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Uniform Embeddings into Hilbert Space
and a Question of Gromov
A. N. Dranishnikov, G. Gong, V. Lafforgue and G. Yu

Abstract. Gromov introduced the concept of uniform embedding into Hilbert space and asked if ev-
ery separable metric space admits a uniform embedding into Hilbert space. In this paper, we study
uniform embedding into Hilbert space and answer Gromov’s question negatively.

1 Introduction

Gromov introduced the following concept of uniform embeddings in [7]:

Definition 1.1 A map f from a metric space X to another metric space Y is said to
be a uniform embedding if there exist two non-decreasing functions ρ1 and ρ2 on
[0,+∞) such that

(1) ρ1

(
d(x, y)

)
≤ d
(

f (x), f (y)
)
≤ ρ2

(
d(x, y)

)
for all x, y ∈ X;

(2) limr→+∞ ρ1(r) = +∞.

Gromov raised the question whether every separable metric space admits a uni-
form embedding into Hilbert space [7, p. 218]. A positive answer to this question
would imply the Novikov conjecture on homotopy invariance of higher signatures
and Gromov’s conjecture that a uniformly contractible Riemannian manifold can
not have uniformly positive scalar curvature [17]. For the purpose of Novikov higher
signature conjecture and Gromov’s positive scalar curvature conjecture, it is enough
to consider uniform embeddings of locally finite metric spaces into Hilbert space (re-
call that a metric space is called locally finite if every ball has finitely many elements).

In this note, we study uniform embeddings of locally finite metric spaces into
Hilbert space. We shall first give an intrinsic characterization of locally finite met-
ric spaces which admit a uniform embedding into Hilbert space in terms of negative
type functions in Section 2. This is used to show that the question whether a locally
finite metric space admits a uniform embedding into Hilbert space is a local problem
in Section 3. In Section 4, we construct a universal metric space with bounded geom-
etry for all bounded geometry spaces satisfying given growth condition (recall that a
locally finite metric space is said to have bounded geometry if, for every r > 0, there
exists N such that every ball with radius r has at most N number of elements). Ev-
ery bounded geometry space satisfying the given growth condition admits a uniform
embedding into Hilbert space if and only if the universal space admits a uniform em-
bedding into Hilbert space. In Section 5, we show that a locally finite metric space
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Embeddings into Hilbert Space 61

with bounded geometry admits a uniform embedding into Hilbert space if an associ-
ated locally finite metric space with exponential growth admits a uniform embedding
into Hilbert space. Based on ideas of Enflo [5], we construct a locally finite metric
space which does not admit a uniform embedding into Hilbert space in Section 6.
This answers negatively Gromov’s question. However our example of locally finite
metric space does not have bounded geometry.

Acknowledgements Part of this work was done when the first and the fourth au-
thors were visiting IHES. They wish to thank Alain Connes and Misha Gromov for
enlightening conversations and IHES for hospitality and support. The authors also
wish to thank John Roe for suggesting that we amalgamate our papers “Uniform em-
beddings into Hilbert space and a question of Gromov” (Gong, Lafforgue, and Yu)
and “On generalized amenability” (Dranishnikov) into a single article. We also re-
mark that after this paper was written, Gromov discovered a class of discrete metric
spaces with bounded geometry which don’t admit uniform embedding into Hilbert
space (cf. Gromov’s preprint “Spaces and questions”).

2 Uniform Embeddings into Hilbert Space and Negative Type Func-
tions

In this section we characterize uniform embeddings into Hilbert space in terms of
negative type functions.

Definition 2.1 Let X be a locally finite metric space. A function h : X × X → R, is
called a negative type function on X if

(0) h(x, x) = 0 for all x ∈ X;
(1) h(x, y) = h(y, x) for all x and y in X;
(2)
∑n

i, j=1 tit jh(xi , x j) ≤ 0 for all {ti}n
i=1 ⊆ R satisfying

∑n
i=1 ti = 0, and all

{xi}n
i=1 ⊆ X.

The following result is inspired by Schoenberg’s result characterizing metric spaces
which admit an isometric embedding into Hilbert space [15].

