Musical Live Coding in Relation to

Interactivity Variations

GEORGIOS DIAPOULIS

Chalmers University of Technology, Gothenburg, Sweden
Email: georgios.diapoulis@chalmers.se

This article explores the similarities and differences between
live coding and traditional music performances. The focus is on
how bodily movements are expressed and whether pre-
reflective processes may be activated during a live coding
performance. While reports from practitioners vary on
percepts of embodiment, the community is missing a theoretical
background that reflects on practice. Understanding pre-
reflective processes in live coding can benefit performance
practices and tool development. As a live coder, I reflect on
personal experiences and explore what I call ‘interactivity
variations’, a term to denote different gestural manners of
interactions during a performance. I observe patterns of
embodiment among various live coders who use diverse
performance systems from online videos. Out of 11 examples of
performance systems, two cases demonstrate interactivity
variations that can activate pre-reflective processes while
another exploits direct manipulation. I present some
implications for the patterns of bodily movement during a live
coding performance and discuss how descriptive and
prescriptive notation can be important and potentially
influence our sensorimotor network. The article contributes a
first account of a sensorimotor theory on live coding
performances, reflecting on practice and embodied music
cognition by presenting an aesthetic analysis of 11 online video
examples.

1. INTRODUCTION

Live coding and traditional musical performance can
be viewed as the two extremes on an imaginary
continuum of music performance studies. While
motoric and cognitive skills are demanding for both
performance styles (Palmer 1997; McLean 2014), 1
will primarily concentrate on the qualitative differ-
ences that arise from the motoric skills performed
through bodily gestures. This discussion will establish
the foundation for my main research question: Are
pre-reflective processes evident in live coding perform-
ances? The term ‘pre-reflective process’ is used
interchangeably with ‘fast processes’ or ‘subconscious
processes’ (Leman 2016).

My primary theoretical framework is drawn from
music psychology and music perception research on
music performance, employing Leman’s theoretical
framework on pre-reflective processes for expressive
interactions. I subscribe to the phenomenological

approach of autopoietic enactivism (Varela,
Thompson and Rosch 2017), a sensorimotor theory
of embodied cognition that sees cognition as an
emergent phenomenon of sensorimotor activities. [
also investigate how the user gesturally interacts with the
input interface, which may involve addressing human—
computer interaction (HCI) as needed. Essentially, the
main emphasis is on the live coder, with a secondary
focus on the physical interface and programming
language. The field of research on music performance
is largely indifferent to the specific musical instruments
used. Instead, it focuses on musical structure, bodily
movement and emotional responses (Palmer 1997). 1
concentrate on bodily movement and hope that future
research will also look into musical structure and
emotional responses, as they are currently unexplored
areas in live coding.

Here, I describe how live coding is conducted by
combining approaches from both HCI and music
psychology, with an emphasis on gestural interactions.
The term ‘gestural interactions’ refers to both musical
gestures (Leman and Godey 2010) and bodily gestures
used in HCI, with gestures, viewed in the context of
human-material interactions (Ishii, Lakatos, Bonanni
and Labrune 2012), and the material, in this case,
being sound. Musical gestures unify bodily movement
and meaning and can therefore serve as a means of
studying subjective percepts resulting from bodily
movement (Jensenius, Wanderley, Godey and Leman
2010). My motivation is to explore what can be learnt
about a performer’s cognitive and sensorimotor
processes through observation of various systems
and practices.

2. METHOD

In this article, I discuss 11 performance systems and
practices, primarily by conducting complete and
unstructured observations of live performances I have
attended or watched online, reviewing a diverse corpus
of literature and reflecting on my experiences as a live
coder. Here, the literature spans music psychology and
perception studies and research on live coding and
HCI. Unstructured observations refer to the idea
that an observation is carried out without systematic

Organised Sound 28(2): 149-161 © The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is

properly cited.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

doi:10.1017/S1355771823000444

Check for
updates

https://orcid.org/0000-0002-3101-1875
mailto:georgios.diapoulis@chalmers.se
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1355771823000444
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1355771823000444&domain=pdf
https://doi.org/10.1017/S1355771823000444

150 Georgios Diapoulis

criteria guiding the observed showcases. It is an
approach commonly adopted when there is little
theoretical background on the phenomenon being
observed or when the researcher does not know the
outcome of the study (McKechnie 2008). Complete
observations involve the observer refraining from
interacting with the participants during the observa-
tion. In the case of live coding, complete observational
studies have recently started to appear (Diapoulis and
Dahlstedt 2021a) due to the increasing availability of
online audiovisual material.! Ten years ago, such
observations were not feasible due to the scarcity of
online resources.

