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ON DIFFERENCE OPERATORS AND THEIR 
FACTORIZATION 

PATRICK J. BROWNE AND R. V. NILLSEN 

1. Introduction. Throughout this paper A will be used to denote a given 
set and g a permutation of it. We shall assume that there is a subset C Q A 
so that 

(1) A = U gl(C) and gl(C) n gHC) = 0, / * j . 

Here Z denotes the set of integers. For x G A it now follows that there is 
an unique a(x) e Z so that 

(2) ga(x)x G C, 

and then also 

a(gx) = a(x) - 1. 

In general we shall be concerned with solving the following equation 
for u 

r 

(3) 2J pl{x)u(glx) = v(x), x G A, 
i = // 

where ph n = i ^ r, and v are given real valued functions on 4̂ and /?,,/?,. 
does not vanish on A. For B Q A, F(B) will denote the set of all real 
valued functions defined on B. We let E:F(A) —> F {A) be given by 

Eu(x) = u(gx), x e A, u e F(yl). 

A function L:F(A) —> F (A) of the form 

r 

(4) Lw = 2 A£'W, M e F(,4), 
i = n 
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is called a linear difference operator of order r — n. We can then rewrite (3) 
as 

Lu --= v. 

The difference operator A:F(A) —> F (A ) is defined as 

A = L - I 

where / is the identity operator, lu = u. 
Henceforth it will be assumed that L is a difference operator and that it 

is given by (4). 
Difference operators and equations have been discussed extensively 

before [1, 5, 6, 7, 8] and results concerning existence and construction of 
solutions of (3) are known in various forms, [5, p. 147] and [7, p. 40]. Our 
approach follows most closely the treatment in [5]. However, because 
we assume L to be given by a summation of the form 2 / = /, rather than 
2 / = o, the results in [5] are not sufficiently general and accordingly we 

have developed an appropriate version of these results in Sections 2 to 5. 
Our main purpose in using this approach is to give more symmetry to the 
theory of difference operators. 

In Section 5, we introduce the one-sided Green's function of L. This 
enables us to write down an explicit solution of (3) once we know certain 
solutions of Lu = 0. 

In Section 6 it is shown that there is a uniquely determined difference 
operator L* so that for each s e Z there is a unique bilinear form Bs in w, v 
satisfying 

vLu ~ Es(uL*v) = A(£v(w, v) ), w, v <= F(A). 

L* is called the adjoint of L and it is of the form 

n 

L* = 2 q,E-
/ = — r 

It is shown that (L*)* = L. Also, if //, //* respectively denote the 
one-sided Green's functions of L, L*, then H(x, y) = — H*(x, y) if y = 
gkx for some k G Z. These results have a more symmetrical form than 
those in [6, p. 49-50] with which they should be compared. 

In Section 7 we introduce the idea of conjugate solutions of Lu = 0 and 
L*u = 0 and we show how to construct such. The relevance of these ideas 
to the factorization of L as RQ or R*VQ is discussed in Section 8. 

The results obtained in this paper have been motivated by recent work 
on differential equations, [2, 4, 9, 10], particularly the work of Zettl. 
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It should be noted that in some applications it may be necessary to solve 
a difference equation of the form (3) where ph n ^ i 1=k r, and v are defined 
only on a subset B Q A. Such an equation may be reduced to an 
equivalent one on A by letting/?, = 1 on A — B for n ^ / ^ r, or even by 
putting pn = pr = 1 on A — B and letting ph n ^ / = r, be arbitrary on A 
— B. All that is necessary is to extend the definitions of ph n ^ i = r, to 
the whole of A so that pirpr does not vanish on A. Hence, if only 
applications of the above type are considered, there is no loss in restricting 
our attention to the equation (3). 

2. Existence of solutions of Lu = v. In this section we are concerned 
with the existence and uniqueness of solutions to Lu = von^l . 

THEOREM 2.1. Let v e F(A ) be given and let L be given by (4). Then the 
equation (3) has a solution u e F(A). Ifr = n this solution is unique, while 
in the case r — n = 1, if 

B = '.U g'(C) 

and UQ G F(B) is given, there is a unique solution of Lu = v on A so that u 
= UQ on B. 

Proof The result when r = n is clear from (3). In the case r — n ^ 1, we 
see from (3) that Lu = v on A if, and only if, 

/—i 

v(g" r + ,x) ~ 2 Pi(g~r+lx)u(^}-rx) 
i = n 

u{gx) = + 1 , x <= A , 
Prig X) 

or, equivalently, 

r 

v{g~"-xx)~ 2 Pj(g-"-lx)u(gi-n-]x) 
j = n+\ 

"(g X) = _fJ_] , X €E A . 

Pn(g X) 

Now if x e gr~ X(C), then gl+ ' ~rx ^ B for n ^ i ^ r-\. Also, if x e 
gn(C), then ^~"~ ^ G B for n + 1 ^ j ^ r. Hence if we set w = UQ on 2?, 
the above expressions for u(gx) and w(g_1x) can be used to define u on B 
U g'(C) U gu~\C) so that the equation Lu = v is satisfied on C U 
g" ' (C) . Now we repeat the argument to define w o n ^ U g' "(C) U gr+ ](C) 
U ^ " ' ( C ) U g"~2(C) with Lu = v being satisfied on C U g(C) U 
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g"](C) U g~~(C). The process may be continued until u is defined on all 
of A and Lu = v on A with u = u0 on B. This method produces a unique 
solution u on A of Lu = v with u = UQ on B. 