Proposition 2.2 A locally finite metric space X has a uniform embedding into Hilbert
space if and only if there exists a negative type function h on X such that there exist two
non-decreasing functions ρ1 and ρ2 on [0,+∞) satisfying

(1) ρ1

(
d(x, y)

)
≤ h(x, y) ≤ ρ2

(
d(x, y)

)
for all x, y ∈ X;

(2) limr→+∞ ρ1(r) = +∞.

Proof Assume that X admits a uniform embedding f : X → H, where H is a Hilbert
space. Let h(x, y) = ‖ f (x) − f (y)‖2 for all x and y in X. If {ti}n

i=1 ⊆ R and

https://doi.org/10.4153/CMB-2002-006-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-006-9


62 A. N. Dranishnikov, G. Gong, V. Lafforgue and G. Yu∑n
i=1 ti = 0, we have

n∑
i, j=1

tit jh(xi , x j) =
n∑

i, j=1

tit j〈 f (xi)− f (x j ), f (xi)− f (x j)〉

= −
n∑

i, j=1

tit j〈 f (xi), f (x j)〉 −
n∑

i, j=1

tit j〈 f (x j ), f (xi)〉

= −2
〈 n∑

i=1

ti f (xi),
n∑

i=1

ti f (xi)
〉

≤ 0.

It is also not difficult to see that h satisfies the required conditions in Proposition 2.2.
Conversely assume that h is a negative type function satisfying the conditions in

Proposition 2.2. Let V be the real vector space of all formal finite sums
∑

i tixi , where
ti ∈ R,

∑
i ti = 0, and xi ∈ X. We define a semi-norm on V by:

∥∥∥∑
i

tixi

∥∥∥ =√−1

2

∑
i, j

tit jh(xi , x j).

We define an equivalence relation ∼ on V by: u ∼ v if ‖u − v‖ = 0. Clearly the
semi-norm descends to a norm on the quotient vector space W = V/∼. Let H be
the norm completion of W . By the conditions in Definition 2.1, it is not difficult to
verify the norm on H is induced by a Hilbert space structure. Fix x0 ∈ X. Define
f : X → H by sending x ∈ X to [x − x0] ∈ H, where [x − x0] is the equivalence
class of x − x0 in V/∼. By the conditions of h, it is easy to see that f is a uniform
embedding.

3 Local Uniform Embeddings into Hilbert Space

In this section we show that existence of a local uniform embedding of a locally fi-
nite metric space into Hilbert space implies existence of a uniform embedding into
Hilbert space.

Definition 3.1 A locally finite metric space X is said to admit a local uniform embed-
ding into Hilbert space H if there exist non-decreasing functions ρ1 and ρ2 on [0,∞)
satisfying limr→∞ ρ1(r) =∞ such that, for every finite subspace F ⊆ X, there exists
a map f : F → H satisfying

ρ1

(
d(x, y)

)
≤ ‖ f (x)− f (y)‖ ≤ ρ2

(
d(x, y)

)
for all x and y in F.

Proposition 3.2 If a locally finite metric space X admits a local uniform embedding
into Hilbert space, then X admits a uniform embedding into Hilbert space.
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Proof Fix x0 ∈ X. Let Xi = {x ∈ X : d(x, x0) ≤ i}. By assumption there exist
non-decreasing functions ρ1 and ρ2 on [0,∞) such that limr→∞ ρ1(r) =∞, and for
every i there exists fi : Xi → H satisfying

ρ1

(
d(x, y)

)
≤ ‖ fi(x)− fi(y)‖ ≤ ρ2

(
d(x, y)

)
for all x and y in Xi . Define hi : Xi × Xi → R by:

hi(x, y) = ‖ fi(x)− fi(y)‖2.

By a standard diagonal argument, there exists a subsequence {hik}
∞
k=1 such that hik

converges to a function h : X×X → R in the following sense: for every (x, y) ∈ X×X,
there exists k0 for which (x, y) ∈ Xik0

× Xik0
and limk≥k0,k→∞ hik (x, y) = h(x, y). It

is not difficult to see that h is a negative type function on X satisfying

ρ2
1

(
d(x, y)

)
≤ h(x, y) ≤ ρ2

2

(
d(x, y)

)
for all x and y in X. Hence by Proposition 2.2, X admits a uniform embedding into
Hilbert space.