Thus, unlike observational studies in ethnomusicol-
ogy, the methodology used here does not involve a
coding scheme or other systematic criteria. Instead,
the observation is an ongoing process documented
through reflective diaries or other forms of documen-
tation such as sketching diaries. Personal practices
have certainly influenced the selection of the 11 video
examples. Over the last year, I selected examples that I
encountered, and together they formed a structured set
of live coding systems that illustrate diverse practices
of interactivity variations” on single-person examples
(see section 5). Live coding is a community that
documents itself (Haworth 2018) and reflects on itself,
and my intention is to contribute to the research goals
and ethos of the community, of which I consider
myself a part.

3. TRADITIONAL AND LIVE CODING MUSIC
PERFORMANCE

In traditional music performance, whether instrumen-
tal or vocal, there exists a direct relationship between
energy and sound (Leman 2007). Put simply, the more
effort we exert in striking a drum, the louder the
resultant sound will be. This allows performers and
audiences to engage with the process of sound
generation, resulting in a more rewarding and
enjoyable experience. Such a reward mechanism is
related to our ability to make predictions between
bodily movements and resultant sounds. For example,
when observing a drummer lift her hand to the sky and
strike the snare drum, we expect a loud and powerful
sound as a result. Conversely, live coding does not
involve this relationship (Dahlstedt 2018). In live
coding, performers experience an indirect involvement
with the music due to the use of notation (Nash 2012).
There exists a dissociation between action and
perception, as the bodily gestures performed by the

ITOPLAP archive.org (https:/archive.org/details/toplap), and
YouTube Eulerroom (www.youtube.com/@Eulerroom).

2A term inspired by the established term in music psychology

performance variations, which refers to different manners of
expressive performance.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

live coder do not directly correspond to the production
of sound. This can result in minimal bodily movement,
which raises questions about the significance of typing
on a keyboard (Haga 2008).

This indirect level of description is why live coding
has been referred to as a propositional improvisation
practice (Goldman 2019) and a radically different
form of performance compared with traditional music
performance (Sayer 2015). Goldman explicitly states
that he does not practise live coding, while Sayer’s
study does not specifically reflect on practice. On the
other hand, practitioners view live coding as necessi-
tating a distinct range of sensorimotor skills. For
example, Fredrik Olofsson does not feel any lack of
immediate feedback, regardless of the non-physical
interactions involved during coding (Nilson 2007).

Music performance is an embodied practice (Palmer
1997; Godey 2021). Embodiment, here, ‘assumes that
subjective experiences are expressed in bodily changes’
(Leman 2007: 236). During live coding, our subjective
experiences include how we reason about the running
program, how we appreciate the musical outcome and
how we plan the progression of the performance
(Diapoulis and Dahlstedt 2021b). All these are
expressed in bodily changes, which can range from
minimal keyboard movements to overt dancing to the
beat. These movements can be synchronised and non-
synchronised with the musical outcome.

Live coding practitioners have reported percepts of
embodiment during performances, though such
reports can be contradictory. According to Baalman
(2015), embodiment is so profound in live coding that
even grammars and programming languages can
shape motoric execution patterns. By contrast,
Hutchins (2015) sees a lack of embodiment in coding
and aims to achieve it through live patching with
synthesisers, because of tactility percepts. A recent
workshop at NIME on gestures and embodiment in
live coding also suggests diverse understandings of
embodiment within the community (Salazar and
Armitage 2018).

4. FROM NOTATION TO SOUND AND FROM
SOUND TO MUSICAL MINDS

Live coding is sometimes described as a state of mind
(Tanimoto 2015). It blurs musical concepts such as
composition, performance and improvisation, while
also challenging standard views on programming,
such as the typical software engineering development
cycle. The difference between live coding and most
music improvisation practices is that live coding is an
improvisation practice based on notation (Baily 1999;
Magnusson 2019). Moreover, the notation is written
on-the-fly, and can also be maintained with its
accurate temporal evolution (Rohrhuber, de Campo,

https://archive.org/details/toplap
http://www.youtube.com/@Eulerroom
https://doi.org/10.1017/S1355771823000444

Musical Live Coding in Relation to Interactivity Variations 151

Wieser, Van Kampen, Ho and Hélzl 2007), thus can
be reproduced by a machine. The standard paradigm
of musical live coding involves a composer-program-
mer typing on a keyboard and sharing his/her screen
with the audience. Roberts and Wakefield (2018) have
referred to this standard paradigm as canonical live
coding. This term refers to the practice that first
appeared in the early 2000s, where a command line
prompt was used as an interface equipped with an
interpreter or a compiler. Interpreter-based languages
are more popular due to their runtime immediacy on
the musical outcome (Collins, McLean, Rohrhuber
and Ward 2003).

