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Abstract

This study introduces an advanced reinforcement learning (RL)-based control strategy for heating, ventilation, and air
conditioning (HVAC) systems, employing a soft actor-critic agent with a customized reward mechanism. This strategy
integrates time-varying outdoor temperature-dependent weighting factors to dynamically balance thermal comfort and
energy efficiency. Our methodology has undergone rigorous evaluation across two distinct test cases within the building
optimization testing (BOPTEST) framework, an open-source virtual simulator equipped with standardized key perform-
ance indicators (KPIs) for performance assessment. Each test case is strategically selected to represent distinct building
typologies, climatic conditions, and HVAC system complexities, ensuring a thorough evaluation of our method across
diverse settings. The first test case is a heating-focused scenario in a residential setting. Here, we directly compare our
method against four advanced control strategies: an optimized rule-based controller inherently provided byBOPTEST, two
sophisticated RL-based strategies leveraging BOPTEST’s KPIs as reward references, and a model predictive control
(MPC)-based approach specifically tailored for the test case. Our results indicate that our approach outperforms the rule-
based and otherRL-based strategies and achieves outcomes comparable to theMPC-based controller. The second scenario,
a cooling-dominated environment in an office setting, further validates the versatility of our strategy under varying
conditions. The consistent performance of our strategy across both scenarios underscores its potential as a robust tool for
smart building management, adaptable to both residential and office environments under different climatic challenges.

Impact Statement

Worldwide, heating, ventilation, and air conditioning (HVAC) systems in buildings account for substantial
energy consumption and emissions. They also often contribute to the peak load in buildings causing stress on
electricity infrastructure. To meet the demands of HVAC systems while optimizing energy use and efficiency,
advanced control strategies are essential. However, traditional control methods, such as rule-based and model-
based approaches, often face challenges like extensive model development, slowing their adoption in the
industry. In this context, reinforcement learning (RL) has emerged as a promising, model-free solution. Despite
its potential, limited research has specifically tailored RL for HVAC control, taking into account the unique
characteristics and requirements of these systems while demonstrating its practical application across diverse
scenarios. To address these gaps, we have developed an environment-adaptive, single-agent RL control method,
showcasing its effectiveness across different climates and building types. This work offers a valuable contribu-
tion to the growing body of literature on RL-based control methods for HVAC systems.
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1. Introduction

In today’s efforts to mitigate global warming, reducing the energy consumption of buildings is crucial, as
they are significant contributors to both energy usage and carbon emissions (Wang & Ahn, 2020; Wang
et al., 2023). Previous studies have indicated that buildings account for over 30% of total energy
consumption and ~33% of global greenhouse gas emissions (Moghaddasi et al., 2021; Wang, Yao, &
Papaefthymiou, 2023). A critical focus within this sector is on heating, ventilation, and air conditioning
(HVAC) systems, which are typically responsible for around half of a building’s energy usage (Jiang et al.,
2021; Wang et al., 2023). Moreover, with the intensifying effects of global warming, the demand for
energy in HVAC systems is expected to rise further (Wang et al., 2023). Consequently, enhancing the
energy efficiency of HVAC systems, while maintaining user comfort, is essential for fostering sustainable
development.

In the building industry, conventional control strategies, such as rule-based and model-based algo-
rithms, play a vital role in maintaining thermal comfort and optimizing HVAC operations (Afram &
Janabi-Sharifi, 2014; Jiang et al., 2021; Sierla, Ihasalo, & Vyatkin, 2022; Taheri, Hosseini, & Razban,
2022; Wang et al., 2023). These strategies not only ensure the efficient functioning of systems but also
contribute to the flexibility of building operations. Rule-based strategies are particularly widely imple-
mented due to their robustness and straightforward operational mechanisms (Jiang et al., 2021; Sierla
et al., 2022). Nevertheless, these strategies often fall short when it comes to adapting to the dynamic and
unpredictable aspects of modern building operations, which include fluctuating occupancy levels and
variable weather conditions (Jiang et al., 2021; Taheri et al., 2022; Yuan et al., 2021). On the other hand,
model predictive control (MPC) approaches are becoming increasingly prominent in HVAC control,
empowered by advancements in computational capabilities and the growing availability of extensive real-
time building data (Taheri et al., 2022; Wang et al., 2023). Previous research has underscored that MPC
provides numerous advantages over traditional HVAC control methods, including enhanced efficiency,
increased precision in system management, proven robustness, and reductions in both energy usage and
operational costs (Afram& Janabi-Sharifi, 2014;Wang et al., 2023). However, the deployment ofMPC is
not without its challenges. First, implementing anMPC controller requiresmodel development, which is a
time-intensive process demanding specialized expertise (Afram & Janabi-Sharifi, 2014). Significant
hurdles include the need for a deep understanding of complex system dynamics and a reliance on the
accuracy of predictive models (Afram & Janabi-Sharifi, 2014; Taheri et al., 2022). Second, the effect-
iveness of MPC can be compromised by changes in building usage or physical modifications, which may
necessitate frequent updates to maintain accuracy and reliability (Jiang et al., 2021). These challenges
underline the need for continued innovation in HVAC control strategies to enhance energy efficiency and
adaptability in dynamic environments, aiming to ensure consistent environmental comfort and meet
sustainability objectives within the power systems sector (Wang et al., 2023).

In response to the challenges in HVAC control, reinforcement learning (RL) has emerged as a
significant tool, attracting considerable attention (Wang et al., 2023; Kumar et al., 2024). Distinct from
traditional model-based approaches, RL operates as a model-free method, substantially reducing both the
time and resources needed for model development (Sierla et al., 2022; Kumar et al., 2024). Moreover,
RL’s robust capability to interact dynamically with its environment allows it to adjust control strategies in
real time, optimizing based onmultiple operational criteria (Jiang et al., 2021). Such adaptability is crucial
for HVAC systems, which operate under fluctuating conditions (Jiang et al., 2021). Furthermore, to
mitigate the challenges associated with the extensive exploration required in RL, recent advancements
have integrated RL with MPC frameworks. For instance, by leveraging MPC calculations to pretrain the
RL agent, the agent can begin with a performance level similar to that of MPC, significantly reducing the
need for extensive exploration (Hassanpour et al., 2024; Hassanpour, Mhaskar, & Corbett, 2024). This
pretraining effectively reduces the need for prolonged exploration and enhances both the safety and
efficiency of the learning process, showing considerable promise in improving the practical applicability
of RL in control systems.

e3-2 Xinlin Wang et al.

https://doi.org/10.1017/dce.2024.57 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.57


Building on these advancements, our work proposes an RL-based HVAC control strategy that
leverages dynamic outdoor temperature fluctuations as key indices to balance control between
thermal comfort and energy savings. It leverages dynamic outdoor temperature fluctuations as key
indices to balance control between thermal comfort and energy savings. The main contributions of
our work are:

1. An RL-based HVAC controller design that utilizes outdoor temperature to dynamically adjust the
balance between thermal comfort and energy-saving objectives. Such an environment-adaptive
adjustment along with a tailored reward mechanism enables the use of a single soft actor-critic
(SAC) agent that operates efficiently without the need for additional refinement to improve the
control performance. It features a model-free control strategy that can be easily deployed across
different test scenarios and environmental conditions. Simulation results demonstrate the effect-
iveness of the proposed strategy.

2. Evaluation across two distinct test cases within the building optimization testing (BOPTEST)
framework, each catering to unique climatic conditions and building typologies:
• Test Case 1: A heating scenario in a residential setting during winter period. This test
case, referred to within BOPTEST as “BESTEST Hydronic Heat Pump” (BOPTEST test
case-Bestest hydronic heat pump, 2024), is set in a residential setting during the cold days. It
allows us to evaluate our RL-based control strategy against the demands of cold weather,
assessing its effectiveness in maintaining thermal comfort and energy efficiency in heating
environments.

