ON CLOSURE CONDITIONS

BY
Pl. KANNAPPAN AND M. A. TAYLOR

Quasigroups and groupoids with one or other of the Reidemeister or Thomsen closure conditions, the relationship among them with emphasis on their relationship to associativity viz groups, Abelian groups, have been investigated in [2], [3], [4], [5], [6], [12], and others. In [10] R - and T groupoids, (that is, groupoids possessing one of the first two closure conditions mentioned above) which are generalizations of groups and Abelian groups were investigated. In this paper, we show that groupoids with the given identities may be described in terms of R - and T-groupoids. These results and others are used to give another proof of theorems given in [1], [7], and [5] describing the variety of all groups and Abelian groups defined by single laws.

1. In [8], [9] groupoids $G(\cdot)$ satisfying one or more of the identities

$$
\begin{align*}
x z \cdot y z & =x y \tag{1}\\
x y \cdot x z & =z y \tag{2}\\
x y \cdot x z & =y z \tag{3}\\
x y \cdot z y & =z x \tag{4}
\end{align*}
$$

had been investigated. It was shown that a groupoid $G(\cdot)$ possessing an element $a \in G$ with the property $G \cdot a=G$ is an iso-group (i.e. a particular isotope of a group) if (3) holds in $G(\cdot)$. If, in addition (4) holds in $G(\cdot)$ or $G(\cdot)$ satisfies (4) with $G \cdot a=G$, for some $a \in G$, then $G(\cdot)$ is an iso-abelian group. The proof relies heavily upon the condition $G \cdot a=G$. Indeed the condition is essential for these results, because the groupoid with the multiplication table given in example 1 satisfies (1), (2), (3), and (4), but is not even a quasigroup:

	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	x_{1}	x_{1}	x_{3}	x_{3}
x_{2}	x_{1}	x_{1}	x_{3}	x_{3}
x_{3}	x_{3}	x_{3}	x_{1}	x_{1}
x_{4}	x_{3}	x_{3}	x_{1}	x_{1}

Example 1
We will show that groupoids with these given identities may be described in terms of R - and T-groupoids and use these results to characterize groups,

Abelian groups, etc. By defining $x * y=z$ iff $y \cdot x=z$, it is easy to see that (1) and (3) and (2) and (4) are equivalent. So, we will consider only (1) and (2).
2. Definitions. A groupoid $G(\cdot)$ with the property that for all $x_{i}, y_{i} \in G$, ($i=1,2,3,4$), the equations

$$
x_{1} y_{2}=x_{2} y_{1}, \quad x_{1} y_{4}=x_{2} y_{3}, \quad x_{4} y_{1}=x_{3} y_{2}
$$

imply

$$
x_{3} y_{4}=x_{4} y_{3}
$$

is called an R-groupoid. This closure condition is the Reidemeister condition.
$G(\cdot)$ is called a T-groupoid if for all $x_{i}, y_{i} \in G,(i=1,2,3)$ the equations

$$
x_{1} y_{2}=x_{2} y_{1}, \quad x_{1} y_{3}=x_{3} y_{1}
$$

imply

$$
x_{2} y_{3}=x_{3} y_{2}
$$

This closure condition is the Thomsen condition.
Elements x_{1}, x_{2} of a groupoid $G(\cdot)$ are said to be left cancellative equivalent (l.c.e.) if $y x_{1}=y x_{2}$ for all $y \in G$.

A groupoid is said to be left cancellative equivalent if $a x_{1}=a x_{2}, a \in G$, implies that x_{1}, x_{2} are left concellative equivalent.

Right cancellative equivalent (r.c.e.) of both elements and groupoids is similarly defined.

For any groupoid $G(\cdot)$ we may define a congruence ρ by $x_{1} \rho x_{2}$ iff x_{1}, x_{2} are l.c.e. and r.c.e. The quotient groupoid G / ρ is called the reduction of G. Let $h: G \rightarrow G / \rho$ be the canonical homomorphism then $h\left(x_{1}\right)=h\left(x_{2}\right)$, for $x_{1}, x_{2} \in G$ iff $x_{1} y=x_{2} y$, and $y x_{1}=y x_{2}$, for all $y \in G$.

Two groupoids $G(\cdot)$ and $H(*)$ are said to be isotopic, if there exist three one-one, onto mappings $\alpha, \beta, \gamma: G \rightarrow H$ such that $\gamma(x \cdot y)=\alpha x * \beta y$ holds for all $x, y \in G$.
3. Lemma 3.1. If $G(\cdot)$ satisfies either (1) or (2), then the reduction of $G(\cdot)$ also satisfies (1) or (2) respectively.