3. The equation Au = v. This equation is a special case of the equation 
Lu = v, where L = A, n = 0, r = l,/?0 = — 1, /?j = 1. Theorem 2.1 gives 
the existence of a unique solution of Au = v coinciding with a given 
function on C. In this case we can be more explicit. 

THEOREM. 3.1. Let v e F(/l ), w0 e F(C) /><? given. Then the equation 

u(gx) — u(x) = v(x), x <E y4, 

/?os a unique solution u satisfying u = WQ 0 , Î C- /l/so // a(x) is given by (2), 
then 

u{x) = w()(g
a(A)x) - (sign a(x)) 2 vfg**), 

A G / ( V ) 

where 

I(x) - {«(*), a(x) + 1, . . . , - 1}, ifa(x) ^ - 1, 
= {0, 1, . . . ,a(x) - 1}, ifoL(x) ^ 1, 
= 0, / /«(*) = 0. 

H7^ interpret an empty summation to be zero, which is equivalent to u(x) = 
U()(x), X G C. 

Proof. Let Au = v on A, u = w0 on C and consider a(x) ^ 1. Then for k 
= 1, 2, . . . , a(jc), 

We add these equations to obtain 

a ( . v ) - 1 

u{ga{x)x) - u(x) = 2 v(gkx) = 2 v(gV). 
A = 0 A É E / ( . V ) 

When a(x) ^ — 1, we have 

u(g~kx ~ u(g~k~~]x) = v(g~A'_,Jc), A: = 0, 1, - a(x) - 1, 

and adding, we see that 

U(X) - u(g*Mx) = 2 v(gV) = 2 V(^A). 
A=a(.v) Ae/( .v) 
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Note that ga{x)x G C; the result now follows immediately. 

4. Solutions of Lu = 0. We need some preliminary definitions. A 
function/ G F (A ) is said to be g-invariant if/(g(x) ) = f(x) for all x G A. 
It is clear from (1) that a function/ G F(gc,C), for some q G Z, can be 
extended uniquely to 4̂ so as to produce a g-invariant function on all of 
A. 

A collection of functions / G F(A ), 1 ^ / ^ /?, is said to be 
g-independent if whenever /zj, . . . , hp are g-invariant in / ( ^ ) and 

p 

2J hj] = 0 on >4, 
/ = ! 

then h,= 0 on A, 1 = / = /?. 
Now let L be given by (4) where r — n ^ 1, let 

B = '.U ^'(C), 

and define functions w0/, n — / = r— 1, on B as follows: 

U0l(x) = 1, if* G ^"(C), 
= 0, if* G g'(C),y # i. 

By Theorem 2.1 we may find solutions uh n ^ i ^ r — 1, satisfying 

(5) Lwz = 0 on A, ul = WQ/ on B. 

THEOREM 4.1. The functions un n = i = r—\, are g-independent in F (A ) 
and Lui = 0 on A for each /'. 

Proof We need only establish g-independence. Let hh n = i ^ r — 1, be 
g-invariant and let 

/—i 

^ /Z/W, = 0 o n v4. 
/ = /? 

Because ul = UQJ on B we deduce that /zy(x) = 0 if x G gJ(C),n ^ /' ^ r — 
1. The g-invariance of hj yields hj = 0 on A, n = j = r— 1, as required. 

Now suppose that vv;, n <j = r — 1, are r — n functions in F (A). The 
following determinant, known as the Casorati of w,„ . . . , w,— i will occur 
frequently in the sequel. It is given by 

C(w„, . . . , HV_,)(X) = det (^(g'*) ),?^ / ? /^,-i, x G .4. 
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This quantity seems to have been introduced by Casorati, [3, p. 19]. Its 
rôle in the theory of difference equations is analogous to that of the 
Wronskian in the theory of differential equations. 

THEOREM 4.2. Let LWJ = 0 on A, n ^ j ^ r — 1. Then 

Pr(x) 
X G A. 

C(wm . . . , w,.-i)(g.x) 

Proof. Since Lwf- = 0 on A, we see that the entry Wj(glx) in the last row 
of C(wn, . . . , H',._ i)(gx) may be replaced by 

/• l 

2 pk(x)wJ(g
kx)/pr(x\ n ^j ^ r - 1. 

The result now follows easily. 

COROLLARY 4.3. Let uh n = i = r — \, be the r — n solutions oj Lu = 0 
given in (5). 77zefl C(w„, . . . , w,— i) ûftf&y no/1 vanish on A. 

Proof. If je G C we observe that C(um . . . , ur-\)(x) = 1. The result is 
now immediate from (1) and Theorem 4.2. 

THEOREM 4.4. Let LWJ = 0 on A for n = i = r — 1. Then the following 
are equivalent. 

(i) C(w,p . . . , wr-\) does not vanish on A, 
(ii) u>/p . . . , wr-\ are g-independent on A, 

(m) There is p €E Z SO //za/ w,7, . . . , w,.-1 tf^e g-independent over 
gp(C), 

(iv) 7/ Lw = 0 on A, there are g-invariant functions fh n = i ~ r — 1, .sx> 

/- l 

Proof Let (i) hold and suppose hn n = i = r— 1, are g-invariant so 
that 

/ — l 

2J hjWj = 0 o n A. 