• Test Case 2: A cooling-dominated scenario in an office setting during a cooling period.
Known as “BESTEST Air” (BOPTEST test case-Bestest air, 2024), this scenario assesses our
strategy in an office environment under high-temperature conditions. It showcases the method’s
versatility across different environments and its adaptability to cooling demands during hot
climates, demonstrating its performance in cooling-dominated settings.

Each test case’s unique features enable a comprehensive evaluation of our RL-based HVAC control
strategy, illustrating its adaptability and effectiveness across a spectrum of conditions—from cold to
hot climates and from residential to office settings.

3. Extensive benchmarking to demonstrate the effectiveness of the proposed model-free
RL-based approach: Leveraging the open-source nature and standardized key performance
indicators (KPIs) of BOPTEST, we benchmark our method against a range of advanced
controllers, including:
• A specially optimized rule-based controller provided by BOPTEST (Blum et al., 2021).
• Two sophisticated RL-based strategies are utilized, each employing BOPTEST’s KPIs as reward
references. One strategy uses a model-free RL approach, while the other employs a model-based
RL method (Gao & Wang, 2023; Wang et al., 2023)

• An MPC strategy, specifically tailored for BOPTEST (Wang et al., 2023).

While our method outperforms traditional rule-based and other RL-based strategies in thermal comfort
and energy savings, it shows comparable results to MPC. Note this performance is achieved without the
extensivemodeling requirements of typicalMPC systems, and hence suggests ourmodel-free strategy is a
scalable and efficient alternative for practical HVAC applications.

The paper is structured as follows: Section 2 reviews the related works to better highlight our
contributions by showcasing the limitations of prior works. Section 3 introduces the simulation platform,
followed by Section 4, which describes our method. Section 5 presents our findings and benchmarking
results, and finally, Section 6 summarizes the study and outlines future directions.
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2. Related works

Recent studies have shown the effectiveness of RL in enhancing HVAC system control and energy
management. Our literature review since 2020 reveals a progressive development in this field, which falls
into one or a mix of these four main trends:

• Implementation of additional refinements in actions,
• Employment of multi-agent RL algorithms,
• Incorporation of predicted observation data for improved decision-making, e.g., integration of
forecasting engines to facilitate informed decision-making, and

• Comparison with model-based strategies.

2.1. Implementation of additional refinements in actions

To enhance the effectiveness of RL-basedHVACcontrol systems, actionmasking is commonly employed
as a refinement technique. Jiang et al. introduced a controller based on the Deep Q-Network (DQN)
algorithm, which is augmented with an action processor (Jiang et al., 2021). This processor utilizes time
information to refine the actions suggested by the DQN, aiming to improve decision-making efficiency.
Kumar et al. provided a control strategy leveraging proximal policy optimization (PPO) and action
masking (Kumar et al., 2024). This refinement mechanism limits the PPO agent’s actions based on prior
knowledge, leading to cost savings. Han et al. devised a novel deep-forest-based DQN control method
(Han et al., 2022). The proposed strategy employs a deep-forest model to refine the original action space
of DQN into a more manageable size, facilitating faster convergence.

These refinements significantly boost the control performance of RL-based HVAC control strategies.
However, such additional mechanisms often involve a significant reliance on specific prior knowledge,
which can constrain their adaptability across diverse scenarios (Zhang et al., 2019). Action masking, for
example, theoretically effective in managing invalid actions in large discrete action spaces, presents
practical implementation challenges due to its unexplored theoretical and empirical aspects (Gao, Li, &
Wen, 2019; Zhang et al., 2019).

2.2. Employment of multi-agent RL algorithms

Recent advancements in HVAC system optimization increasingly favor multi-agent RL approaches over
traditional single-agent methodologies. Blad et al. adopted a multi-agent RL approach for underfloor
heating systems, conceptualizing the system as a Markov Game to distribute decision-making among
local agents (Blad, Bøgh, & Kallesøe, 2021). This framework not only accelerates convergence but also
simultaneously boosts energy efficiency and user comfort. Similarly, Yu et al. implemented amulti-agent-
based strategy for commercial building HVAC control, demonstrating its effectiveness and robustness
through comprehensive simulations (Yu et al., 2021). Extending these advancements, Bayer et al.
developed a multi-agent RL strategy tailored for individual temperature management across different
rooms, illustrating the method’s precision and adaptability (Bayer & Pruckner, 2022). Building on these
implementations, Fu et al., Homod et al., and Hanumaiah et al. have advancedmulti-agent techniques that
optimize various components of HVAC systems (Fu et al., 2022; Hanumaiah&Genc, 2021; Homod et al.,
2023). Their results show significant enhancements over single-agent RL benchmarks, highlighting the
advantages of multi-agent systems in managing the intricacies of large-scale power systems.

While advanced multi-agent RL-based methodologies have demonstrated improvements in managing
complex and extensive HVAC systems, there remains a lack of discussion regarding the specific
requirements and constraints associated with these approaches. First, the increased complexity inherent
in multi-agent systems can lead to data scarcity and training inefficiencies (Gao et al., 2019; Wong et al.,
2023; Zhang et al., 2019). In addition, such methodologies have faced criticism for relying on unrealistic
assumptions and strugglingwith generalization across diverse settings (Gao et al., 2019;Wong et al., 2023).
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Furthermore, multi-agent systems are particularly susceptible to dimensionality and nonstationarity prob-
lems that grow as the number of agents and the complexity of their interactions increase (Wong et al., 2023).

2.3. Incorporation of predicted observation data for improved decision-making

In RL-based HVAC control, predictive data specific to HVAC systems can equip RL agents with deeper
insights, thereby facilitating improved control performances. Fu et al., Gao et al., and Ding et al. have
developed various forecasting models to provide more details into the deep deterministic policy gradient
(DDPG) algorithm’s observation list, thus enhancing the control performance (Ding et al., 2022; Fu &
Zhang, 2021; Gao, Li, & Wen, 2020). While these studies highlight the efficacy of DDPG in HVAC
control, they also demonstrate how the integration of additional information can further enhance the
performance of RL-based control methods. Fu et al. augmented a combination of DDPG andMPCHVAC
control (Fu & Zhang, 2021). MPC is used for predicting energy consumption and then facilitates the
decision-making process of DDPG.Gao et al. provide a deep feedforward neural network-based predictor
for forecasting the occupants’ thermal comfort (Gao et al., 2020). Ding et al.’s research employed a hybrid
model combining support vector regression and a deep neural network to predict thermal comfort values
(Ding et al., 2022). In addition, SAC is another commonly utilized RL algorithm for integrating prediction
outputs to optimize HVAC control. Zhuang et al. pioneered an HVAC control system that harnesses the
predictive power of 16 different LSTM-based forecasting models (Zhuang et al., 2023). These models
predict indoor temperature, relative humidity, and energy consumption, providing a robust dataset for the
SAC algorithm to optimize decision-making processes.

While the integration of predicted insights has shown promise in improving RL’s control precision,
applying these methods in real-world scenarios presents unique challenges. First, such integration
necessitates a significant reliance on well-structured training data and advanced hardware, which may
not always be feasible or available in many practical settings (Wang & Ahn, 2020; Wang et al., 2023). In
addition, uncertainties in forecasting accuracy and variability in prediction horizons can contribute to
increased system complexity, posing considerable challenges for real-world applications (Wang et al.,
2023; Wang, Yao, & Papaefthymiou, 2023).

2.4. Comparison with model-based strategies

Comparisons betweenmodel-based andmodel-free strategies are conducted to highlight the strengths and
weaknesses of each methodology within HVAC systems. Wang et al. explored both model-based
approaches like MPC and model-free RL through a comparative study on the BOPTEST platform
(Wang et al., 2023). Their findings suggest that both approaches are effective in optimizing HVAC
control. Similarly, Gao et al. compared model-based and model-free RL, noting that model-based RL
typically yields better results (Gao & Wang, 2023).