Corollary 3.3 Let N be the set of all natural numbers; let l1 be the Banach space l1(N).
If a locally finite metric space X admits a uniform embedding into l1, then X admits a
uniform embedding into Hilbert space.

Proof Without loss of generality, we can assume that X is a subspace of l1. By Propo-
sition 3.2, it is enough to show that X admits a local uniform embedding into Hilbert
space. Let ρ1(r) =

√
max{r − 10, 0} and ρ2(r) =

√
r + 10 for all r ≥ 0. Let F be

a finite subspace of X. By finiteness of F there exists a large natural number N such
that the projection P from l1 to l1

N = l1({1, . . . ,N}) satisfies the following inequality:

d(x, y)− 1 ≤ d(Px, Py) ≤ d(x, y) + 1

for all x and y in F. Let Y = PF ⊆ l1N . We define g : R → l2(N)⊕ l2(N) by:

g(x) =

(
1
√

N
, . . . ,

1
√

N︸ ︷︷ ︸
k

, 0, . . .

)
⊕ 0

if x ≥ 0 and k
N ≤ x < k+1

N for some integer k, and

g(x) = 0⊕

(
−

1
√

N
, . . . ,−

1
√

N︸ ︷︷ ︸
−k

, 0, . . .

)

if x < 0 and k−1
N ≤ x < k

N for some integer k. Let H be the Hilbert space
{(v1, . . . , vN) : vi ∈ l2(N)⊕ l2(N)}. We define a map f1 : Y → H by:

f1(x1, . . . , xN) =
(

g(x1), . . . , g(xN )
)
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for all (x1, . . . , xN ) ∈ Y ⊆ l1
N . Finally we define f : F → H by: f (v) = f1(Pv) for all

v ∈ F. It is not difficult to verify that

ρ1

(
d(x, y)

)
≤ ‖ f (x)− f (y)‖ ≤ ρ2

(
d(x, y)

)
for all x and y in F.

The fourth author introduced a geometric property, called property A, and proved
that any locally finite metric space with property A admits a unform embedding into
a Hilbert space (cf. Theorem 2.2 in [17]). The proof of Theorem 2.2 in [17] can
be used to show that a discrete metric space X with property A admits a uniform
embedding in l1(N).

4 Universal Metric Spaces

In this section we construct a universal metric space with bounded geometry for all
bounded geometry spaces satisfying given growth condition. Every bounded geom-
etry space satisfying the given growth condition admits a uniform embedding into
Hilbert space if and only if the universal space admits a uniform embedding into
Hilbert space. This is used to show that the question whether every locally finite met-
ric space with bounded geometry admits a uniform embedding into Hilbert space is
essentially a problem in finite mathematics.

Proposition 4.1 Given a non-decreasing function ρ on [0,∞), there exists a (universal)
metric space Yρ such that

(1) #BYρ(x, r) ≤ ρ(r) for all x ∈ Yρ and r > 0, where BYρ(x, r) = {a ∈ Yρ : d(a, x) ≤
r} and #BYρ(x, r) is the number of elements in BYρ(x, r);

(2) for every finite metric space F satisfying #BF(x, r) ≤ ρ(r) for all x in F and r > 0,
there is a map f : F → Yρ, for which d(x, y) ≤ d

(
f (x), f (y)

)
≤ d(x, y) + 1 for

all x and y in F;
(3) every metric space X satisfying #BX(x, r) ≤ ρ(r) for all x ∈ X and r ≥ 0 admits a

uniform embedding into Hilbert space if and only if Yρ admits a uniform embedding
into Hilbert space.

Claim For every finite metric space F with a metric d, there exists a new metric d ′

on F such that (1) d ′ is integer valued, i.e., d ′(x, y) is an integer for all x and y in F;
(2) d(x, y) ≤ d ′(x, y) ≤ d(x, y) + 1 for all x and y in F.