When executable code chunks are rendered to
audible sounds, the coder faces the indirect involve-
ment between code and sound. Long sequences of
typed individual characters are enfolded in the many
steps required to evaluate a code expression. This is
known as the complexity of the interface in HCI
(Myers 1994), which refers to the number of steps
required to perform a programmable action, such as
opening a text document using drop-down menus on a
text processor. In the cognitive dimensions of nota-
tion, a similar notion is that of the closeness of mapping
(Blackwell and Collins 2005), a term from the
psychology of programming that indicates how
notation relates to output (McLean and Wiggins
2011). It is reasonable to assume that not all live
coders are trained in blind typing techniques or use the
same type of keyboard. Thus, the multiplicity of
typing a single line of code can be enormous. Typing is
also an open-loop motor program (Palmer 1997),
which makes it an activity prone to errors, as there is
no informative feedback mechanism to adjust or
correct ongoing movements.

When listening to the generated sounds, the live
coder somehow makes sense of the relation between
the live writing of the code and the musical outcome.
This may be seen as a mental link between the code
and the sound, which enables the performer to listen to
how structured code executions sound and imagine
how novel code evaluations may sound. Thus, in live
coding, both musical imagery and music listening have
central roles during music-making (Diapoulis and
Dahlstedt 2021a). Musical imagery is a mental process
that can induce musical experiences or elicit musical
realisations. It is a multimodal phenomenon, either
auditory, visual or motoric, in which we anticipate
desired effects or experience music both voluntarily
and involuntarily (Jakubowski 2020).

Voluntary musical imagery, also known as online
musical imagery to denote the imagery present during
a performance, contributes to planning future actions
(Bishop, Bailes and Dean 2012). Involuntary musical
imagery can be induced by a phenomenon known as
notational audiation (Brodsky, Kessler, Rubinstein,

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

Ginsborg and Henik 2008; Keller 2012), a type of
visual imagery. This is when we can internally ‘hear’ a
melody depicted on a score. Motoric and auditory
imageries are interrelated, and one can influence the
other, also known as crossmodal interactions. A delay
between performed actions and auditory feedback,
which can be significant in live coding due to the
complexity of the interface and the very poor closeness
of mapping (Blackwell and Collins 2005), disrupts
action-perception couplings, in turn disconnecting the
temporal precision of motoric actions with listening
percepts. This phenomenon is known as delayed
auditory feedback, where action and sound are several
milliseconds apart or altered auditory feedback when
the performed action does not match the heard sound
(Palmer 2012). These discrepancies can increase the
gap between action and perception and hinder
voluntary imagery and, consequently, embodiment.
In this context, the visual aspects of the code or coding
environment that can induce involuntary imagery (i.e.,
notational audiation) may play an important role.

When there are the disruptions in auditory feed-
back, how can we still embody the sound in our
performance? The overt embodiment in live coding
can be induced through listening to the sound, as we
can exclude any tactility percepts that carry vibrations.
Additionally, simulating motor actions through visual
perception is possible, but it may be challenging for
live coders to direct their attention away from the
coding interface. In such situations, peripheral vision
could be useful; for example, to be aware of people
dancing nearby. Sometimes, we embody the generated
sound by nodding to the beat or dancing. These are
secondary aspects of musical gestures, which can have
sound-accompanying or communicative functions
(Leman and Godey 2010; Jensenius et al. 2010) and
do not have sound-producing functionality. Of course,
this is more likely to happen when the musical outcome
affords such embodied percepts, typically observed
during Algorave parties, which are live coding events in
dance clubs (Collins and McLean 2014).