These studies provide valuable insights through performance comparisons across different methodolo-
gies, highlighting the need for further research in this direction. However, from the perspective of RL, these
works mainly focus on comparisons and may not adequately address the specific applicability of each
method. As a model-free strategy, RL requires comprehensive observations of the HVAC system dynamics
and adjusts its strategies based on feedback. Both studies in (Gao &Wang, 2023; Wang et al., 2023) utilize
BOPTEST’s well-designed KPIs to design RL reward mechanisms. These KPIs are based on specific test
cases within BOPTEST, incorporating pre-known information such as the number and area of test zones.
While this combination simplifies the design of RL strategies and reduces model development costs, it has
limitations in real-world applications. Real-world scenarios often involve dynamic and unpredictable
variables, making it challenging to apply these tailored KPIs across different operational environments
without significant adjustments. Currently, there is limited work extending these comparisons. As one of the
early efforts, our study continues in this direction by developing a straightforward model-free control
approach, emphasizing the necessity for adaptable andwidely applicable control strategies inHVACsystems.

Table 1 provides a comprehensive summary of previous studies in RL-based HVAC control. Our
approach introduces a straightforward single-agent RL-based control strategy that adeptly balances
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energy efficiency and thermal comfort across diverse environments. It operates without reliance on
complex refinements or predictive information, which are commonly used in contemporary studies but
can introduce additional challenges and dependencies. Unlike most existing research, which tends to be
limited to specific climatic contexts or building setups, our study includes two distinct test cases
representing different climatic conditions and building typologies. Furthermore, our benchmarking
encompasses rule-based, model-based RL, model-free RL, and MPC-based approaches. This compre-
hensive evaluation not only confirms the effectiveness of our strategy but also bolsters confidence in its
broader applicability, setting a new standard for adaptability in the field.

3. Simulation platform and test cases

The proposed work involves the utilization of an open-source simulation platform to conduct evaluations
across two specific test cases. The first test case simulates heating demand conditions, while the other
simulates cooling demand periods. Each test case is strategically selected to provide a thorough
representation of unique architectural characteristics and distinct climatic conditions.

3.1. BOPTEST

BOPTEST stands as a versatile virtual building simulation tool, equipped with a comprehensive suite of
physics-based models that replicate the dynamic behavior of real-world buildings (Blum et al., 2021). It
includes 12 distinct test cases, each designed to address a variety of environmental and architectural

Table 1. Recent work in RL-based HVAC control

Ref

Simulation environment Features

Building types
Climatic
conditions Without

add.
refine

Without
multi-
agent

Without
pred.
data

Compared
with model-

basedResidential Office Heating Cooling

Wang et al. (2023) ✓ ✓ ✓ ✓ ✓ ✓

Jiang et al. (2021) ✓ ✓ ✓ ✓

Kumar et al. (2024) ✓ ✓ ✓ ✓

Zhuang et al.
(2023)

✓ ✓ ✓ ✓

Fu et al. (2022) ✓ ✓ ✓ ✓

Yu et al. (2021) ✓ ✓ ✓ ✓

Bayer & Pruckner,
(2022)

✓ ✓ ✓ ✓

Han et al. (2022) ✓ ✓ ✓

Hanumaiah &
Genc, (2021)

✓ ✓ ✓ ✓

Blad et al. (2021) ✓ ✓ ✓ ✓

Fu& Zhang, (2021) ✓ ✓ ✓

Homod et al. (2023) ✓ ✓ ✓ ✓

Gao et al. (2020) ✓ ✓ ✓

Ding et al. (2022) ✓ ✓ ✓ ✓

Gao & Wang,
(2023)

✓ ✓ ✓ ✓ ✓

Our method ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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characteristics found in real-world scenarios. Moreover, the predefined and standardized test scenarios
within each test case—such as “peak heat days” and “peak cool days”—are employed to validate
control methods under particular environmental conditions. The combination of these uniformly
identified test scenarios with BOPTEST’s open-source nature enhances transparency, promotes the
replication of research findings, and facilitates a thorough evaluation of various methodologies,
thereby aiding in their benchmarking. In this study, we utilize two BOPTEST test cases under
contrasting scenarios, with the primary objective of maintaining indoor thermal comfort while
minimizing energy consumption:

• Test Case 1—Heating Scenario: BESTEST Hydronic Heat Pump during “peak heat days”.
This test case is designed to validate our control method under cold climatic conditions. The
simulation models a single-zone residential building in Belgium, designed to meet the heating
needs of a family of five, utilizing a heat pump-driven hydronic heating system (BOPTEST test case-
Bestest hydronic heat pump, 2024). This building, with a footprint of 12 m by 16 m, faces a winter
heating demand of approximately 80 W/m2 (BOPTEST test case-Bestest hydronic heat pump,
2024). For rigorous evaluation, we leverage the standardized “peak heat days” scenario provided by
BOPTEST. This scenario spans two critical weeks (from January 17th to January 31st), centered
around the days with the highest annual heating load, challenging the control method’s ability to
manage peak demand. The scenario is implemented through the BOPTESTAPI with the following
setting:

Scenario=“peak_heat_day”

• Test Case 2—Cooling Dominated Scenario: BESTESTAir during “peak cool days”. This case
is designed to challenge our control methodology in a hot environment. The test case simulates an
office room measuring 6 m by 8 m, equipped with an idealized four-pipe fan coil unit (FCU)
(BOPTEST test case-Bestest air, 2024). The climate data for this scenario is based on typical
conditions near Denver, CO,USA. The “peak cool days” scenario is another standardized test period
focusing on themost demanding cooling conditions, covering 2weeks (fromOctober 9th to October
24th) centered on the days with the highest cooling demand of the year. This scenario is activated in
the BOPTESTAPI using the following setting:

Scenario“=peak_cool_day”

Figure 1 illustrates the specific layout and components of each test case. To facilitate the training of RL
agents, the BOPTEST framework has been integrated with the BOPTEST-Gym interface, an extension of
OpenAI Gym, ensuring seamless interaction between the RL agents and the BOPTESTsimulators (Blum
et al., 2021). As shown in Figure 1, the RL agent interacts with the BOPTEST environment through the
BOPTEST-Gym interface. Finally, Table 2 provides an overview of the two test cases used in this study,
detailing the control inputs, observations, and other key variables for each scenario. Further discussion on
the selection of these variables is presented in Section 4.

3.1.1. Performance assessment from BOPTEST
In pursuit of consistent performance assessment, BOPTESToffers a suite of standardKPIs, encompassing
metrics like energy consumption, thermal discomfort, cost efficiency, air quality discomfort, emissions,
and computational time ratio (Blum et al., 2021). Our research primarily focuses on the KPIs related to
energy consumption and thermal comfort to evaluate and compare the efficacy of strategies. For thermal
discomfort KPI, BOPTEST innately sets the indoor temperature boundaries considered comfortable:
between 21 °C and 24 °C during occupied hours (from 7 am to 8 pm), and a broader range of 15 °C to 30 °C
during unoccupied times (Blum et al., 2021). Then, the thermal discomfort KPI is expressed in K�h
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(Kelvin-hours), measuring the cumulative deviation of indoor air temperature from the comfort zone
(Blum et al., 2021).

The energy consumption KPI is straightforward. It accounts for the cumulative energy consumption
throughout the test period, normalized to the area of the building in kWh=m2. Further details regarding the
calculation of each KPI are detailed in the related work (Blum et al., 2021). A detailed discussion of the
simulation results and benchmark comparisons, based on the proposed KPIs, will be presented in
Section 5.

4. RL implementation

In our study, the management of HVAC systems is formulated as a Markov Decision Process (MDP),
focusing on three pivotal elements

Figure 1. Framework of the RL agent interface with the BOPTEST framework via BOPTEST-Gym.