Then for i G ^ and n ^ / ^ r — 1, 

/ • - l 

2 M^uvte-'x) = o. 
/ = /; 
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Since det {wt{gJx) ) ^ 0, we deduce that h,(x) = 0 and (ii) holds. 
That (ii) implies (iii) is obvious. Now let (iii) hold. Assume that 

/•- l 

2 hjWi = 0 on A 

w here each hx is g-invariant. By (iii), hl = 0 on $f(C) and thus by 
g-invariance, hl = 0 on A. Hence (iii) implies (ii). 

Now let (ii) hold and suppose that C(wn, . . . ,wr-\)(x) = 0. By Theorem 
4.2. we may assume that x e C. Choose hj(x), n ta i ^ r — 1, not all zero, 
so that 

/—i 

2 hJ(x)wJ(g
lx) = 0, A2 ^ / ^ r - 1. 

./ = n ' 

If x G Cand C(w,?, . . . , w,_,)(;c) ^ 0, set/z,(.x) = 0, « ^ z"^ r - l .Now 
each /zy can be extended from C to the whole of A to give a g-invariant 
function, also denoted by hr on A. Then 

/— l r - l 
2 / W = 0 on B = U ^'(C) 

and is a solution of Lu = 0 on A. By Theorem 2.1, 

/ — l 

2 ^W = 0 on A, 
/ = /? 

which contradicts (ii). Hence (ii) implies (i). 

Now let (i) hold and let Lu = 0 on A. Let/- e F(>1 ), n ^ /: ^ r - 1, be 
g-invariant and such that 

u(gLx) = 2 fi{x)Wi(g-ix), x e Cn^j^r - \. 

Then 

Lu = 0, z i 2 / > , ) = 0 and 

' „ ' r - l 
u = 2 ./>, on 5 = U g'(C). 
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By Theorem 2.1, 

/ • - i 

Hence (iv) holds. 
Finally, let (iv) hold. Then we may write the functions u{ in (5) in the 

form 

/ — l 

Ui = 2 fik^k, n = <•' = >* ~ U 

where the/J^ are g-invariant in F(y4). We then have 

/ • - i 

«/(g7*) = 2 fik(x)Wk(gJx), n = Uj = A" ~ I-

From Corollary 4.3 we deduce that C(w„, . . . , w,.-i) does not vanish on A 
and thus (i) holds. 

Bearing this result in mind, we call a set of solutions w,„ . . . , w,._ i of Lw 
= 0 having the properties (i) to (iv) & fundamental set of solutions. 

5. The equation Lu = v and the Green's function. We now show how the 
equation Lu = v may be solved for u given a fundamental set of solutions 
of Lu = 0. We shall let L be given by (4) with r ~ n = 1. The method 
parallels variation of parameters used in the study of differential 
equations and leads to the concept of the Green's function of the 
difference operator L. The approach is similar to that in [5, pp. 
133-149]. 

Throughout this section, w,, n ~ i = r — 1, will be a fundamental set of 
solutions of Lu = 0. Hence C(wn, . . . , wr-\) never vanishes. In trying to 
solve Lu = v we seek solutions of the form 

/ — l 

(6) u = 2 VjWj 

where v„, . . . , v,._ \ <E F(̂ 4 ) are to be determined. 

LEMMA 5.1. Let q G Z be given, where n = q = r — 1. Let v/7 /7 = j = r 
— 1, be functions in F (A ) so that 

r 1 

(7) 2 A(^v /)£Aw / - 0, « + 1 ^ fc ^ r - 1, 
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and 

r-\ 

(8) 2 H{E«Vj)ErWj = v/pr. 
j = n 

If r — n = 1, only equation (8) zs considered. Then if u is given by (6), Lu = 
v on A. 

Proof Consider the statement 

/ — l 

(9) Eku = 2 EivjEkwj. 
j = » 

Since u is given by (6), this is true for k = q. Suppose now that (9) holds 
for some k, where q = k ^ r — 2. Then we have 

r-\ » 

Ek + lu = E(Eku) = 2 Eq+lVjEk + ]wr by (9), 

r - l 

2 KE^j)Ek+xwj + 2 &VjEk+xWj 

r-\ 

= 2 E«VjEk + xWj9 by (7), 
_/=w 

a s w + l = i A : + l ^ r — 1. Hence (9) holds with /: + 1 in place of A:. 
Also, if (9) holds for some k where n +1 = k = q, then 

/ — l 

Ek~xu = E~\Eku) = 2 Ec^]VjEk~]wp by (9), 

r-\ n-\ x 

= 2 E\Ek~\ - E'x ( 2 A^v,-)^-) 
./=» 

= 2 E(fvjE
k~xWj, by (7). 

Hence (9) holds with k — 1 in place of /c. We now deduce by induction 
that (9) holds for n ^ k â r - 1. 

To prove that Lw = v, observe that 
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Lu = 2 pkE
ku, by (4), 

= prE
ru + 2 PkEku 

k=n 

r-\ /—1 

= / ^ H + 2 2 pk&vjEkwj, by (9) 
/ = /? A' = /? 

/ — 1 

= prE'u — 2J prE
qVjErWj, as Lwy = 0, 

j = » 

= pr ( 2 A(£%-)£rH>y V by (9) with fc = r - 1, 

= v, by (8). 

As a result of Lemma 5.1, we see that to solve Lu = v in the case where 
L has order at least 2, it is sufficient to solve the equations (7), (8) for the 
vr n = j = r ~ 1, and put these vy in (6). To this end we define, if r — n = 
2, Cj(wn, . . . , wr-\)(x) for x <E v4 and n = j ~ r — 1, to be the 
determinant obtained from the Casorati C(wm . . . , wr-\)(x) by deleting 
row r — n (the last row) and column y — n + 1 (the column containing 
Hy). If r — n = 1 then y = n and we take Cn(wn) to be identically 1. 