The proof of the lemma is straightforward.
Theorem 3.1. Let $G(\cdot)$ be a groupoid which satisfies (1). Then $G(\cdot)$ is r.c.e. and the reduction $H(\circ)$ of G is an R-groupoid.

Proof. First we show that $G(\cdot)$ is r.c.e. Suppose $x_{1} a=x_{2} a$, for $a, x_{1}, x_{2} \in G$. Then $x_{1} a \cdot x a=x_{2} a \cdot x a$, for all $x \in G$. Hence by (1), $x_{1} x=x_{2} x$ for all $x \in G$.

If x_{1} and x_{2} are r.c.e., then $x x \cdot x_{1} x=x x \cdot x_{2} x$, for all $x \in G$. It then follows by (1) that x_{1}, x_{2} are l.c.e. Thus, because every pair of elements that are r.c.e. are l.c.e. and $G(\cdot)$ is itself l.c.e., its reduction $H(\circ)$ is right cancellative.

Assume

$$
\begin{align*}
& x_{1} \circ y_{2}=x_{2} \circ y_{1}, \quad x_{1} \circ y_{4}=x_{2} \circ y_{3} \quad \text { and } \quad x_{3} \circ y_{2}=x_{4} \circ y_{1}, \tag{3.1}\\
& \text { for } \quad x_{i}, y_{i} \in H \quad(i=1,2,3,4) .
\end{align*}
$$

Since $H(\circ)$ satisfies (1) (by Lemma 3.1), from (3.1) we obtain $\left(x_{3} \circ y_{2}\right) \circ$ $\left(x_{1} \circ y_{2}\right)=\left(x_{4} \circ y_{1}\right) \circ\left(x_{2} \circ y_{1}\right)$, that is, $x_{3} \circ x_{1}=x_{4} \circ x_{2}$. Using (1) again, $\left(x_{3} \circ y_{4}\right) \circ\left(x_{1} \circ y_{4}\right)=\left(x_{4} \circ y_{3}\right) \circ\left(x_{2} \circ y_{3}\right)$ which by the right cancellativity yields $x_{3} \circ$ $y_{4}=x_{4} \circ y_{3}$. Thus $H(\circ)$ is an R-groupoid. This completes the proof of this theorem.

Lemma 3.2. If $G(\cdot)$ satisfies (1) and if $G(\cdot)$ is either l.c.e. or left cancellative (l.c.) or right cancellative (r.c.) in $G(\cdot)$ or $x x=$ constant holds for all x, then G is an R-groupoid.

Proof. Let $G(\cdot)$ be a groupoid satisfying (1). Suppose $G(\cdot)$ is l.c.e. (l.c.). Assume (3.1) to hold in G for $x_{i}, y_{i} \in G(i=1,2,3,4)$. From the last equality of (3.1) and (1) result $x_{3} x_{3}=x_{4} x_{4}$. Now (1) and (3.1) give, $x_{1} y_{2} \cdot x_{3} y_{2}=x_{2} y_{1} \cdot x_{4} y_{1}$, that is $x_{1} x_{3}=x_{2} x_{4}$. Since $x_{1} y_{4}=x_{2} y_{3}$, we have $x_{1} x_{3} \cdot y_{4} x_{3}=x_{2} x_{4} \cdot y_{3} x_{4}$. Thus, since G is l.c.e. (l.c.), $x_{3} x_{3} \cdot y_{4} x_{3}=x_{4} x_{4} \cdot x_{3} x_{4}$, that is $x_{3} y_{4}=x_{4} y_{3}$. Hence, R-condition holds in $G(\cdot)$.

The latter part of Theorem 3.1 shows that $G(\cdot)$ is an R-groupoid if $G(\cdot)$ is right cancellative.

Finally, suppose $x x=e$, for every $x \in G$. If $a b=c d$, then by (1), $b b \cdot a b=$ $d d \cdot c d$ implies $b a=d c$. Thus, $x_{1} x_{3}=x_{2} x_{4}$ and $x_{1} y_{4}=x_{2} y_{3}$ imply $x_{3} x_{1} \cdot y_{4} x_{1}=$ $x_{4} x_{2} \cdot y_{3} x_{2}$, that is, $x_{3} y_{4}=x_{4} y_{3}$. This proves Lermma 3.2.

Theorem 3.2. If $G(\cdot)$ satisfies both (1) and (2), then its reduction $H(\circ)$, is a cancellative T-groupoid.