Table 2. Overview of BOPTEST test cases with configurations used in this study

Test case
No.1 heating scenario
(‘BESTEST hydronic heat pump’)

No. 2 cooling dominated scenario
(‘BESTESTAir’)

Geographic setting Belgium Denver, CO, USA
Building type Single-zone residential Single-zone office
Area 192 m2 (12 m × 16 m) 48 m2 (6 m × 8 m)
Köppen climate Cfc: Temperate oceanic BSk: Semi-arid steppe
Model type Physics-based
API integration BOPTEST-Gym
Time step 15 min (Customizable)
Data Synthetic (simulated scenarios)
Assessment Standard KPIs: Thermal discomfort KPI and energy use KPI
Test scenario “Peak heat days” “Peak cool days”
HVAC system Heat pump driven hydronic heating

(no cooling)
Four-pipe FCU with heating and cooling

coils
Controls Operative Temp Setpoint Setpoint for cooling
Observations Real-time measured indoor air temperature,

Surrounding outdoor temperature,
Incremental HVAC system energy usage,

Thermal comfort zone boundaries.
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M = 〈S tð Þ,A tð Þ,R tð Þ〉, (4.1)

where

• S tð Þ: State space. This set of dynamic states for the RL agent to observe.
• A tð Þ: Action space. This set represents the decisions available to the agent.
• R tð Þ: Reward function. This function provides a value for the reward corresponding to a particular
state-action pair.

The objective of the RL agent in this work is to maintain thermal comfort and optimise energy
consumption. While traditional MDP formulations include transition probabilities and discount factors,
our model implicitly incorporates these elements within the RL framework. The transition probabilities
are embedded in the environment’s dynamics, which are learned by the agent through interaction, and the
reward function is designed to implicitly capture the long-term impact of actions, thus obviating the need
for an explicit discount factor in our formulation.

Figure 1 illustrates the RL process: the agent continuously interacts with the environment, observing
the current state S tð Þ, executing an action A tð Þ, receiving a resultant reward R tð Þ, and moving to the next
state S tþ1ð Þ. This process is iteratively refined to enhance decision-making over time.

4.1. Design of state space: S tð Þ
It is imperative to offer a comprehensive and representative set of data for the learning agents to observe
and process. In the proposedwork, we emphasize that if the state space is too limited, agents may fail to
achieve the desired learning outcomes; conversely, an excessively large state space can escalate
computational costs, and propose obstacles for real-world applications. Consequently, to provide a
flexible and unified control work, the state space S tð Þ in this work is decided to include critical
observations: real-time measured indoor air temperature tin tð Þ, surrounding outdoor temperature
tout tð Þ, incremental HVAC system energy usage e tð Þ, which represents heating energy consumption
in winter and cooling energy consumption in summer, and the observed thermal comfort zone
boundaries bhigh tð Þ and blow tð Þ.

4.2. Design of action space: A tð Þ
The action spaceA tð Þ enables the agent to dynamically interact with its environment, aiming to optimise
thermal comfort and energy efficiency effectively. As detailed in Table 2, each HVAC system is
characterized by distinct control inputs reflecting its unique operational characteristics. Consequently,
we have tailored the action spaces for each test case to suit these differences.

In Test Case 1, thermal regulation is managed by modulating the zone operative temperature setpoint,
which is initially provided by BOPTESTwith an adjustable range from 5 to 30 °C.

Test Case 2 presents a more complex scenario, involving both heating and cooling demands within
the system. Our empirical testing has demonstrated that controlling individual heating or cooling zone
temperature setpoints—whether separately for hot or cold conditions, or simultaneously—is more
efficient than adjusting a singular zone supply temperature setpoint. This enhanced efficiency likely
arises from the office environment’s need to rapidly adapt to fluctuating internal heat gains from
electronic equipment and occupancy changes, as well as external environmental variations such as
sunlight exposure and outdoor temperatures. Therefore, to maintain consistency with the single action
spaces used in Test Case 1, and given that this test is conducted in hot weather conditions, the selected
action space for this scenario is limited to adjusting the cooling zone temperature setpoint, which is
initially designed to range from 15 to 30 °C. These settings ensure precise management of thermal
conditions across varied operational contexts, facilitating an effective balance between comfort and
energy consumption.
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4.3. Reward function: R tð Þ
RL operates on a reward mechanism that provides feedback to the agent concerning its actions. An
effectively designed reward function is crucial, as it not only measures the progress of learning outcomes
but also promotes faster convergence of the algorithm (Wang et al., 2023). The primary motivation of this
work is to develop a control strategy that ensures thermal comfort while optimizing energy consumption.
The most flexible and effective method to achieve these dual objectives is by utilizing environmental
variations to dynamically balance control priorities. For example, when the outdoor temperature is
favorable, the system prioritizes energy savings by reducing the effort expended on controlling indoor
temperature. Conversely, during extreme environmental changes, our strategy adjusts its reward mech-
anism to ensure thermal comfort is maintained.

To this end, we have carefully designed the reward function, R tð Þ, which consists of three key
components:

• The reward for thermal comfort: Rth tð Þ,
• The reward for energy consumption: Re tð Þ,
• The thermal weight α tð Þ

Rth tð Þ and Re tð Þ are integrated using the time-varying, outdoor temperature-dependent weighting factor
α tð Þ, which ranges from 0 to 1. This allows for a dynamic trade-off that adapts to the fluctuating outdoor
environment. The reward function is mathematically expressed as:

R tð Þ= α tð Þ×Rth tð Þþ 1�α tð Þð Þ×Re tð Þ, (4.2)

Accordingly, Section 4.3.1 details the thermal comfort reward, Rth tð Þ; Section 4.3.2 explains the
reward for energy consumption, Re tð Þ; and Section 4.3.3 discusses the design of the thermal weighting
factor, α tð Þ.

4.3.1. Thermal comfort reward:Rth tð Þ
The thermal comfort reward Rth tð Þ assesses how closely the indoor air temperature tin tð Þ aligns with the
defined thermal comfort zone, bounded by bhigh tð Þ and blow tð Þ. To quantify this, we use a dynamic
reference temperature tref tð Þ to gauge how closely tin tð Þ matches the comfort zone. The closer tin tð Þ is to
tref tð Þ, the more comfortable the environment is considered, and hence, a larger reward is given.
Conversely, the further away tin tð Þ is from tref tð Þ, particularly if it falls outside the comfort zone, a
smaller reward or even a penalty is applied.

As depicted in Figure 2a, tref tð Þ, is defined based on the time of day and the season to align with the
occupancy and comfort requirements. Specifically, it is defined as follows:

• During occupied hours (7 am to 8 pm), tref tð Þ is set at the median of the thermal comfort zone:

tref tð Þ= bhigh tð Þþblow tð Þ
2

, for 7am ≤ t < 8pm (4.3)

• During unoccupied periods in summer (8 pm to 7 am the next day), tref tð Þ is set to the higher bound of
the comfort zone:

tref tð Þ= bhigh tð Þ, for 8pm ≤ t < 7am summerð Þ (4.4)

• During unoccupied hours in winter (8 pm to 7 am the next day), tref tð Þ is set to the lower bound of the
comfort zone:

tref tð Þ= blow tð Þ, for 8pm ≤ t < 7am winterð Þ (4.5)

where bhigh tð Þ and blow tð Þ represent the upper and lower bounds of the thermal comfort zone, respectively.
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Consequently, Rth tð Þ is calculated as

Rth tð Þ=
2� 2

1þ e�∣tin tð Þ�tref tð Þ∣ if tin tð Þ∈ blow tð Þ,bhigh tð Þ� �

1� 2
1þ e�∣tin tð Þ�tref tð Þ∣ otherwise,

8>><
>>:

(4.6)

Figure 2b illustrates Rth tð Þ values for both cases of tin being inside or outside of the comfort zone. The
exponential form of Rth tð Þ ensures a smooth and continuous transition in reward values as the indoor
temperature deviates from tref tð Þ. This design allows for nuanced reward or penalization, ensuring the
control system remains sensitive even to slight changes in temperature, while continuously striving to
maintain thermal comfort. Figure 2c shows our choices of tref tð Þ during occupied/unoccupied period of
winter/summer seasons. It is important to note that tref tð Þ serves solely as a reference for quantifying the
deviation of indoor temperature; it does not represent an ideal target for temperature tracking. For
instance, if the indoor temperature is 24 °C and the comfort zone is [21 °C, 24 °C], the controller will
still assign a positive reward, as the temperature remains within the range. Even if not optimal, a positive
thermal reward is applied as long as the temperature stays within the comfort boundaries. In our approach,
penalties are only applied when the temperature falls outside these boundaries.