Ultimately, the generated musical outcome facili-
tates an understanding and aesthetic enjoyment of the
running program. One can say that the live coder uses
the generated sound patterns as a proxy to form a
mental model of the running program (Diapoulis and
Dabhlstedt 2021b). A mental model is ‘any internal
representation of the relations between a set of
elements’ (American Psychological Association n.d.)
and denotes internal representations of relations and
reasoning (Kosslyn 1996). Coding is an act of
reasoning, although I will later argue that in live
coding, reasoning on-the-fly can have more intuitive
qualities when coupled with listening to the musical
outcome, thus bringing forth percepts and imageries.

https://doi.org/10.1017/S1355771823000444

152 Georgios Diapoulis

I build upon a sensorimotor theory of embodied
cognition and adhere to the autopoietic enactive view
of embodied cognition, which avoids distinguishing
between mental and non-mental processes (Shapiro
and Spaulding 2021). Here, I explain how we live code
and how sound, mediated by code, affects our bodily
experiences. As such, while the term mental model may
not be the most historically accurate, I use it to
describe the phenomenon I experience as a live coder
or how we make our understanding from code to
sound and vice versa.

We have seen, so far, that canonical live coding
involves a complex interface consisting of typing on a
keyboard. This amplifies our indirect involvement
between the code and generated sounds and the
perceived alteration of the auditory feedback, one that
is not bound to physical actions. Besides these obvious
challenges, musical notation is known to give rise to
the phenomenon of notational audiation, which can
induce involuntary imagery in performers. Musical
imagery is known to give rise to percepts of
embodiment and can also initiate motor activity. As
we cannot engage with musical sound using sound-
producing musical gestures or primary aspects of
musical gestures, there is a dissociation between action
and perception. Instead, we can only exploit second-
ary aspects of musical gestures, such as full-body
movements, and examine how micro-movements such
as typing can be useful. So far, I have only presented
typing in live coding mostly as an activity that hinders
embodied percepts based on action-perception theory.

4.1. How the interaction is performed

During a canonical live coding performance, the user
interacts in a similar way to how end-users type in a
word processor software. One persona of Nick
Collins, known as Click Nilson, used a cloud-based?
word processor to collaboratively re-write his presen-
tation script with the audience during the live code
festival symposium in Karlsruhe in 2013 (Nilson
2016). The main difference when a text editor is used
alongside a programming environment for music-
making is that the code evaluations are performed
when a code chunk can be executed, which usually
requires the conscious allocation of resources. Short
edit-execution cycles, such as numerical parameter
adjustments, are unlikely to enter conscious aware-
ness, as this may take up to a few milliseconds. An
average typing speed is 60-80 words per minute
(wpm), or 3-4 characters per second (Marklin and
Simoneau 2004). Short edits may be performed even
faster than that, potentially approaching the upper

31 personally attended Click’s Nilson presentation.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

limits of delayed auditory feedback, as the fastest
typists can exceed several hundred wpm.

This strategy, which is predominantly found in full
slate* live coding — an approach where pre-written
code is used during a performance — is widely used by
coders as a risk management technique or as a means
of maintaining pace and flow (Roberts and Wakefield
2018). This full slate approach, a weak approach to
live coding (Magnusson 2014b), exploits pre-written
code. Thus, it can be common that the performer is
only editing the code instead of writing the perfor-
mance script on-the-fly, which Magnusson refers to as
the strong criterion. Identifying the limit between a
weak approach to live coding and simply a generative
reproduction of the material can be difficult, similar to
how hard it is to draw the line between interpretation
and improvisation (McPherson and Limb 2019).

It is generally accepted that typing on a keyboard is
an activity based on serial actions. This has similarities
with traditional music performance, as serial skilled
actions are carried out during a musical performance
(Palmer 1997). (In fact, sequence production spans a
variety of daily activities such as speech and walking.)
The main difference between live coding and traditional
music performances is that the live coder does not make
sound-producing bodily motions. This makes live
coding a performance practice that can hinder engage-
ment with audiences and co-performers related to
embodied experience and the aesthetic enjoyment of the
music (Brattico, Brattico and Jacobsen 2009). The main
reason is that when humans observe sound-producing
movements, they can mentally simulate these actions in
their sensorimotor network (Keller and Appel, 2010;
Keller 2012). Sometimes this can also produce overt
bodily movement, such as dancing (Keller 2008). The
same does not apply to live coding, as the performed
typing actions are mostly rendered in an unordered
manner, or non-linearly, in terms of both temporal
order and motoric sequential patterns. Commenting on
the temporal aspects of live coding, Emmerson (2017:
115) states that ‘the code writing of deferred time
computer programming may be assembled out of time
order’. In terms of how motoric sequences unfold, this
means that the same typing sequence can be produced
in different ways. Thus, audience engagement via
mental simulations of observed bodily movements
cannot easily happen. Instead, the audiences and co-
performers tend to bodily entrain through music
listening and bodily movement. Maybe the only aspect
we can mentally simulate is an expectation about a new
code chunk evaluation by simply seeing the visual
highlighting of the code. Hernani Villasefior (2019) has
been performing live while filming his typing. This can
be seen as a ‘virtual action-sound mapping’ (Jensenius