Proof of Claim Define d ′(x, y) to be the smallest integer greater than or equal to
d(x, y). It is not difficult to verify that d ′ satisfies the desired conditions.

It is not difficult to see that, for every pair of natural numbers n and m, there exist
only finitely many finite metric spaces F with integer valued distance functions (up to
isometry) satisfying #F ≤ n and diameter(F) ≤ m. Hence there exist only countably
many finite metric spaces with integer valued distance functions. Let {Fn}∞n=1 be the
collection of all finite metric spaces with integer valued distance functions satisfying
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#
(

BFn (x, r)
)
≤ ρ(r) for all n, x ∈ Fn, and r ≥ 0. Let {ci}∞i=1 be a strictly increasing

sequence of non-negative numbers satisfying c1 = 0 and ρ( cn
2 ) > #(

⋃n
i=1 Fi) for

every natural number n > 1. Let Yρ be the disjoint union of all Fn. Endow Yρ
with a metric d such that the restriction of d to Fn is the original metric on Fn, and
d(Fn, Fm) ≥ cn+m if n �= m. For any x ∈ Yρ and r > 0, assume that x ∈ Fm and
cn
2 ≤ r < cn+1

2 for some n. If m > n, by the property of d, we have that BYρ(x, r) ⊆ Fm.
Hence #BYρ(x, r) ≤ #BFm (x, r) ≤ ρ(r). If m ≤ n, then we have that B(x, r) ⊆

⋃n
i=1 Fi ,

and B(x, r) ⊆ F1 if n = 1. By the property of cn, we have that #B(x, r) ≤ ρ( cn
2 ) ≤ ρ(r)

if n > 1, and #B(x, r) ≤ BF1 (x, r) ≤ ρ(r) if n = 1. This, together with Proposition 3.2
and the above claim, implies that Yρ satisfies the desired properties.

Corollary 4.2 Every locally finite metric space with bounded geometry admits a uni-
form embedding into Hilbert space H if and only if, for every nondecreasing function
ρ on [0,+∞) satisfying limr→∞ ρ(r) = ∞, there exist non-decreasing functions ρi

(i = 1, 2) on [0,+∞) satisfying limr→∞ ρ1(r) = ∞ such that, for every finite metric
space F satisfying #

(
BF(x, r)

)
≤ ρ(r), there exists f : F → H satisfying ρ1

(
d(x, y)

)
≤

| f (x)− f (y)‖ ≤ ρ2

(
d(x, y)

)
for all x, y ∈ F, where ρ1 and ρ2 depend only on ρ.

Proof The if part of Corollary 4.2 follows from the proof of Proposition 3.2. The
only if part follows from Proposition 4.1.

The case when ρ has subexponential growth is solved in [6]. However, in the case
that ρ has exponential growth, Gromov recently showed non-existence of ρ1 and ρ2

satisfying conditions in Corollary 4.2 (cf. Gromov’s preprint “Spaces and questions”).
We also observe that if a finitely generated group Γ with a word length metric

admits a uniform embedding into Hilbert space, then ρ2 can be chosen to be ρ2(r) =
r. This is because finitely generated groups are geodesic in the sense that, for every
pair of x and y in Γ, there exists {xi}n

i=0 ⊆ Γ such that x0 = x, xn = y, d(xi, xi+1) = 1

for all 0 ≤ i ≤ n− 1, and d(x, y) =
∑n−1

i=0 d(xi , xi+1).
We also remark that, given two computable non-decreasing functions ρ1 and ρ2 on

[0,∞) satisfying ρ1(r) ≤ ρ2(r) for all r ≥ 0 and limr→∞ ρ1(r) =∞, Proposition 2.2
can be used to construct an algorithm to decide if a finite metric space F admits a
map f from F into a Hilbert space H satisfying ρ1

(
d(x, y)

)
≤ ‖ f (x) − f (y)‖ ≤

ρ2

(
d(x, y)

)
for all x and y in F.

5 Reduction to the Exponential Growth Case

In this section, we show that a locally finite metric space with bounded geometry
admits a uniform embedding into Hilbert space if an associated locally finite metric
space with exponential growth admits a uniform embedding into Hilbert space. This
is a consequence of the following result.