4.3.2. Energy consumption reward:Re tð Þ
The energy reward function evaluates the dynamic energy consumption by the HVAC system at each
timestep. Align with the thermal reward, the energy reward is divided into positive and negative scenarios:

• Reward (Re tð Þ>0): When the indoor temperature tin tð Þ remains within the dynamic comfort zone
[blow tð Þ, bhigh tð Þ], the HVAC system is rewarded for efficient energy use. The reward value scales
from 0 to 1, depending on the level of energy efficiency achieved.

Figure 2. The proposed reward mechanism.
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• Penalty (Re tð Þ<0): When tin tð Þ deviates from the comfort zone, the system incurs a penalty. The
magnitude of the penalty is determined by the amount of energy used, ranging from 0 to �1.

Specifically, Re tð Þ, is determined as

Re tð Þ=
1�E tð Þ if tin tð Þ∈ blow tð Þ,bhigh tð Þ� �
�E tð Þ if tin tð Þ> bhigh tð Þ winterð Þor tin tð Þ< blow tð Þ summerð Þ
E tð Þ�1 if tin tð Þ< blow tð Þ winterð Þor tin tð Þ> bhigh tð Þ summerð Þ

8><
>:

(4.7)

Where:

E tð Þ= e tð Þ� emin

emax� emin
, t > 0 (4.8)

Here, E tð Þ represents the normalized energy consumption of the HVAC system at time t, with e tð Þ
indicating the actual energy consumption. The constants emax and emin denote themaximum andminimum
energy consumption observed during the training period. Specifically, emin is set at 0W, and emax is fixed
at 4500 W, based on empirical observations.

This dynamic approach ensures that the system’s response is contextually appropriate—penalizing
excessive heating or cooling that leads to discomfort and inefficiency. Such adaptability is crucial for
handling varying conditions throughout the day and across seasons. We use the winter season as an
example to further explain:

• If tin tð Þ< blow tð Þ—meaning the indoor temperature is below the lower boundary, indicating insuf-
ficient heating—then the more heating used, the smaller the penalty received. This policy encour-
ages the system to use more energy to achieve a comfortable temperature by penalizing less as the
energy use approaches what is necessary for comfort.

• If tin tð Þ> bhigh tð Þ—meaning the indoor temperature exceeds the upper boundary, indicating over-
heating—then the more heating used, the greater the penalty incurred. This discourages excessive
heating that leads not only to discomfort but also to wasteful energy expenditure.

During summer, the focus shifts to cooling, with a similar penalty logic applied.

4.3.3. Thermal weight:α tð Þ
The proposed strategy utilizes time-varying, outdoor temperature-dependent weighting factors, α tð Þ, to
quantitatively represent the trade-off between Rth tð Þ and Re tð Þ, which is mathematically defined as
follows:

α tð Þ= 1
1þ eβ × jtout tð Þ�tref tð Þj�δð Þ (4.9)

Where:

• β is a season-dependent parameter, set to �1 in winter and 1 in summer.
• ∣tout tð Þ� tref tð Þ∣ represents the absolute deviation of the outdoor temperature tout tð Þ from the
reference temperature tref tð Þ. tref tð Þ varies according to occupancy and seasonal changes, as
explained in Section 4.3.1.

• δ is a threshold that fine-tunes the balance between thermal comfort and energy efficiency, adjusting
the control strategy based on the outdoor temperature.

Figure 3 visualizes the adaptive behavior of the weighting factor α tð Þ in response to seasonal changes, as
described by Equation 4.9. The exponential function’s sigmoid shape ensures a smooth transition between
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prioritizing thermal comfort and energy efficiency, avoiding abrupt control shifts that could destabilize
system performance. In winter, β = �1 causes α tð Þ to approach 1 during low outdoor temperatures,
prioritizing thermal comfort. As outdoor temperatures become milder, α tð Þ decreases, enhancing energy
efficiency. In summer, β = 1 makes α tð Þ increase as outdoor temperatures rise, emphasizing thermal
control. Under milder conditions, α tð Þ decreases to focus on energy savings.

The parameter δ plays a crucial role in determining the environmental conditions under which the
reward mechanism shifts focus between thermal comfort and energy usage. Based on empirical data
analysis, δ= 17:5 ° C to ensure consistency across test cases. The sensitivity of δwill be further discussed
in Section 5.4.

4.4. Agent

In the context of HVAC control, advanced RL algorithms, such as SAC, DDPG, and PPO have been
widely utilized due to their capabilities in handling complex, dynamic systems (Gao et al., 2020; Zhuang
et al., 2023).

DDPG is an off-policy actor-critic algorithm that excels in high-dimensional, continuous action spaces
(Gao et al., 2020). However, it often requires sensitive hyperparameter tuning and may converge to
suboptimal policies, leading to significant performance variability (Gao & Wang, 2023; Zhuang et al.,
2023). PPO, designed for optimizing stochastic policies, is noted for its sample efficiency and relatively
easier tuning process. Despite its popularity across various applications, PPO’s performance is contingent
on larger batch sizes and sensitive to the choice of clipping parameters, which manage the exploration-
exploitation balance (Farsang & Szegletes, 2021; Kumar et al., 2024).

In contrast, SAC distinguishes itself with some key features that address the challenges of HVAC
control in real-world settings:

• Entropy-augmented exploration: SAC’s entropy-augmented reward structure strikes a balance
between exploration (entropy) and exploitation (reward maximization) (Haarnoja et al., 2018a,b).
By encouraging diverse action exploration without relying solely on extensive real-time inter-
actions, this mechanism enhances sample efficiency, which is crucial in real-world HVAC scenarios
where interactions can be costly or potentially dangerous (Gao&Wang, 2023; Haarnoja et al., 2018;
Zhuang et al., 2023).

In addition, the entropy-augmented approach helps the agent remain adaptable and robust by preventing
premature convergence to suboptimal strategies (Haarnoja et al., 2018). This is particularly beneficial in

Figure 3. Variation of thermal weight α(t) in response to seasonal outdoor temperature changes.
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the presence of sensor noise or model uncertainties, allowing the agent to effectively handle fluctuating
conditions and unreliable data.

• Off-policy learning: SAC’s off-policy mechanism reduces the need for extensive real-time explor-
ation, particularly in hazardous environments, by allowing the agent to refine its policy using
historical data stored in a replay buffer (Haarnoja et al., 2018a,b). This approach helps mitigate
concerns about the long-term random interactions often associated with RL in real-world
applications.

Furthermore, this replay buffer can include noisy or uncertain data, making SAC particularly advanta-
geous in scenarios where sensor noise or model inaccuracies are present. By learning from a diverse set of
past experiences, SAC is capable of handling a wide variety of situations without relying solely on new,
potentially unreliable data (Haarnoja et al., 2018; Zhuang et al., 2023).

Given these advantages of SAC, it has been selected as the preferred algorithm for our study. A detailed
examination of its effectiveness and a comparative analysis with other algorithms will be provided in
Section 5.