We now let 

(10) wf = (~\)r~J+] ECj(w„, . . . ,wr-..]) 

ptEC{wm . . . , HV^I) ' 
/7 = / 1, 

/ — 1 

(11) //(x, v) = 2 wyOOw/fjO, *>>> e /(. 
/ = n 

Using the definition of w*, we see that in the case r — n = 2, 

( - 1 ) ' r- n+\ 

/ / ( A . V) Wn(g~xy) wr-\(tf~
]y) 

A% y 
n+\t w„(^+ly) wr-\(g"*y) 

Wni/y) wr-\(tfy) 
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In the case r — n = 1, we have 

H(x,y) = wfl(x)/pn+](y)wtl(f
+'y), x, y e A. 

The function 7/ is known as the (one sided) Green's function of L, a 
terminology which will be justified in the sequel. In general, the value of 
7/(x, y) will depend on the choice of the fundamental set of solutions of 
Lu = 0 used to define H in (11). However, the significant aspect of this is 
that if y = gkx for some k e Z, then the value of //(x, y) is independent of 
the choice of the fundamental set wp n ^ j ^ r — 1. This is proved later. 
We shall continue to refer to the Green's function H of L and discuss first 
some useful properties which follow easily from the above expressions for 
H(x,y). 

THEOREM 5.2. Let H be the Green's function of the difference operator L, 
where L is given by (4). Then 

(i) L(x -» //(x, y)) = 0,for each y <= A\ 
(ii) If r — n = 2, x £ A and n + 1 = k = r — 1, then 

#(g*x, x) = i/(x, g~kx) = 0; 

(Hi) //(g"x, x) = -\/pn(x\x e A; 
(iv)//(g'x, x) = l//7,.(x), x e A. 

LEMMA 5.3. Let n = q = r — 1 and let a, 1 be as in Theorem 3.1, H as in 
Theorem 5.2. Then for 

/ — l 

x G U g~q+,{C) 
j = n 

and k e 7(X), 77(X, g~'/ + Ax) = 0. 

Proof Let x G g - ' / + / (C) , for some n ^ j ^ r — 1. Then a(x) = q — j . 
We may take 7(x) ^ 0, that is y ¥= q. 

If g — j = L then a(x) = {0, 1, . . . , q—j— 1}, so if A" G / ( X ) and 5 = q 
— k, we have n+X^kstkr— 1. If g—y ^ — 1, then 7(x) = 
{q—j, . . . , — 1} and if k G 7(X), S = q — /c, we have again /7 + 1 = s = r 
— 1. Hence, in either case, if k e 7(X), 

77(x, g~*+Ax) = H(gsg~^kx, g~~q + kx) = 0, 

by Theorem 5.2 (ii), since n+\ = s = r — 1. 

THEOREM 5.4. Let L be given by (4), let 77 be the Green's Junction oj L, let 
a, I be as described in Theorem 3.1 and let q <E Z, n = q = r — 1. Let v <E 
F (A ) be given. Then ij 
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u(x) = - (s igna( jc)) 2 v(g qJrkx)H(x, g q + k x), x e A, 
A G / ( A ) 

then Lu = v on A and u = 0 on Uy = „ g_<7+7(C), /̂ztf/ /S, £Aw = 0 on C 
for n — q ^ k ^ r — q— 1. 

Proof. The r — n equations in (7), (8) may be solved for A(£^vy) using 
Cramer's rule. We find that 

k(EqVj) = vw*, n = j' = r — 1, or 

Avy- = E~qvE~qwf, n ^ j ^ r - 1. 

Using Theorem 3.1 we may solve this for v;- subject to the condition that v; 

= 0 on C to obtain 

vj(x) = - ( s i g n a ( x ) ) 2 v(g~q + kx)wf(g~~q + kx), x ^ A. 
k<El(x) 

Now we have 

/ — l 

u(x) = 2 Vj(x)Wj(x) 

= - ( s i g n a ( x ) ) 2 v(g"*+*x) 2 wy(x)w*(g-^ + Ax), 

= -(sign a(x) ) 2 v(g-q+kx)H(x, g~~q + kx). 

A — 1 

Also, Lemma 5.3 shows that w = 0 on U g q+J(C). 
j = n 

6. Adjoints and the Lagrange bracket. In this section we shall introduce 
the concept of the adjoint of a difference operator. By a bilinear form B we 
shall mean a bilinear function B:F(A) X F (A) —* F {A) which is of the 
form 

(12) B(u, v) = 2 fjEuEv, w, v e F (^ ) , 
-P = 'J=P 

where /? e Z and / y e F(/l ). We also adopt the following notation for 
summations: 
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p P 

2 = 2 , if/? = 0 

= 0, if/7 = - 1 , 

= - 2 , i f / > ^ - 2 . 

LEMMA 6.1. Le/ s, G F(^4), n ^ i ^ r, and define 

r 

Mu - 2 s pu, ii G F(^). 

(i) If there are functions ur n = j = r, so that MUJ = 0/or each j and 
C(un, . . . , w,.) c/o^ «6>/ vanish on A, then st = 0, H = / = r. 

(ii) If Mu = 0 on A for ail u e F(yl ), //ze« ^ = 0, w = / = r. 

