(x1oây3) = (x2

oyi)°feoyi) by (1) and (2) yields y3
oy2 = *2°X3, 

which by using (1) and (2) again gives (x3oy2)0(x3oy3) = (x2
oy3)0(x3oy3). Can

cellation gives the required implication x3
oy2 = x2

oy3. 

THEOREM 3.3. If G(-) satisfies (2), then it is a T-groupoid. 

Proof. Suppose that *iy2 = x2yx and xxy3 = x3yi for all JCJ, yt s G, (i = 1,2,3). 
The use of (2) and the hypothesis, yield 

V2y3 = X!y3 • Xiy2 = x3yi • x2yi = (x3yi • x3x3)(x3yi • x3x2) = x3x2. 
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Thus 
x2y3 = *3y3 • x3x2 = x3y3 • y2y3 = (x3y3 • x3x3) • (x3y3 • *3y2) 

= x3y2 * x3x3 = x3y2. 

Consequently G(-) is a T-groupoid. 
The groupoid given by example 1 satisfies (1), (2), (3), and (4) and its 

reduction is isomorphic to Z2 . The groupoid given by example 2 is isomorphic 
to its reduction and satisfies (3) but neither (1) nor (2) nor (4): 

Xi 

x2 

Xi 

Xi 

Xi 

x2 

x2 

x2 

Example 2 

The groupoid given by example 3 satisfies (1) but neither (2) nor (3) nor (4): 

Xi 

x2 

Xi 

Xi 

x2 

x2 

Xi 

x2 

Example 3 

4. Characterizations. In the sequel, we make use of the following results in 

[2]: 
(RG). A quasigroup G(-) is isotopic to a group if and only if Reidemeister 

condition (R-condition) holds in G(-)-
(TAG). A quasigroup G(-) is isotopic to an Abelian group iff Thomsen 

condition (T-condition) holds in G(-). 
We give another proof of the following results [7], [5], [1] using the 

R -condition and T-condition. 

THEOREM 4.1. The variety of all groups is the variety of all groupoids G(-) 
satisfying the single law 

(4.1) x - [{(xx - y) • z} - {(xx - x) • z}] = y, for all x,y,ze G. 

Proof. First of all G(-) is a quasigroup [7, p. 21], [5, p. 30]. Putting y = x in 
(4.1) and using z as a variable, we get x • (uu) = x = x - vv, for all w, v e G, 
yielding uu = constant = e, for all ueG and xe = x for all xeG. Now (4.1) 
becomes 

x-[(ey z)'(ex- z)]=y, for all x, y, zeG. 
(4.3) 

= x • [(ey - e) - (ex • e)] = x - (ey • ex), 
which since x and y are arbitrary, results to 

(1) yz • xz = yx, for all JC, y, z e G. 
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Now Lemma 3.2 shows that K-condition holds in G(-). The use of (RG) yields 
the required result. 

THEOREM 4.2. If a groupoid G(-) satisfies (1) (known as transitivity equation) 
and (•) is left cancellative (lc), then G(-) is isotopic to a group [1, p. 275]. 

Proof. Let aa = e for some aeG. Then x = y = z = a in (1) gives e • e = e. 
With x = z = e, (1) and I.e. imply ye = y for all y e G. Now putting x = e and 
z = y in (1) we have ey • yy = ey = ey • e, so that I.e. implies yy = e for all y e G 

If S and T are two mappings of G such that ST = P, where P is a 
permutation of G, then T is upon and S is one-to-one [5, p. 30]. Let Lx and i*x 

denote left and right multiplications of x respectively. 
With y = e, (1) gives RzRez = I- From this we see that i?z is one-to-one and 

Rez is onto for every zeG. This implies that Rez is a permutation and 
consequently so is Rz. Again using (1), with x = z and y = e we get LeLe -1, 
that is, Le is a permutation. Finally x-z in (1) gives RxLe = Lx, showing 
thereby that Lx is a permutation. Thus G(-) is a quasigroup. 

Use of Lemma 3.2 shows that R-condition holds in G(-). An application of 
(RG) shows that G(-) is isotopic to a group. 

THEOREM 4.3. The variety of Abelian groups is the variety of all groupoids 
G(-) satisfying the identity. 

(4.4) x • (yz • yx) = z, for all x,y,ze G. 

Proof. First we note that G(-) is a quasigroup [7, p. 220]. In (4.4) taking 
z = x and noting that y is a variable, we get x • uu — x = x - vv, for all u, D G G 
giving uu = constant = e and xe = x, for all xeG. With y = x (4.4) gives 
x • xz = z, so that, x • (yz • yx) — z — x - xz giving (2). Hence by Theorem 3.3, 
T-condition holds in G(-). Now applying (TAG), we obtain the sought for 
result. 
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