4Full Slate https://youtu.be/zJFJEqbIEIA (accessed 14 April 2023).

https://youtu.be/zJFJEqblEIA
https://doi.org/10.1017/S1355771823000444

Musical Live Coding in Relation to Interactivity Variations 153

2022: 155), denoting the multiple layers between action
and sound, coupled with the discrete action of running
the code. Live coders exploit this relation between code
executions and resultant sounds. I usually do not look
at the interpreter’s output following every code
evaluation; instead, I expect to hear the sonic changes.

During a live coding performance, novel code
evaluations can have entirely predictable or not-at-
all-predictable musical outcomes. Typically, a novel
musical outcome may induce surprise to both
performer and audience, expressed as a violation of
expectations and may arise from creative explorations
of the generative space (Dahlstedt 2012). Maybe the
most common example of when our expectations are
violated in a live coding performance is when a
programming error occurs, and the generated sound
patterns stop. The same can happen when we explore a
generative music space, and the musical parameters
suddenly tune into silence. This can make a live coding
performance alien to an unfamiliar audience. The
unfamiliar spectators may be ignorant of how the
sound is produced, as reported in the documentary
Show Us Your Screens (McCallum 2011). Maybe the
audiences’ perception will change as live coding
becomes more popular. Magnusson (2019) reports
that audiences unfamiliar with programming can
follow the sound-generation process by attending to
the live writing process. Visual aspects such as code
highlighting are particularly important to this end,
and the progress of special-purpose text editors, such
as Gibber (Roberts and Kuchera-Morin 2012) and
Strudel (Ross and McLean 2023) interfaces, has been
tremendous in the last decade.

To summarise this subsection, canonical live coding
involves typing on a keyboard. I have presented the
activity of typing as serial skilled actions, which also
applies to traditional music performance. However,
whereas in traditional performance, the serial actions
are tightly coupled in time and can give emergence to
sensorimotor synchronisation, in live coding, the serial
actions are out of time order. This suggests that using
typing to interface with the programming language is
not likely to result in the development of entrained
bodily movements such as coordinated and rhythmic
actions. Furthermore, it is unlikely that typing can
induce mental simulations due to the multiplicities of
individualistic typing styles, keyboard layouts and
the error rate of open-loop motor programs. I can
only speculate that exploiting typing gestures may
induce mental simulations to co-performers and
audiences on larger temporal chunks, where each
micro-movement loses its significance and the gestalt
of the typed chunks matters. But would that apply
only to those exposed to live coding practice? Is
familiarity important here? These are some open
questions.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

4.2. Pre-reflective processes in machine musicianship

The effect of action and perception on music cognition
has been studied extensively. There is growing
evidence that these two are inseparable from one
another. We make our understanding by enacting our
world (Varela et al. 2017), and the role of the human
body is of fundamental importance. Here, musical
gestures are seen as non-verbal communication, which
has pro-social functions and can enable ‘pre-reflective
experiences’ (Leman 2016: 92). For example, in
electronic dance parties, a sweep from low to high
frequencies may result in excitement, manifested in
people raising their hands. How pre-reflective (or
subconscious) processes are manifested in live coding
has been barely discussed (Diapoulis and Zannos
2014; Dahlstedt 2018). This can be important as it will
enable a discussion on how to better conduct live
coding sessions and, consequently, how to better
coordinate live coding ensembles.