Proposition 5.1 Every locally finite metric space X with bounded geometry admits a
uniform embedding into the vertex set of a connected graph GX such that every vertex of
GX has at most three adjacent vertices, where GX is endowed with the path metric and
the metric on the vertex set is the restriction of the path metric.
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Proof Without loss of generality, we can assume that X is an infinite set with an
integer valued distance function. Let ρ(r) be a non-decreasing function on [0,∞)
such that #BX(x, r) ≤ ρ(r) for all x ∈ X and r ≥ 0. Let R+ = [0,∞) be the tree such
that its set of vertices is Z+, the set of all non-negative integers, and its set of edges is
{[n, n + 1] : n ∈ Z+}. For each x ∈ X, let px : X → Z+, be a bijective map satisfying

(1) px(x) = 0;
(2) if d(x1, x) > d(x2, x) for some x1 and x2 in X, then px(x1) > px(x2).

Note that
px(y) ≤ ρ

(
d(y, x)

)
for every y ∈ X.

Define GX to be the smallest connected graph such that (1) GX contains the dis-
joint union

⊔
x∈X R+,x, where R+,x = R+ for every x ∈ X; (2) px(y) in R+,x is

connected to py(x) in R+,y by a path with length d(x, y) for all x and y in X.
Let f : X → GX be the map defined by: x→ 0 in R+,x for every x ∈ X. Clearly we

have
d
(

f (x), f (y)
)
≤ d(x, y) + 2ρ

(
d(x, y)

)
for all x and y in X.

For every pair x and y in X, let {z0 = f (x), z1, . . . , zn−1, zn = f (y)} be a chain of
vertices in GX such that d(zi, zi+1) = 1 for all 0 ≤ i ≤ n − 1 and d

(
f (x), f (y)

)
=∑n−1

i=0 d(zi , zi+1) = n. Let i0 = 0, xi0 = x. Let i1 be the smallest positive integer such
that zi1 ∈ R+,xi1

for some xi1 ∈ X satisfying xi1 �= xi0 . By induction we define ik to be
the smallest integer such that ik > ik−1 and zik ∈ R+,xik

for some xik ∈ X satisfying
xik �= xik−1 . Let k0 be the smallest integer such that xik0

= y (i.e., k0 is the smallest
integer such that zik0

∈ R+,y). We have

d
(

f (x), f (y)
)
=

k0−1∑
k=0

d(zik , zik+1 )

≥
k0−1∑
k=0

d(xik , xik+1 )

≥ d(x, y).

Hence we have

d(x, y) ≤ d
(

f (x), f (y)
)
≤ d(x, y) + 2ρ

(
d(x, y)

)
for all x and y in X.

Note that if every vertex of a connected graph G has at most three adjacent vertices,
then #BG(x, r) ≤ 3r for all x ∈ G and r ≥ 0. By Propositions 5.1 and 4.1, every locally
finite metric with bounded geometry admits a uniform embedding into Hilbert space
if and only the universal metric space Yρ associated to ρ(r) = 3r admits a uniform
embedding into Hilbert space.
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6 A Counter Example to Gromov’s Question

In this section, we construct a locally finite metric space which does not admit a
uniform embedding into Hilbert space. The argument is based on beautiful ideas of
Enflo [5]. A different construction is given in [3].

Lemma 6.1 ([5]) Let H be a Hilbert space. If {x1, . . . , xk, y1, . . . , yk} ⊆ H, then we
have

k∑
i, j=1

d2(xi , y j) ≥
k∑

i> j,i, j=1

d2(xi , x j) +
k∑

i> j,i, j=1

d2(yi , y j).

Proof Let x j = y j−k for all k + 1 ≤ j ≤ 2k. We have

2k∑
i, j=1

tit jd
2(xi , x j) ≤ 0

if
∑2k

i=1 ti = 0. Now Lemma 6.1 follows from the above inequality if we take ti = 1
for all 1 ≤ i ≤ k, and ti = −1 for all k + 1 ≤ i ≤ 2k.