5. Simulation results

This section presents the simulation results from two test cases on BOPTEST. The simulations in this
study are configured using Python 3, leveraging the Baseline3 library for implementing the SAC RL
algorithm. The BOPTEST-Gym interface is used to seamlessly connect the SAC agent with the
BOPTEST simulation environment, allowing for the integration and testing of our control strategies
under various environmental conditions. Both two test cases undergo a training period of 100 days
excluding the test period. Testing employs predefined and standardized scenarios to evaluate performance
under specific conditions. The timestep for the simulations is set to 15 min, aligning with benchmark
comparisons.

The SAC algorithm employed in our study is configured and optimized for performance, with
consistent hyperparameters applied across both Test Case 1 and Test Case 2. These parameters are
summarized in Table 3. While the table details the hyperparameters for Test Case 1, it is important to note
that the same configuration is applied uniformly across all test cases for consistency and comparison. The
learning rate is set at 0.001 to balance the trade-off between efficient convergence and stability during
training. This value is selected after evaluating a range of learning rates, from 0.0001 to 0.01, with 0.001
consistently delivering the most stable learning outcomes across our environments. The convergence
plots of our algorithm are presented and discussed in the following sections. A discount factor of 0.99
ensures the SAC agent prioritizes long-term rewards, essential for optimizing energy efficiency and
thermal comfort over extended periods. The neural network architecture (400 × 300) is selected for its
ability to strike an optimal balance between model complexity and computational efficiency, effectively
capturing the environmental intricacies needed for control without imposing excessive computational
demands (Wang et al., 2023; Zhuang et al., 2023). Furthermore, the batch size is determined to be 96, a
value that correlates directly with the 15-min time resolution, spanning a full 24-h period. This
configuration not only facilitates efficient learning by ensuring that each batch represents a complete
daily cycle but also enhances the diversity of mini-batch samples, thereby promoting stability in gradient
updates. The performance of our method is discussed in the following sections.

5.1. Results of Test Case 1—Heating scenario and comparative analysis of KPIs

Figure 4 illustrates the test results from Test Case 1—heating scenario. It should be noted that outdoor
temperatures range from generally cool conditions, around 10 °C, to relatively cold weather, reaching as
low as�2 °C. Despite these fluctuations, our method demonstrates a robust ability to dynamically adjust
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the zone-operative temperature setpoint, effectively keeping the indoor environment within the dynamic
comfort zone.

While the real-time cumulative thermal discomfort KPIs show slight degradation, the overall per-
formance remains satisfactory. Energy usage KPI displays a continuous upward trend throughout the test
period. A comparison between our approach and several optimized and advanced benchmarks is provided
in Section 5.1.1, offering further insights into our method’s performance.

To illustrate the learning process, we include a cumulative reward plot, which provides deeper insight
into the agent’s performance across training episodes. The smooth upward trajectory of cumulative
rewards, which eventually stabilizes, indicates that our control strategy is progressively optimizing over
time. The trajectory of cumulative reward, aligned with both satisfactory thermal discomfort and energy
use KPIs, underscores the effectiveness of our approach in achieving optimal control under cold
environmental conditions.

5.1.1. Benchmarking based on BOPTEST KPIs
An in-depth comparative analysis of KPIs offers a nuanced assessment of our strategy relative to
established benchmarks. This analysis highlights our method’s strengths and identifies opportunities
for further enhancements. Since all benchmarks, including our approach, are implemented on the open-
sourced BOPTEST platform and evaluated under standardized testing scenarios, the KPIs enable direct
and reliable comparisons. The benchmarks involved in this work are introduced below:

Benchmark 1 is the embedded rule-based HVAC control method inherently implemented within
BOPTEST (Blum et al., 2021). As the baseline controller, it employs optimized PI logic to maintain
the operative zone temperature, providing adequate indoor comfort without excessive energy use.

Benchmark 2 features an RL-based controller developed by Wang et al. (Wang et al., 2023). This
controller employs a reward function intricately designed around the BOPTEST KPIs. The reward
function for the next step is formalized as follows (Wang et al., 2023):

rtþ1 = � Jtþ1� Jtð Þ, (5.1)

where the cost function Jt at the current step t is defined by:

Jt =Costþ10× tdis: (5.2)

In this model, Cost indicates the operational cost KPI, and tdis is the thermal discomfort KPI. The
coefficientω serves as a balancing factor between operational cost and thermal discomfort, representing a
critical hyper-parameter requiring careful tuning.

Table 3. Configuration of hyperparameters in our method and benchmark approaches

Approach Our method Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4

Environment Test Case 1: BOPTEST-“Best Hydronic Heat Pump”
Time resolution 15 min 15 min 15 min Not specified 15 min
Control algorithm SAC PI logic DDPG DDQN MPC
Training period 100 days N/A 1 year Not specified 1 year
Test period “Peak heat days”—14 days
Learning rate 0.001 N/A 0.003 0.0001 N/A
Discount factor 0.99 N/A 0.95 0.99 N/A
Model architecture 400 × 300 N/A 400 × 300 200 × 200 × 200 × 200 N/A
Batch size 96 N/A 1024 512 N/A
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Figure 4. Simulation results for Test Case 1: Heating scenario during cold days.
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TheDDPG algorithm serves as the control agent. Through rigorous testing and comparisons with other
RL algorithms, such as SAC and Double Deep Q-Network (DDQN), Wang et al. (Wang et al., 2023)
demonstrated that the DDPG-based strategy, when paired with a customized reward function, outper-
forms other approaches. Consequently, we have selected the best performer from Wang et al.’s work,
namely the DDPG-based controller, as Benchmark 2. This allows for a thorough evaluation of our
proposed method, ensuring that our comparisons reflect the most effective version of their approach.

Benchmark 3 is another RL-based strategy developed by Gao et al. (Gao & Wang, 2023). Operating
within the same test environment and employing a unified reward mechanism, this strategy provides a
detailed comparative analysis of model-based versus model-free RL algorithms by cycling through
various RL agents.

Similar to Benchmark 2, Benchmark 3 utilizes a reward function intricately designed around BOPT-
ESTKPIs. Its current cost Jt is the same as Benchmark 2, function 5.2. However, its final reward for step t
is calculated as:

rt = 0:05× Jt�1� Jtð Þ, (5.3)

According to their critical evaluation, Gao et al. demonstrate that model-based RL agents, particularly
the model-based DDQN, excel when integrated with the proposed reward function. This approach
achieves the lowest thermal discomfort KPI while still maintaining competitive energy usage. Conse-
quently, we select this specific model-based approach as Benchmark 3 for our study.

Benchmark 4 is an MPC-based control strategy developed by Wang et al. (Wang et al., 2023),
specifically tailored for the “BESTEST Hydronic Heat Pump” test case utilized in this study. This model
leverages a data-driven gray-box approach, utilizing a thermal resistance-capacitance (RC) network to
simulate building thermal dynamics effectively. The RC model chosen for this work is a first-order
system, preferred for its ability to transform the control problem into a linear programming problem,
where global optima are easily attainable. The following formula details the model; it includes a lumped
parameter and RC representations focusing on a single system state Tz, representing the zone operative
temperature. This state parameter evolves according to the differential equation (Wang et al., 2023):

C
dT z

dt
=
Tout�Tz

R
þqHVACþqinterþA × Isolar

where:

• C and R denote the thermal capacitance and resistance of the zone and envelops, respectively.
• Tout indicates the outdoor temperature, as mentioned in Section 4.
• Isolar represents the solar irradiation.
• qHVAC indicates the heat influx from the HVAC system.
• qinter indicates the internal heat load from occupants, lighting, and equipment.
• A refers to the effective area of the windows.

This model-based control approach allows for an in-depth comparison with other advanced methodolo-
gies within both model-based and model-free paradigms, highlighting the sophisticated handling of
dynamic thermal responses in building environments.