I have already discussed that traditional music
performance is tightly connected to bodily movement,
but the movement is also related to expressive
performance. Several mechanisms facilitate musicians’
engagement with expressive performance (e.g., plan-
ning and anticipating future actions), entrained
processes (e.g., loosely coupled bodily movement)
and reward mechanisms linked to emotional reso-
nance and aesthetic enjoyment (Leman 2016). As the
embodied paradigm of music performance has gained
more attention, entrainment is considered one of the
fundamental mechanisms during music performance
(Repp and Su 2013; Clayton et al. 2020). Entrainment
is a phenomenon that appears in several mechanical
systems and may bring about stability in oscillatory
systems, regardless of any small perturbations within a
system. Recent studies suggest that sensorimotor
synchronisation (SMS) and coordination are respon-
sible for the emergence of entrained processes during a
duet performance (Clayton et al. 2020). SMS is a pre-
reflective process roughly within 200-2000ms (ibid.),
whereas coordination emerges at larger timescales of
more than two seconds but may indicate coordination
over several seconds to minutes. Godey (2021: 2) also
identifies roughly the same time intervals (0.3-5s) as
being of utmost importance during a performance,
describing it as the ‘enigmatic relationships between
notions of continuity and discontinuity in both
philosophy and psychology’. Indeed, timescales below
200-300ms are mostly concerned with sound quality,
including its early reflections within the acoustic
surrounding. For longer durations, we mediate sound
through our bodies and make music realisations. Over
larger timescales, we coordinate, and social phenom-
ena emerge as the outcome of complex interactions,
such as a music performance in public.

https://doi.org/10.1017/S1355771823000444

154 Georgios Diapoulis

These indicative timeframes would suggest that SMS
is essentially impossible during canonical live coding.
Sayer (2015) supports this argument while Goldman
(2019) suggests that live coding can be seen as a
propositional improvisation practice, which operates on
long-term memory mechanisms. Goldman (2019) and
Sayer (2015) suggest that live coding incorporates slow,
conscious processes, making the emergence of fast, pre-
reflective experiences impossible. Several reasons are
offered for this, such as the content of feedback, the
temporal nature of the feedback and the discrete nature
of decision-making (Goldman 2019).

It is indeed true that the so-called canonical live
coding incorporates mostly slow processes. Several
systems, such as ixi-lang and TidalCycles (McLean
and Wiggins 2010b), have been developed, taking such
perspectives into account. Indicatively, ixi-lang was
developed with the constraint of writing and executing
a code chunk in less than five seconds (Magnusson
2011). Even this may not help in enabling fast, pre-
reflective processes in a live coding session. So, the
question is immanent: Can pre-reflective processes be
enabled during live coding performance?

4.3. Summary on interaction, perception and
cognition

I would argue that from a theoretical perspective, fast
and entrained processes are unlikely to occur when
using typing-based live coding systems. Entrained
processes can afford small perturbations and eventu-
ally reach stability, but the multiplicities of typing a
single line of code can be devastating to SMS. We can
see bodily entrainment in live coders primarily as
dancing to the beat, such as in the case of Algorave
parties. But these are merely secondary aspects of
musical gestures. It is unclear how these can influence the
production of micro-movements. Maybe systems that
require short typed sequences to make a sound (e.g., ixi-
lang, TidalCycles), albeit being out of order and non-
synchronised, can provide the best chance for the case of
canonical live coding to employ pre-reflective processes,
along with practices such as short edits. Orca,’ a two-
dimensional control interface inspired by trackers that
affords single letter commands (for a description, see
Blackwell, Cocker, Cox, McLean and Magnusson 2022:
147), operates on stream-based evaluations, which helps
to reduce the delayed auditory feedback.

5. LIVE CODING HERE AND THERE

In this section, I present a selection of live coding
examples. The reasons are twofold: first, to elaborate
on how non-verbal interactions, rendered as musical

Shttps://100r.co/site/orca.html.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

gestures, are experienced during a live coding music
performance; second, to discuss what can be learnt by
observing such gestural interactions about the live
coders’ sensorimotor control and, possibly, cognitive
processes. I say possibly because we typically conduct
sophisticated experimental designs to merely infer
what a person is imagining (Shepard and Metzler
1971; Zatorre and Halpern 2005), which is likely
impossible using complete observations.

All the examples discussed here are solo perform-
ances, constraining the observed possibilities of
interactivity variations. Furthermore, most video
recordings from Eulerroom on YouTube or other
individual resources, are solo performances. Hence,
I limited my study to solos because the embodied
interactions I study (e.g., serial skilled actions) are
evident when a soloist is bodily interacting with the
computer interface, and I do not study inter-musician
interactions.

The online video examples were intended to be
available to the general public (Snee 2013;
Theodosopoulou Bourlogianni, 2021) and no con-
sent was required (Loveday, Woy and Conway
2020) to conduct the observational study and the
aesthetic analysis. The links to the videos are shown
in Table 1. I compiled this specific list because each
video is a good example of each particular system’s
characteristics. No computational analysis, down-
load or reuse were conducted for this study.