Proo/ (i) Suppose ^ ¥= 0 for some /'. We may assume that $„(*) =£ 0 for 
some x & A and define 

5 = { i k ( i ) * 0}. 

Let ri be the largest integer, n ^ r\ = i\ so that sri(x) i= 0 for some I E 5 . 
Let 

£o = { * M A K , ( A ) * 0}. 

Z?o is non void and B{) Q B. Now let t} = Sj on B0 and r; = 1 on A — B{h n 
^ j ^ r,. If rx + 1 ^ j ^ n, let /,- = 0. For u e F (A) let 

Nw = 2 tjE'u. 
i = n 

Then Nuf = Mw; = 0 on B(), n ^ j = r, or 

2 '/(JOM/G^'-V) = 0, n ^ j ^ r, x G B„. 

Since C(w„, . . . , wr) does not vanish on ^4, we deduce that tj(x) = 0 for x 
G £(), n ^ i ^ r\ which contradicts the assumption that 

tn(x)tr](x) = sn(x)sr](x) * 0, AG £(). 
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Hence Sj = 0 for all /' and so (i) is proved. 
To prove (ii), observe from Corollary 4.3 that there are wy-, n = j = r, so 

that C(w„, . . . , ur) does not vanish on A. The result follows from (i). 

THEOREM 6.2. Let L be given by (4). Then there is a unique difference 
operator L* which has the property that for each s e Z, there is a unique 
bilinear form Bs such that 

vLu - Es(uL*v) = A(£v(t/, V ) ) , M, V G F(V4). 

— « 
(13) L* = 2 Ekp-kE

k, and 
k=-r 

r k-s-1 

(14) £v(w, v) = 2 2 # + J uE~k+s{pkyy 
k=n y=0 

Proof. To prove uniqueness of L* and i? ,̂ given existence, we show 
that 

Es(uL*v) = - k(Bs(u, v) ), for w, v G F(,4), 

implies L* = 0 and J55 = 0. Hence, with this assumption and with Bs 

given by (12), we may write 

p P 

Bs(u, v) = 2 bjE'u, where bl = 2 fjE!v. 
i=-p j=~P 

We now have 

p 

ABs(u, v) = 2 ÉuiEbi-x-bi) + EP+luEbp - E~?ub^p 
i = —p + 1 

= -Es(uL*v), u, v G i ^ 4 ) . 

If v is fixed and we let 

M« = A(£5(w, v)) + Es(uL*v\ u G F(^ ) , 

we deduce from Lemma 6.1 that b{ = 0, —p ^ i ^ p. Hence Bs = 0 and 
L* = 0. 

To establish existence of Bs and L* we let Bs be given by (14), L* be 
given by (13) and observe 
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EsuE~k+\pkv), 

k ^ s: 

EsuE~k+s{pkv), 

k ^ 5 - 1 . 

Adding these for n ta k ^ r and using (4) we obtain the desired result. 

Note that L* does not depend on s whereas Bs does. Bs is called the 
Lagrange bracket for L of order s. The difference operator L* is called the 
adjoint of L and since (E~rpr)(E~~upr) does not vanish on A, it is of the 
same order as L itself. We now list some easily established properties of 
the adjoint. L, M will denote difference operators of the form (4). 

THEOREM 6.3. 

(i) (L-f Af)* = L* + M*, 
(ii) (aL)* = aL*, « e R, 

(iii) (LAf)* = M*L*, 
(iv) (L*)* = L. 

Proof The results follow either by direct calculation or by using the 
uniqueness result in Theorem 6.2. 

THEOREM 6.4. Let L be given by (4) with r — n = 1. Let H be the Green's 
function of L and H* the Green's function ofL*. Then 

H{glx, g'x) = -H*(gfx9 glx), ij E Z , i G l 

Proof. Let y e A and let u(x) = H(x, y). Let z ^ A and put V(JC) = 
H*(x, gf'z). Then we have 

(15) 5r(M, v) = - 2 2 Et + "uEi-k + r{pkv). 
k=n j=k—r 

Hence, by Theorem 5.2, since E + ru(x) = 7/(g7 + /x, y), 

£,(", v)(j;) = - w ( g ^ , j ) ^ ( y ) v ( ^ ) 

= v(y) = H*(y, gz\ 

Also, 
r-\ 

Br(u,v)(z) = - 2 #M(Z)£° (^ A .V) (Z) 

A ( 2 ^ + 5 w ^ " A + 5 ( ^ v ) ) = Eki 
\ j = Q J 

fk-s-\ \ 

C* 
V 7 = 0 

EJ+suE~k+s(pkv)\ = £ V A V 
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= u(g?z)pr(z)v(z) - I 2 pk(z)u(^z)j v(z) 

= H(grz,y)pr(z)H*(z, gz\ as Lu = 0, 

= —H(grz, y), by Theorem 5.2. 

Now Lu = L*v = 0 on A so we deduce that A(#,0, v) ) = 0 on A. Hence 
if j^ = gkz for some k e Z, 

5r(M, v)(j) = £r(w, v)(z) 

so that 

H*{y^z) = -H(gz,y), 

from which the result follows. 

COROLLARY 6.5. 7/"jy = gkxfor some k e Z, r/z<?« //ze v /̂we of H(x, y) is 
independent of the fundamental set of solutions of Lu = 0 wsed to define 
H. 

Proof. If H* is the Green's function of L* calculated from a particular 
fundamental set of solutions of L*w = 0, Theorem 6.4 shows that H(x,y) 
= — //*(>% x) regardless of the fundamental set of solutions used to 
define H. 