Proof. Under (1), $G(\cdot)$ is r.c.e. Suppose $a x_{1}=a x_{2}, a, x_{1}, x_{2} \in G$. Then $a x_{1} \cdot a x=a x_{2} \cdot a x$ and by (2), $x x_{1}=x x_{2}$. Thus $G(\cdot)$ is l.c.e. Hence the reduction $H(\circ)$ is cancellative.

Now, to prove that the T-condition holds in $H(\circ)$. Suppose

$$
\begin{equation*}
x_{1} \circ y_{2}=x_{2} \circ y_{1} \quad \text { and } \quad x_{1} \circ y_{3}=x_{3} \circ y_{1} \tag{3.2}
\end{equation*}
$$

hold for $x_{i}, y_{i} \in H,(i=1,2,3)$.
Then $\left(x_{1} \circ y_{2}\right) \circ\left(x_{1} \circ y_{3}\right)=\left(x_{2} \circ y_{1}\right) \circ\left(x_{3} \circ y_{1}\right)$ by (1) and (2) yields $y_{3} \circ y_{2}=x_{2} \circ x_{3}$, which by using (1) and (2) again gives $\left(x_{3} \circ y_{2}\right) \circ\left(x_{3} \circ y_{3}\right)=\left(x_{2} \circ y_{3}\right) \circ\left(x_{3} \circ y_{3}\right)$. Cancellation gives the required implication $x_{3} \circ y_{2}=x_{2} \circ y_{3}$.

Theorem 3.3. If $G(\cdot)$ satisfies (2), then it is a T-groupoid.
Proof. Suppose that $x_{1} y_{2}=x_{2} y_{1}$ and $x_{1} y_{3}=x_{3} y_{1}$ for all $x_{i}, y_{i} \in G,(i=1,2,3)$. The use of (2) and the hypothesis, yield

$$
y_{2} y_{3}=x_{1} y_{3} \cdot x_{1} y_{2}=x_{3} y_{1} \cdot x_{2} y_{1}=\left(x_{3} y_{1} \cdot x_{3} x_{3}\right)\left(x_{3} y_{1} \cdot x_{3} x_{2}\right)=x_{3} x_{2} .
$$

Thus

$$
\begin{aligned}
x_{2} y_{3} & =x_{3} y_{3} \cdot x_{3} x_{2}=x_{3} y_{3} \cdot y_{2} y_{3}=\left(x_{3} y_{3} \cdot x_{3} x_{3}\right) \cdot\left(x_{3} y_{3} \cdot x_{3} y_{2}\right) \\
& =x_{3} y_{2} \cdot x_{3} x_{3}=x_{3} y_{2} .
\end{aligned}
$$

Consequently $G(\cdot)$ is a T-groupoid.
The groupoid given by example 1 satisfies (1), (2), (3), and (4) and its reduction is isomorphic to Z_{2}. The groupoid given by example 2 is isomorphic to its reduction and satisfies (3) but neither (1) nor (2) nor (4):

	x_{1}	x_{2}
x_{1}	x_{1}	x_{2}
x_{2}	x_{1}	x_{2}

Example 2
The groupoid given by example 3 satisfies (1) but neither (2) nor (3) nor (4):

	x_{1}	x_{2}
x_{1}	x_{1}	x_{1}
x_{2}	x_{2}	x_{2}

Example 3
4. Characterizations. In the sequel, we make use of the following results in [2]:
(RG). A quasigroup $G(\cdot)$ is isotopic to a group if and only if Reidemeister condition (R-condition) holds in $G(\cdot)$.
(TAG). A quasigroup $G(\cdot)$ is isotopic to an Abelian group iff Thomsen condition (T-condition) holds in $G(\cdot)$.

We give another proof of the following results [7], [5], [1] using the R-condition and T-condition.

Theorem 4.1. The variety of all groups is the variety of all groupoids $G(\cdot)$ satisfying the single law

$$
\begin{equation*}
x \cdot[\{(x x \cdot y) \cdot z\} \cdot\{(x x \cdot x) \cdot z\}]=y, \quad \text { for all } \quad x, y, z \in G . \tag{4.1}
\end{equation*}
$$

Proof. First of all $G(\cdot)$ is a quasigroup [7, p. 21], [5, p. 30]. Putting $y=x$ in (4.1) and using z as a variable, we get $x \cdot(u u)=x=x \cdot v v$, for all $u, v \in G$, yielding $u u=$ constant $=e$, for all $u \in G$ and $x e=x$ for all $x \in G$. Now (4.1) becomes

$$
\begin{align*}
x \cdot[(e y \cdot z) \cdot(e x \cdot z)] & =y, \quad \text { for all } x, y, z \in G . \tag{4.3}\\
& =x \cdot[(e y \cdot e) \cdot(e x \cdot e)]=x \cdot(e y \cdot e x),
\end{align*}
$$

which since x and y are arbitrary, results to

$$
\begin{equation*}
y z \cdot x z=y x, \text { for all } x, y, z \in G \tag{1}
\end{equation*}
$$

Now Lemma 3.2 shows that R-condition holds in $G(\cdot)$. The use of (RG) yields the required result.