The examples presented in the table are divided into
three categories: 1) canonical systems, 2) bottom-up
systems, and 3) a mixed category of systems.
Canonical systems exemplify the standard paradigm
to live coding, as discussed earlier. As canonical live
coding is very well known in the community, I will
present only one example of a canonical system which
really stands out (Baalman 2009). Bottom-up systems
are live coding systems that depend on very little
abstraction (Diapoulis, Zannos, Tatar and Dahlstedt
2022). Typically, the levels of abstraction are built up
on-the-fly, as we go. They are relatively uncommon
and highly constrained, which exhibits some interest-
ing characteristics. Also, the bottom-up systems in
Table 1 do not use the keyboard, which makes them
radically different from canonical systems. The third
category presents systems that afford gestural input as
direct manipulation (e.g., a mouse), an interface that
affords continuous control and facilitates recognition
instead of retrieval. I restricted the scope of this
category and excluded non-conventional interfaces as
the bottom-up category already uses a number of
examples with unconventional interfaces. The third
category of mixed systems demonstrates some exam-
ples that lie between canonical and bottom-up
systems, as input control in bottom-up systems mostly
relies on recognition instead of retrieval.

https://100r.co/site/orca.html
https://doi.org/10.1017/S1355771823000444

Musical Live Coding in Relation to Interactivity Variations 155

Table 1. Chronological list of performance systems in the observational study. Betablocker, Code LiveCode Live, CodeKlavier
CKalcuiator and iMac music have earlier release dates than the release date of their corresponding videos.

Performer Performance/System Video URL Category Year
Dave Griftiths Betablocker https://vimeo.com/24390484 B 2006
Dave Griffiths Al-jazzari https://youtu.be/Uved4qStSIq4 B 2007
Marije Baalman Code LiveCode Live https://vimeo.com/434679284 C 2009
Georgios Diapoulis stateLogic machine https://vimeo.com/43121821 B 2012
Jonathan Reus iMac music https://vimeo.com/205714278 B 2012
Thor Magnusson Threnoscope https://vimeo.com/63335988 M 2013
Chris Kiefer Approximate Programming https://youtu.be/WwhpRtxql Kg?t=3417 M 2015
The Duchess of Turing Using various https://youtu.be/hfITF3KTnFM M 2019
Noriega, F. I. and A. Veinberg CodeKlavier CKalcuhator https://youtu.be/hD-PWNDebD4 B 2019
uiae Using PD https://youtu.be/A-HohsA9R 10 M 2020
Fredrik Olofsson (redFrik) SuperCollider https://youtu.be/lqi-VqrOgk4 M 2022

Note: B = bottom-up system; C = canonical system; M = mixed category of systems.

Before going to the examples, I want to clarify any
confusion in the literature between low-level and
bottom-up processes. As Roberts and Wakefield
(2018) explain, low-level processes are mostly related
to algorithms that operate on digital signal process-
ing (DSP). These also afford low-level computational
abstractions but do not necessarily generate or
operate on formal languages. By contrast, bottom-
up systems necessarily rely on formal languages. DSP
algorithms are mostly engineering abstractions for
time series analysis and computations. A time series
is a sequence of data points, and some applications
include forecasting future data points and smoothing
noisy data, among others. As such, their primary
function is to act as filters of information. A formal
language or a computer architecture is not a filter;
rather, it affords the universal process of computing
any problem given enough time under Turing
completeness (a Turing complete machine is a
universal machine that can approximate any com-
putable mathematical problem).

I did not include in Table 1 a variation of
Betablocker (Bovermann and Griffiths 2014) written
for SuperCollider,® as it would fit within the canonical
live coding systems. In this case, Betablocker (Griffiths
2006) is used as a sound engine, which would spark a
new category of low-level systems that can afford
Turing completeness. Essentially, the system traverses
from canonical live coding to bottom-up systems that
generate low-level DSP processes. This example
demonstrates how hard it can be to apply ‘any easy
classifications’ to live coding systems (Blackwell et al.
2022: 231), as ‘attempts to define this wide field ...

®Tai-studio, An Introduction to Detablocker: https://vimeo.com/
32938807 (accessed 14 April 2023).

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

are likely to become an exercise in herding cats’
(Magnusson 2014a: 14).