THEOREM 6.6. Let L be given by (4) where r — n = 1 and let wp n = j = 
r — 1, be a fundamental set of solutions of Lu = 0. Then the functions wf, n 
= j = r — 1, given by (\0),form a fundamental set of solutions of L*u = 
0. 

Proof Let //, H* be the Green's functions of L, L* respectively. If / <= 
Z, x <E /I, we have 

— n 

0 = (L*(//*(-, g'x) ) )(x) = 2 Ek
P-k(x)H*(^x, g'x) 

k=-r 

— n 

= 2 Ekp-k(x)H(gx,^x), by Theorem 6.4, 
A = - r 

= -(L*(H(gix, -)))(x) 

/•- l 

= - 2 n : / (^ )L*HfU) , by (11). 
/ = // 

https://doi.org/10.4153/CJM-1983-050-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-050-2


DIFFERENCE OPERATORS 889 

Since C(wn, . . . , wr-\) does not vanish on A we deduce that L*w* = 0 on 
A, n = 7^ i r — 1. 

To prove that the wy* are fundamental, let z ^ A and put u = //(•, z). 
Then Lu = 0 and if L*v = 0 we have from Theorem 6.2 that 

A(£,(w, v)) = 0. 

It follows from (15) and Theorem 5.2 that Br(u, v)(z) = v(z). Hence 

v(z) = £,(*,, v)(z) 

/ • - l 

= 2 5,(wy, v)(z)^(z) , b y ( l l ) , 
j = n 

/ — l 

= 2y;(z)Hf(z), 

where 

/; = 5r(Wy, v), n ^j tk r-L 

Since 

A ^ = HB,.(wj, v) ) = vLwy- - ^'(w,- L*v) = 0, 

we see that each/y is g-invariant, so by Theorem 4.4, the wf,n tk j = r — 
1, form a fundamental set of solutions of L*u = 0. 

7. Conjugate solutions of Li/ = 0 and L*u = 0. Let w, v G F(V4 ) be such 
that Lu = L*v = Oon/ I . From Theorem 6.1 we see that if s e Z, then 

A(^(w, v)) = 0 o n ^ . 

Thus 2?y(w, v) is a g-invariant function and it shall be shown that Bs(u, v) is 
independent of s. Accordingly, if Lu = L*v = 0 on A we say that u and v 
are conjugate solutions of Lu = 0 and L*v = 0 if #s(w, v) = 0 for some, 
and hence all, s e Z. 

Throughout this section, w;, n fk j tk r — 1, will denote a fundamental 
set of solutions of Lu = 0 on A, where L is given by (4) and r — n = 1. Let 
w*, A? = 7 = r — 1, be given by (10). By Theorem 6.5 the w* form a 
fundamental set of solutions of L*u = 0. Our main purpose is to show 
that for i ^ j , wt and w* are conjugate solutions of Lu = 0 and L*v = 0. A 
corresponding result for differential equations was proved in [10]. 

LEMMA 7.1 For w, v e F(/4 ) tf^d 5 G Z we /zûrve 
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(i) Bs(u, v) - Bs+](u, v) = Es(uL*v), 
(ii) EBs(u, v) — Bs+\(u, v) = vLu. 

Proof. We have 

A(£s(w, v) - Es(uL*v)) = vLu - Es(uL*v) - Es+\uL*v) 
+ Es(uL*v) 

= vEu - Es+\uL*v) 
= A ( ^ + , ( M , v ) ) . 

Now £s(w, v) — Es(uL*v) is a bilinear form in w, v so we deduce from the 
uniqueness of Bs+l in Theorem 6.1 that 

Bs+l(u, v) = 5 V (M, v) - £5(wL*v), 

so that (i) holds, (ii) may be proved in a like manner. Both (i) and (ii) may 
also be proved by direct calculation. 

C O R O L L A R Y 7.2. If Lu = L*v = 0 on A then Bs(u, v) is a g-invariant 

function on A which is independent of s. 

If r — n i= 2 we define RLj{x), x <EL A, n ^ ij ^ r — 1, to be the minor 
of the entry Wj(gJx) in the Casorati determinant 

det (Wi(gJx))n^Uj^r-X. 

If r — n = 1, we let Rnn(x) = 1 for x e A. 

L E M M A 7.3 Let n ^ i,j ^ r — \. Then 

(i) RU1 = ERU-Ur - /i â 1 

(ii) /*,-,• = ( - l y - " " 1 ^ £*,-,•_, + ( - l y ' - ' 1 ^ERjs-u 
Pn Pn 

n -f 1 ^ 7 ^ r — 1, r — n ^ 2. 

Proof (i) is clear from the definitions. To establish (ii), observe that 
since LwA = Owe may replace the entry wk(g

nx) in Rjj(x) by 

/V(*) , r v PJ(X) ( j . 
pn(x) pn(x) 

for n ^ k ^ r — 1, A: ^ /. If the resulting determinant is then expanded as 
the sum of two determinants, the result follows easily. 

L E M M A 7.4. For n ^ /, j ^ r — 1 we have 

(16) 2 EJ-k(pkwf) = (-ly+JRijIdw,,, . . . , * ,_ , ) . 
A-=./+! 
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Proof. For brevity, C will be used in place of C(wn, . . . , w,— i). From 
(10) we have 

wf = (-\)iJtr~xR^/prEC, n ^ / ^ r - 1. 