Let Zn = Z/nZ be given the metric:

d([k], [l]) = min
[k ′−l ′]=[k−l]

|k ′ − l ′|

for all [k] and [l] in Zn. Let Zn,m = {([k1], . . . , [km]) : [ki] ∈ Zn} be given the metric:

d
(

([k1], . . . , [km]), ([l1], . . . , [lm])
)
= max

1≤i≤m
d([ki], [li]).

Let p be a non-negative integer, let k be a positive even number. Assume that
m = kq for some q ≥ p + 2, and n ≥ 2p+2. A pair of points {x, y} ⊆ Zn,m is called a
(k, p)-pair if

(1) d([ki], [li]) = 2p whenever [ki] �= [li], where x = ([k1], . . . , [km]) and y =
([l1], . . . , [lm]);

(2) the number of elements in {i : [ki] �= [li]} is 2m
kp−1 .

Lemma 6.2 Let p, k, n and m be as above. There exists a pair of subsets {x1, . . . , xk}
and {y1, . . . , yk} of Zn,m such that {xi , x j} and {yi , y j} are (k, p + 1)−pairs if i �= j,
and {xi, y j} are (k, p)-pairs for all i and j.

Proof We choose a pair of subsets {x1, . . . , xk} and {y1, . . . , yk} of Zn,m by:

x1 = ([2p], . . . , [2p]︸ ︷︷ ︸
m

kp−1

, [2p+1], . . . , [2p+1]︸ ︷︷ ︸
m
kp

, [0], . . . , [0]),

x2 = ([2p], . . . , [2p]︸ ︷︷ ︸
m

kp−1

, [0], . . . , [0]︸ ︷︷ ︸
m
kp

, [2p+1], . . . , [2p+1]︸ ︷︷ ︸
m
kp

, [0], . . . , [0]),
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. . . . . . ,

xk = ([2p], . . . , [2p]︸ ︷︷ ︸
m

kp−1

, [0], . . . , [0]︸ ︷︷ ︸
(k−1)m

kp

, [2p+1], . . . , [2p+1]︸ ︷︷ ︸
m
kp

, [0], . . . , [0]),

y1 = ([2p+1], . . . , [2p+1]︸ ︷︷ ︸
m
kp

, [0], . . . , [0]︸ ︷︷ ︸
(k−1)m

kp

, [2p], . . . , [2p]︸ ︷︷ ︸
m

kp−1

, [0], . . . , [0]),

y2 = ([0], . . . , [0]︸ ︷︷ ︸
m
kp

, [2p+1], . . . , [2p+1]︸ ︷︷ ︸
m
kp

, [0], . . . , [0]︸ ︷︷ ︸
(k−2)m

kp

, [2p], . . . , [2p]︸ ︷︷ ︸
m

kp−1

, [0], . . . , [0]),

. . . . . . ,

yk = ([0], . . . , [0]︸ ︷︷ ︸
(k−1)m

kp

, [2p+1], . . . , [2p+1]︸ ︷︷ ︸
m
kp

, [2p], . . . , [2p]︸ ︷︷ ︸
m

kp−1

, [0], . . . , [0]).

It is easy to see that {x1, . . . , xk} and {y1, . . . , yk} satisfy the required conditions.

Let X be the disjoint union of Zn,m for all n ≥ 1 and m ≥ 1. We endow a metric d
on X such that

(1) the restriction of d to each Zn,m coincides with the original metric on Zn,m;
(2) d(x, y) ≥ n1 +n2 +m1 +m2 if x ∈ Zn1,m1 and y ∈ Zn2,m2 , and (n1,m1) �= (n2,m2).

Remark X has the universal property that every finite metric space with an integer
valued distance function admits an isometric embedding into X.

Proof of Remark Every finite metric space F with an integer valued distance func-
tion admits an isometric embedding f : F → l∞(F), defined by:

(
f (x)
)

(y) =
d(x, y) for x, y ∈ F. Note that f (x) is an integer valued function for every x ∈ F.
Now the Remark follows from the fact that every finite subset of integer valued func-
tions in l∞(F) admits an isometric embedding into Zn,m, where m is the number of
elements in F, and n is large enough.