The hyperparameters utilized in the (Blum et al., 2021; Gao &Wang, 2023;Wang et al., 2023) are also
outlined in Table 3.

Figure 5 displays the cumulative KPIs for thermal discomfort and energy consumption for each control
strategy evaluated. Our method shows a significant improvement in managing discomfort levels,
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achieving the lowest thermal discomfort KPIs among all tested methods. Similarly, our approach also
reports the lowest energy usageKPI, indicating that it not only excels in thermal comfort but also in energy
efficiency.

Despite Benchmark 1 being optimized specifically for the test scenario, it still records the highest KPIs
in terms of both thermal comfort and energy efficiency.

Among the RL-based methodologies, which include our approach (model-free RL), Benchmark
2 (model-free RL), and Benchmark 3 (model-based RL), our strategy stands out by providing superior
thermal comfort. Although all three RL-based strategies exhibit similar levels of energy consumption,
our method shows the most efficient energy use. This suggests that while our method achieves the best
thermal comfort control, it also reaches comparable energy usage levels to the other RL-based
strategies.

Benchmark 4, employing an MPC-based control strategy, demonstrates performance closely aligned
with our method in terms of both energy use and thermal discomfort KPIs. Considering the performances
of both Benchmark 3 and 4, it becomes evident that model-based strategies, such as Benchmark 3 (model-
based RL) and Benchmark 4 (MPC-based), potentially offer better energy management performance than
model-free approaches, though they are limited by the significant time required for model development
and refinement.

Our proposed model-free strategy not only matches the thermal comfort provided by leading model-
based benchmarks but also competes strongly in energy efficiency, offering a compelling alternative that

Figure 5. Benchmark cumulative KPIs across the 2 weeks heating scenario in test case 1.
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bypasses the extensivemodeling requirements of typicalMPC systems. This approachmakes it a practical
solution for HVAC applications.

5.2. Results of Test Case 2: Cooling-dominated scenario

Figure 6 presents the simulation outputs for Test Case 2, highlighting our method’s capability to adapt to
environmental changes during hot seasons. This test case features more dramatic fluctuations in outdoor
temperatures, ranging from near-freezing conditions around 0 °C to relatively hot conditions exceeding
25 °C. Consistent with the findings from Test Case 1, our method demonstrates a strong ability to
dynamically adjust the zone temperature setpoint for cooling, ensuring that the indoor environment
remains within the dynamic comfort zone despite these extreme variations.

The results for the thermal discomfort KPI and energy use KPI further confirm the efficiency of our
method. It achieves commendable control over thermal discomfort while maintaining a similar level of
energy consumption as observed in Test Case 1. Additional insights into the robustness and efficiency of
the proposed method across these two distinct scenarios will be discussed in Section 5.3.

The cumulative reward plot mirrors the results observed in Test Case 1, characterized by a smooth
upward trend in rewards that eventually stabilizes. This pattern suggests that our control strategy is
successfully optimizing over time, adapting to varying environmental conditions.

5.3. Test Case Scenario Analysis: Adaptability and Robustness

While Sections 5.1 and 5.2 demonstrate the effectiveness of the proposed method in separate heating and
cooling scenarios, this section extends the analysis by taking a holistic perspective to compare how our
strategy adapts and maintains robust control across different environmental conditions, building typolo-
gies, and HVAC system variations. We first discuss the distinct characteristics of each test case.

5.3.1. Fluctuating environmental conditions
Figure 7 provides a comparative analysis of the outdoor temperatures observed in the two test cases. The
box plot in Figure 7a illustrates the mean outdoor temperatures and their variability, revealing that while
Test Case 1 presents challenging cold climatic conditions, Test Case 2 exhibits significantly greater
variability. To quantify the challenges posed by these variations, we provide the first-order differences of
the outdoor temperatures for both test cases and analyze their distributions. This statistical measure
captures changes between consecutive data points, reflecting both the magnitude and direction of
temperature shifts within each 15-min interval in this study. This analysis is crucial for understanding
the dynamics of the outdoor environment, as it quantifies the rapidity and extent of temperature shifts from
one time step to the next.

Figure 7b clearly demonstrates that while both cases exhibit significant step-by-step fluctuations, the
first-order differences of outdoor temperatures in Test Case 2 show a broader distribution, indicatingmore
rapid and frequent temperature changes comparedwith Test Case 1. These findings alignwith the climatic
characteristics detailed in Table 2, where Test Case 2, classified as BSk (Cold Semi-Arid Steppe), is
identified as more dynamic than the Cfc (Temperate Oceanic) climate of Test Case 1 (Semi-arid climate,
2024; Semi-arid climate, 2024). The heightened dynamism in BSk climates, characterized by extreme
temperature fluctuations and variable precipitation patterns, imposes significant demands on any control
method, requiring it to dynamically adjust its actions to consistently meet thermal control objectives.

These test cases encompass a range of environmental conditions—from cold to hot, and from relatively
stable to highly dynamic climates—proving the ability of the RL controller to perform under variable
climatic conditions.

5.3.2. Varying building typologies and HVAC system complexities
Beyond climatic influences, differences in building typology and HVAC system complexity among the
test environments further challenge the adaptability and robustness of our approach. The building
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envelope materials for both test cases are based on the BESTEST Case 900 building (Blum et al., 2021;
BOPTEST test case-Bestest hydronic heat pump, 2024; BOPTEST test case-Bestest air, 2024; Judkoff &
Neymark, 1995). However, as detailed in Table 2, Test Case 1 is designed to evaluate control methods in a

Figure 6. Simulation results for Test Case 2: Cooling dominated scenario.
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residential setting under cold environments. For this, the building’s envelope and internal wall mass are
scaled to four times the area of the original design, resulting in a larger single-zone residential setting with
substantial thermal mass. Conversely, Test Case 2 adheres to the original BESTEST design dimensions
and simulates a smaller office environment with both heating and cooling. As an office setting, it features
large south-facing windows and a higher window-to-wall ratio, which significantly increases solar gains.
These design elements expose the interior more directly to external temperature variations, necessitating
more frequent and precise adjustments by the HVAC system to maintain comfort.

These varying building settings—ranging from large to small, residential to office, and from heating-
only to both heating and cooling—highlight the adaptability challenges inherent in applying control
strategies across different environments.

5.3.3. Integrated performance assessment
Figures 4 and 6 present the real-time cumulative KPIs for the two distinct test cases under uniform
experimental settings, see Tables 2 and 3. In Test Case 1, which simulates a cold climatic environment
under a residential setting, our method effectively maintains thermal comfort and energy efficiency, as
evidenced by an almost zero thermal discomfort KPI and stable energy usage. In contrast, Test Case
2 introduces hot and dynamic environmental conditions along with a different building typology and
HVAC setting. Despite these increased challenges, our method continues to perform well, with only a

Figure 7. Temperature Profiles and Variability: Comparative Analysis of two test cases.
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slight increase in the thermal discomfort KPI to 0.60K�h per zone over the 2-week evaluation period. This
minor deviation underscores the method’s adaptability and robustness to challenging conditions without
compromising overall performance. The consistency in energy usage KPIs across both test cases is
particularly noteworthy, highlighting the robustness of our strategy in maintaining energy efficiency
across different building typologies and climatic conditions.

5.4. Parameter study

The core of this study lies in the design of an effective reward mechanism specifically tailored to the
operational characteristics of HVAC systems. The mechanism consists of two components: a thermal
reward and an energy reward, linked by a dynamic, time-varying outdoor temperature-dependent thermal
weight α tð Þ. This weight adapts to changing climatic conditions, ensuring a balanced consideration of
both thermal comfort and energy efficiency. To demonstrate the effectiveness of the proposed reward
mechanism, this section first compares the efficiency of the dynamic thermal weight mechanism with
static weighting, followed by a sensitivity analysis of the parameter δ.