When / = r — 1. the left hand side of (16) is 

£ " " W f ) = ( - l ) / + / - , £ - 1 / i I - n / C , 

= ( - l ) / + / '~1 /* / >_1 /C by Lemma 7.3 (i), 

and the result holds if/ = r — 1. Now suppose that (16) holds for some/, 
« + 1 ^ j = r — 1. Then 

2 E-x-k(pkwf) = E-\Pjwf) + £-M 2 EJ-k(Pkwr)) 
k=j U = / + l 7 

= E-\Pjwf) + ( - î y ' + ^ - ^ / ^ c 

z 
T^pn i: 'c 

/+/+/—«-I ^ EL R'J-I 

by Lemma 7.3 (ii) 

+ (-\y " 

+ ( 1} E-'PnE-'C 

y } c 

by Theorem 4.2 and Lemma 7.3 (i). Hence (16) holds for y — 1. and the 
proof of Lemma 7.4 follows by induction. 

THEOREM 7.5. Let wn n îâ / ^ r — 1, be a fundamental set of solutions 
of Lu = 0 on A and wf, n = i = r — 1, be the fundamental set of solutions 
of L*v = 0 given by (10). Then if s e Z 

Bs(wr wf) = 0, if i ¥= j , and 

Bs(whwf) = 1. 

https://doi.org/10.4153/CJM-1983-050-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-050-2


892 P.J. BROWNE AND R.V. NILLSEN 

Proof. We shall prove that the result is true if s = «, we have from 
Theorem 6.2 that 

/- k-n-\ 

Bn(u, v) = 2 2 Ej+"uEj-~k + "(pkv), w, v G F(^) . 

Hence 
r k - 1 

*„(",-, w*) = 2 2 EJWiEi-k(pkw*) 

k: = n + 1 / = >z 

/—I r 

= 2 2 EJWjEi-k(pkw*) 

j = n k=j+\ 

r-\ 

= 2 EJWi(-l)P+JRpJ/C, by Lemma 7.4, 

= 1, if/? = /', 

= 0, if /? ^ /. 
Since Lw/ = L*w* = 0, it follows from Corollary 7.2 that the theorem 
holds for all s e Z. 

8. Factorization of difference operators. Let L be a difference operator 
of the form (4). Let qh n\ ^ /' = rh and sn n2 = i = r2, be functions in 
F(/l ) and let 

(17) 0 = 2 qtE\ 
/ = /?, 

(18) 5 = 2 J/F. 

Now we have 

r2 /'i r,-t-r2 / \ 

(19) SO = 2 2 SiEqjE+J = 2 ( 2 SjEqA Ek. 
i = ni j = n\ k = n\-\-fi2 i+j = k 

We write L = SQ if ly = S(Qy) for all y ^ ^ ( ^ )• In this case we have n = 
n\ + ni, r = /*] + r2, sn sr qn qrx does not vanish on A and the order of L 
is the sum of the orders of Q and S. We say that L can btfaaorized as SQ 
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if L = SQ and S, Q both have order at least one. This is to avoid trivial 
factorizations of the form 

L = E(E~~]L) = (LE~])E. 

It should be noted that if L can be factorized as SQ, where S, Q are given 
in (17), (18), then there is no loss of generality in assuming that n ^ n\ = 
r\ = r. This is because 

L = SQ = (SEk)(E~kQ) f o r i c e Z 

and we may replace Q by E~kQ for a suitably chosen k. 
The sequel corresponds to results obtained in [2, 9] for differential 

operators. 

THEOREM 8.1. The following are equivalent conditions on L. 
(i) L can be factorized. 
(ii) There are solutions yn, . . . ,yr -\, of Ly = 0 where n = n\ < r\ ~ r 

and r\ — n\ < r — n so that C(y„]9 . . . , J V , - I ) does not vanish on A. 
When (ii) holds, L can be factorized as SQ where Q has order r\ — n\. 

Proof. Suppose (i) holds, that L = SQ where S, Q are given by (17), (18) 
and that n = ri\ < r\ = r with r\ — n\ < r — n. Let yn n\ = i = r\ — 1, 
be a fundamental set of solutions of Qy = 0. then C(ynv . . . , ^ - 1 ) does 
not vanish on A (ii) holds. 

Now suppose (ii) holds and put 

C(ym .. . ,yTi-\9y) ^ r(A. 
Qy = -^ ! r-' y G FW-

C(ytlr.. -,yri-\) 
Then Q is of the form (17) for suitable qr Also Qyl = 0, n\ = i = r} — 1. 
We wish to select functions Sj, n — n\ ^ j' ^ r — r\, so that if S is given by 
(18), L — SQ has order rx — n\ — 1 at most. Now 

L - SQ = 2 \pk - 2 slE
1qJ)E

k. 
k = n V i+j = k ' 

Consider, then the equations 

(20) pk = 2 slE
lqp r - r2 + n2 ^ k ^ r, 

i+j = k 

where r2 = r — rl5 n2 = n — n\. Since qr] = 1, if we take k = r in (20), the 
resulting equation may be solved for sri. Using k = r — 1, . . . , r — r2 + 
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n2 in that order, we may solve (20) to obtain uniquely determined 
functions sr,-r+k, r — r2 + n2 = k = r. Then we have 

L - SQ = "2" (pk - 2 s,E'q)Ek, 
k = n V / + / = * 7 

so that L — SQ has order rx — n\ — 1 at most. Since (L — SQ)v; = 0, n\ 
^ / ^ r] - 1, we deduce from Lemma 6.1 (i) that L — SQ = 0, that is L 
= SQ. 