Theorem 4.2. If a groupoid $G(\cdot)$ satisfies (1) (known as transitivity equation) and (\cdot) is left cancellative (l.c.), then $G(\cdot)$ is isotopic to a group [1, p. 275].

Proof. Let $a a=e$ for some $a \in G$. Then $x=y=z=a$ in (1) gives $e \cdot e=e$. With $x=z=e$, (1) and l.c. imply $y e=y$ for all $y \in G$. Now putting $x=e$ and $z=y$ in (1) we have $e y \cdot y y=e y=e y \cdot e$, so that l.c. implies $y y=e$ for all $y \in G$.
If S and T are two mappings of G such that $S T=P$, where P is a permutation of G, then T is upon and S is one-to-one [5, p.30]. Let L_{x} and R_{x} denote left and right multiplications of x respectively.

With $y=e$, (1) gives $R_{z} R_{e z}=I$. From this we see that R_{z} is one-to-one and $R_{e z}$ is onto for every $z \in G$. This implies that $R_{e z}$ is a permutation and consequently so is R_{z}. Again using (1), with $x=z$ and $y=e$ we get $L_{e} L_{e}=I$, that is, L_{e} is a permutation. Finally $x=z$ in (1) gives $R_{x} L_{e}=L_{x}$, showing thereby that L_{x} is a permutation. Thus $G(\cdot)$ is a quasigroup.
Use of Lemma 3.2 shows that R-condition holds in $G(\cdot)$. An application of (RG) shows that $G(\cdot)$ is isotopic to a group.

Theorem 4.3. The variety of Abelian groups is the variety of all groupoids $G(\cdot)$ satisfying the identity.

$$
\begin{equation*}
x \cdot(y z \cdot y x)=z, \text { for all } x, y, z \in G \tag{4.4}
\end{equation*}
$$

Proof. First we note that $G(\cdot)$ is a quasigroup [7, p. 220]. In (4.4) taking $z=x$ and noting that y is a variable, we get $x \cdot u u=x=x \cdot v v$, for all $u, v \in G$ giving $u u=$ constant $=e$ and $x e=x$, for all $x \in G$. With $y=x$ (4.4) gives $x \cdot x z=z$, so that, $x \cdot(y z \cdot y x)=z=x \cdot x z$ giving (2). Hence by Theorem 3.3, T-condition holds in $G(\cdot)$. Now applying (TAG), we obtain the sought for result.

Bibliography

1. J. Aczel, Lectures on functional equations and their applications, Academic Press, N.Y., 1966.
2. J. Aczel, Quasigroups, nets and nomograms, Advances in Math., VI, 3 (1965), 383-450.
3. V. D. Belousov, Theory of quasigroups and loops, Acad. MSSR, Moscow, 1967.
4. V. D. Belousov, Algebraic nets and quasigroups, Acad. MSSR, Moscow, 1971.
5. R. H. Bruck, A survey of binary systems, Springer Verlag, Berlin, N.Y., 1958.
6. R. H. Bruck, What is a loop? Studies in Modern Algebra, MAA Vol. 2, 59-99, 1963.
7. G. Higman and B. H. Neumann, Groups as groupoids with one law, Publ. Math. Debrecen 2 (1952), 215-222.
8. Pl. Kannappan, Groupoids and groups, Jber. Deutsch. Math. Verein, 75 (1973), 94-100.
9. Pl. Kannappan, On some identities, Math. Student, Vol. XL (1972), 260-264.
10. M. A. Taylor, R - and T-groupoids: a generalization of groups, (to appear in Aequationes Mathematicae).
11. M. A. Taylor, Certain functional equations on groupoids weaker than quasigroups, Aequationes Mathematicae, Vol. 9 (1973) 23-29.
12. M. A. Taylor, The generalized equations of Bisymmetry Associativity and Transitivity on quasigroups, Canad, Math. Bull. Vol. 15 (1972) 119-124.

Faculty of Mathematics,
University of Waterloo,
Waterloo, Ontario, Canada
Department of Mathematics,
Acadia University,
Wolfville, Nova Scotia, Canada