5.4.1. Comparative analysis of dynamic versus static thermal weight
To demonstrate the effectiveness of the proposed α tð Þ, we conducted simulations comparing it with a
constant thermal weight α, set at 0.5, under various scenarios. These simulations help assess the impact of
dynamic versus static weighting on HVAC performance, particularly in terms of thermal comfort and
energy efficiency.

Figure 8 illustrates the results of these simulations. The outcomes indicate that our method, with its
well-designed reward mechanism, provides satisfactory results for both dynamic α tð Þ and fixed α.
However, the KPIs provide deeper insights:

• Thermal comfort: Across various climatic and architectural conditions, our adaptive method
consistently delivers high levels of thermal comfort. In contrast, the fixed weight α performs well

Figure 8. Comparison of dynamic thermal weight α tð Þ versus fixed thermal weight α = 0:5.
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in Test Case 2 but significantly underperforms in Test Case 1. This discrepancy highlights the
importance of the adaptive, outdoor temperature-dependent α tð Þ, which dynamically optimises
HVAC operations to maintain comfort efficiently.

• Energy efficiency: The dynamic α tð Þ also excels in energy conservation, outperforming the fixed α
across scenarios. By leveraging real-time outdoor temperature data, the strategy activates heating or
cooling only when deemed necessary by the agent. This approach not only ensures optimal thermal
comfort but also enhances energy efficiency.

These findings underscore the dual advantages of the proposed α tð Þ in both heating and cooling
seasons. It enables adaptive management of HVAC systems, adjusting to fluctuating external conditions
to optimise both comfort and energy use. This robustness and efficiency affirm the potential of α tð Þ as a
critical component in future HVAC control strategies.

5.4.2. δ Sensitivity analysis
Figure 9 illustrates how δ influences the controller’s balance between thermal comfort and energy
efficiency, based on deviations between outdoor temperature tout tð Þ and reference temperature tref tð Þ,
as defined in Formula 4.9. As noted in Section 4.3.1, tref tð Þ varies between occupied and unoccupied
hours. However, to avoid redundancy and enhance clarity, the x-axis in Figure 9 represents the absolute
deviation between tout tð Þ and tref tð Þ. Because of this, both occupied and unoccupied hours are represented
by the same line. To evaluate the sensitivity of δ, we conduct simulations with three distinct values:

Figure 9. δ sensitivity analysis.

Data-Centric Engineering e3-23

https://doi.org/10.1017/dce.2024.57 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.57


• δ= 0 ° C: Serves as a baseline with no threshold, causing the balance to shift even with minimal
deviations between tout tð Þ and tref tð Þ.

• δ= 17:5 ° C: The empirically determined value, where the balance adjusts when the deviation is
around 17.5, providing a moderate and balanced response.

• δ= 35 ° C: Tests the method under more extreme conditions, with adjustments occurring when the
deviation reaches around 35.

The simulation results, as illustrated in Figure 9, demonstrate the effectiveness of the proposed reward
mechanism across different test cases. In our reward function for HVAC system control, energy
consumption is optimized only when thermal comfort is maintained. This design inherently ensures
the dual objectives are met simultaneously, making sure that energy savings are not prioritized at the
expense of thermal comfort. However, in the dynamic HVAC control process, the degree to which each
objective is prioritized depends on the value of δ, which plays a critical role in fine-tuning this balance. In
extreme cases, where δ is set to favor one objective heavily, the system may still deliver adequate results,
but there could be compromises in either energy efficiency or thermal comfort. The detailed KPIs reveal
important nuances in the performance of varying δ values.

• Test Case 1—Heating scenario: In winter, δ= 0 ° C causes α tð Þ to remain close to 1 for most of the
test period, emphasizing thermal comfort.While this results in a thermal discomfort KPI comparable
to that of the empirically set δ= 17:5 ° C, it neglects energy efficiency, leading to a higher energy
usage KPI. Conversely, setting δ= 35 ° C prioritizes energy efficiency, as reflected by the lower
energy usage KPI. However, this setting under severe cold causes the controller to consistently
maintain the indoor temperature near the lower boundary of the thermal comfort zone. While this
approach is effective in conserving energy, it increases the risk of the indoor temperature falling
outside the comfort zone. As a result, this trade-off leads to a higher thermal discomfort KPI,
indicating a compromise in maintaining thermal comfort. The empirical setting of δ= 17:5 ° C offers
the best balance, providing satisfactory thermal comfort and reasonable energy efficiency.

• Test Case 2—Cooling-dominated scenario: A similar pattern is observed in Test Case 2. The
setting δ= 35 ° C prioritizes thermal comfort, with α tð Þ close to 1, resulting in a low thermal
discomfort KPI. However, this comes with increased energy usage, indicated by a slightly higher
energy usage KPI. On the other hand, with δ= 0 ° C, α tð Þ stays close to 0, focusing on energy
efficiency once thermal comfort is achieved. Although this reduces energy consumption, it results in
the highest thermal discomfort KPI, suggesting a slight compromise in comfort to achieve greater
energy savings. Once again, δ= 17:5 ° C achieves the optimal balance, effectively managing both
thermal comfort and energy efficiency.

In summary, among the three settings, δ= 17:5 provides the optimal balance, enabling the controller to
respond appropriately to environmental changes while avoiding overreactions to minor deviations and
underreactions to significant ones. This balance ensures consistent performance across diverse oper-
ational conditions.

6. Conclusion

This study introduces and evaluates an advanced, environment-adaptive RL-based control strategy for
HVAC systems, demonstrating its universality across different operating conditions. Employing a SAC
agent, it features a reward mechanism tailored to HVAC system characteristics. This mechanism
dynamically balances thermal comfort and energy efficiency by incorporating outdoor temperature-
dependent weighting factors, thereby optimizing performance and reducing the need for further refine-
ments.

We evaluated our approach across different scenarios using the open-source simulation platform
BOPTEST, to assess its effectiveness under a variety of architectural and climatic conditions. The
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evaluations cover a spectrum of environments, ranging from residential settings during cold weather to
office settings in warmer climates. This diversity allows for a comprehensive assessment of the proposed
strategy’s efficiency. Simulation results demonstrate that our method consistently delivers satisfactory
outcomes across these scenarios, underscoring the strategy’s broad applicability and robustness.

Furthermore, we compare our method with several advanced control strategies in the heating scenario
in BOPTEST. These include a customized rule-based controller, two sophisticated RL-based strategies
usingBOPTEST’s KPIs as reward references, and aMPC approach specifically developed for BOPTEST.
The results reveal that our method surpasses traditional rule-based and other RL-based strategies in
maintaining thermal comfort and optimizing energy consumption. Importantly, it achieves outcomes
comparable to the MPC-based controller but with reduced complexity and no reliance on precise
modeling, demonstrating its flexibility for real-world applications.

It should be noted that while BOPTEST provides a robust framework for simulating HVAC control
strategies, it is relatively new and lacks comprehensive benchmarking across all its test scenarios.
Previous studies have predominantly focused on the residential heating test case. This focus has resulted
in a scarcity of extensive comparative KPIs for newer scenarios like the office setting cooling scenario,
which have not been as thoroughly explored. Despite these limitations, our research serves as a pioneering
effort, establishing foundational benchmarks for future investigations. In our ongoing efforts to advance
the field, we aim to evolve our method into a more adaptable framework that reduces reliance on
predefined parameters, enabling greater flexibility across varied environments. In addition, to address
the limitations of the physics-based BOPTEST platform in assessing stability against sensor noise and
model uncertainties, and to further demonstrate our method’s robustness and efficiency across various
building types, future work will focus on adapting the strategy to a broader range of simulation platforms,
including those leveraging real-world data and machine learning-based simulators. Furthermore, to
enhance the implementation of RL in real-world settings, particularly where extensive random inter-
actions are typically required, we plan to explore transfer learning techniques to adapt learned policies to
real-world conditions, ensuring safer and more effective deployment.
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