LEMMA 8.2. Let Q, S be given by (17), (18) and suppose that sn does not 
vanish on A. Then if SQ = 0 on F (A), Q = 0 on F(A). 

Proof. By (19) and Lemma 6.1 (ii), we deduce that 

2J slE
lq] = 0, ri\ -f n2 = k ~ r{ -t- /*2, 

H-y-A 

where n\ ~ j = r\. n2 = / = r2. Now let 

r = min (rj + A?2, r2 + A?i ). 

Then we have 

Â - / 7 , 

2 SjE'qk-t = 0, A2[ + / i i = ^ = '• 

Taking k = n} + n2 we see that <7,M = 0. Consecutively using the other 
values of k we find that qt = 0, n2 = i = t — n2. 

If / = rj + A?2
 w e have / — n2 == r, so that (? = 0, while if r < /*] + /?2 

we also have the equations 

2 siE
iqk-i = 0, ' + 1 = * = >"i + n2, 

and we deduce that g, = 0. / — n2 + 1 ^ / ^ /"]. Again this gives 
Q = 0. 

THEOREM 8.3. Suppose that L can be factorized as L = SQ where L, 5, <2 
^AV g/v?/? respectively by (4), (17), (18). L f̂ vh n\ = i = r\ — \. be a 
fundamental set of solutions of Qy = 0 and let n\ + 1 = — p = r\. Let Bp 

be the bilinear form described in Theorem 6.2. Then 

/-, - 1 

S*v = 2 v* fl;,(V/, v), v G F(/l). 
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where v* is obtained from (10) with n\, r1? qn and vy in lieu of n, r, pr and Wj 
respectively. 

Proof Let 

n - i 
V(x,y) = 2 Vj(x)vf(y), x, y e A, 

be the Green's function of (X Given y e ^4, QK(-, y) = 0 on A so that 
LF(-,y) = Oon^l as L - SQ. Let u(x) = V(x,y)fovx e ^ and let 5 G Z 
be given. Then from Theorem 6.2, 

- wL*v = A(£~A' Bs{u, v)), v G / ^ 4 ) . 

Hence 

- 2 u(gp + kx)L*v(g + kx) 
A-e/(.Y) 

= - (sign a(x) ) [£~ W , v) )(gpx) 

= - £ - ^ ( w , v ) ) ( g ^ + a(-v^)] 

so that 

(21) - (sign a(x)) 2 ~ V{g + kx, y) L*v(f + kx) 
Ae/( .v) 

= 2 v*(y)EP->Bs(vhv){x)- 2 V / C J ^ - ^ ^ V K ^ ^ ) . 
/ = ;?, / = /? , 

Now if/ G ^04), it is immediate from the fact that a(gx) = a(x) — 1, 
that the function f(ga{x)x) is g-invariant. Hence the function 

Ep-s(Bs(Vj,v))(gr{x)x) 

in the right hand side of (21) is g-invariant and so we have 

Q*{ 2 vf(x)Ef)~\Bs(vr v))(g^)x) 
V = «i 

''1 

= 2 EP-s(Bs(vhv))(^{x)x)(Q*vf)(x) 

= 0, since Q*vf = 0. 
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Now we let y = x in (21) and then apply Q* to both sides of (21) using 
Theorems 5.4 and 6.4 with Q* in place of L. We also use Theorem 6.3 on L 
to obtain 

g*S*v(*) = L*v(x) 

= G * ( 2 vf(x)Ep-5 Bs{yj, v))(x) 
V = "i 

= Ô * ( i v / ( x ) ^ (v y , v ) ) ( x ) , 
V = "l 

by Lemma 7.1 (ii). 

Thus 

e*(S*v - 2 Vj*Bp(vp v)) = 0, v G F04), 

and the result follows from Lemma 8.2. 

THEOREM 8.4. The following conditions on L are equivalent. 
(i) L can be factorized in the form R*VQ. 
(ii) There are solutions uh n\ = i = r\ — \ of Lu = 0 and solutions vy, n2 = 

j ^ r2 — 1, of L*v = 0 so that ut is conjugate to Vj for all i, j and both 
C(unr . . . , w,.j), C(vn , . . . , vr2) do not vanish on A. 

Proof Suppose (i) holds and let ui9 ri\ = i = r\ ~ 1 be a fundamental 
set of solutions of Qu = 0, vp n2 = J: = r2 ~ 1, a fundamental set of 
solutions of Rv = 0. By Theorems 6.3 (iii) and 8.3 we have 

V*Rv = 2 Uj*Bp(uJ9 v), 

while i?vy = 0 implies Bp(uj, vz) = 0 by Theorems 4.4, 6.6 and Corollary 
7.2 applied to Q*. The remainder of (ii) follows from the definition of 
fundamental system. 

Conversely, let (ii) hold. Then by Theorem 8.1 we may write L = WQ 
where uh n\ = i = rx — 1 form a fundamental set of solutions of Qu = 0. 
From Theorem 8.3 we deduce that 

W*v = 2 u*Bp(up v), v G F(A), 
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so that W*Vi = 0 for n2 = i = r2 — 1. Again by Theorem 8.1 we may write 
W* = V*R, where vh n2 = i = r2 — 1 form a fundamental set of solutions 
of Rv = 0. We now have L = WQ and W* = V*R so that L = R*VQ by 
Theorem 6.3. 
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