By the above Remark and the Claim in the proof of Proposition 4.1, it follows
that every finite metric space F admits a map f from F into X such that d(x, y) ≤
d
(

f (x), f (y)
)
≤ d(x, y) + 1 for all x and y in F.

Proposition 6.3 Let X be the locally finite metric space defined as above. X does not
admit a uniform embedding into Hilbert space.

Proof Assume by contradiction that there exists a map f from X to a Hilbert space
H for which there exist two non-decreasing functions ρ1 and ρ2 on [0,+∞) such that

(1) ρ1

(
d(x, y)

)
≤ ‖ f (x)− f (y)‖ ≤ ρ2

(
d(x, y)

)
for all x, y ∈ X;

(2) limr→+∞ ρ1(r) = +∞.
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Let p0 be a positive even number such that ρ1(2p0 ) ≥ 10ρ2(1) and (1− 1
p0

)p0 ≥ 1
3 .

Let k = p0, m = kp0+2 and n = 2p0+2.
Notice that the isometry group of Zn,m acts transitively on the set of all (k, p)-pairs.

This, together with Lemma 6.2, implies that, for every p ≤ p0, there exists a natural
number L such that, for every (k, p)-pair {x, y} in Zn,m, there are exactly L number
of pairs of subsets {x1, . . . , xk} and {y1, . . . , yk} of Zn,m for which {x, y} = {xi0 , y j0}
for some i0 and j0, {xi, x j} and {yi , y j} are (k, p + 1)-pairs for i �= j, and {xi , y j} is
a (k, p)-pair for all i and j. Similarly for every p ≤ p0, there exists a natural number
L ′ such that, for every (k, p + 1)-pair {x, y} in Zn,m, there are exactly L ′ number of
pairs of subsets {x1, . . . , xk} and {y1, . . . , yk} of Zn,m for which {x, y} = {xi1 , xi2}
or {x, y} = {yi1 , yi2} for some i1 �= i2, {xi , x j} and {yi , y j} are (k, p + 1)-pairs for
i �= j, and {xi , y j} is a (k, p)-pair for all i and j. Let N be the number of all pairs
of subsets {x1, . . . , xk} and {y1, . . . , yk} of Zn,m such that {xi, x j} and {yi, y j} are
(k, p + 1)-pairs for i �= j, and {xi , y j} is a (k, p)−pair for all i and j. We have

Nk2 = LNp, Nk(k− 1) = L ′Np+1,

where Np is the number of all (k, p)-pairs in Zn,m. It follows that

L

L ′
=

k

k− 1

Np+1

Np
.

By Lemma 6.1, for each pair of subsets {x1, . . . , xk} and {y1, . . . , yk}, we have

k∑
i, j=1

d2
(

f (xi), f (y j )
)
≥

k∑
i> j,i, j=1

d2
(

f (xi), f (x j)
)

+
k∑

i> j,i, j=1

d2
(

f (yi), f (y j)
)
.

Summing over all pairs of subsets {x1, . . . , xk} and {y1, . . . , yk} of Zn,m such that
{xi, x j} and {yi , y j} are (k, p + 1)-pairs for i �= j, and {xi, y j} is a (k, p)-pair for all
i and j, we obtain

1

Np

∑
{x,y}:(k,p)-pair

d2
(

f (x), f (y)
)
≥
(

1−
1

k

) 1

Np+1

∑
{u,v}:(k,p+1)-pair

d2
(

f (u), f (v)
)
.

Iterating the above inequality we have

1

N0

∑
{x,y}:(k,0)-pair

d2
(

f (x), f (y)
)
≥
(

1−
1

k

) p0 1

Np0

∑
{u,v}:(k,p0)-pair

d2
(

f (u), f (v)
)

≥
(

1−
1

p0

) p0

ρ2
1(2p0 )

≥
100

3
ρ2

2(1).

But this contradicts with the following

1

N0

∑
{x,y}:(k,0)-pair

d2
(

f (x), f (y)
)
≤ ρ2

2(1).

We remark that the proof of Proposition 6.3 is essentially due to Enflo [5].
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