5.1. The case of canonical live coding

Canonical live coding is the most common approach.
This includes the ‘standard’ interface of a computer
screen and a keyboard. Whether gestural actions can
be performed on a keyboard is a matter of debate;
however, the current consensus is that typing on a
keyboard is ‘neither observed nor significant’
(Jensenius et al. 2010: 16). While this is undoubtedly
the case in everyday interactions with computers, the
same argument cannot hold in a live coding perfor-
mance context. Typing is typically observed in this
scenario as the performers share their screens.
Furthermore, this becomes significant at certain times,
specifically when code evaluations are performed and
rendered as perceivable sound patterns. The sound
vibrates molecular structures in the affine medium,
that is, gas, liquid or solid. This transforms the
meaning of typing into significant actions, as Baalman
(2009; Baalman n.d.) demonstrate in the Code Live
Code Live video (Table 1). Baalman switches on the
onboard microphone of the laptop, and the typing
sounds are used as raw material for the musical
outcome. This performance setup demonstrates how
typing on a keyboard can be both observed and
significant.

Baalman (2015) has reported that our programming
language of preference can influence our motoric
execution patterns. She elaborates more on embodi-
ment during a performance and provides anecdotal
evidence of typing automaticity. The argument is that
certain typing tasks have been automatised to such an
extent that they require minimum effort. These are
known as body schemas, cognitive organisations of
one’s body that can also monitor sequences of bodily

https://vimeo.com/24390484
https://youtu.be/Uve4qStSJq4
https://vimeo.com/434679284
https://vimeo.com/43121821
https://vimeo.com/205714278
https://vimeo.com/63335988
https://youtu.be/WwhpRtxq1Kg?t=3417
https://youtu.be/WwhpRtxq1Kg?t=3417
https://youtu.be/hfJTF3KTnFM
https://youtu.be/hD-PWNDebD4
https://youtu.be/A-HohsA9R1o
https://youtu.be/lqi-Vqr0qk4
https://vimeo.com/32938807
https://vimeo.com/32938807
https://doi.org/10.1017/S1355771823000444

156 Georgios Diapoulis

motions and appear as learned motor patterns (Leman
and Godey 2010). Whether gestural unfoldings, a term
to indicate a weak temporality’ of bodily gestures,
may influence our mental model of the running
program is an open question (Diapoulis and Dahlstedt
2021a). To elaborate, can this weak temporality of
typing influence how we internally represent code-
sound relations and reason about the running
program? Godegy (2004: 58) has argued that we can
mentally ‘compress’ bodily gestures in time using
imagery, what he refers to as gestural imagery. The
same cannot apply to sounds: we cannot mentally
compress a sound and experience the same character-
istics. Maybe gestural imagery can compensate on-
the-fly due to our frustration with attending to every
single moment of sound and actually influence our
mental model (by encodings on our sensorimotor
network). Baalman reports that our programming
language of preference can shape our motoric actions
so that certain sequences are encoded in our
sensorimotor network as typing gestures that unfold
in time when necessary. If the language of our
preference can shape our motoric patterns, then can
motoric patterns shape the language we use? Simply
put, can the performer’s gestures influence the
development of the programming language? 1 will
elaborate on these two questions in the next section.

5.2. The case of bottom-up live coding

I argue that bottom-up systems exhibit interactivity
variations where the gestures can influence the program-
ming language. I will mainly focus on two cases:
CodeKlavier CKalculator by Noriega and Veinberg
(2019) and the stateLogic machine (Diapoulis and
Zannos 2012). These were chosen because they share
distinct characteristics of gestural interactions. These two
cases, along with Al-jazzari and Betablocker by Griffiths
(2007) and iMac Music by Reus (2012), belong to the
category of bottom-up live coding systems.
CodeKlavier CKalcuhator (Table 1) is a perfor-
mance system that recognises the musical patterns of
the pianist-coder. The extracted MIDI patterns corre-
spond to gestural sequences that the pianist performs
to write lambda functions, a common construct in
functional programming, on-the-fly. The recognition
algorithm identifies repetitive melodic patterns and
then instructs the lambda functions to perform the
corresponding code evaluations. The system affords
simple operations, such as addition and multiplication,
and anecdotal evidence from the pianist-coder suggests
that it is a highly challenging approach to live code, as
the mind is split into two tasks simultaneously. The first
task corresponds to serial skilled actions resulting in the

"By weak temporality I refer to the typing gestures during live
coding, which lack any sense of strong temporal couplings.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

musical outcome, and the second task is to perform
conscious operations to write and modify a running
program. Playing the piano indeed involves pre-
reflective processes. Then, on the notational level of
the generated code, the piano-coder has to allocate
cognitive resources that may hinder expressivity
during the performance. This approach showcases
how musical gestures can be employed to write
computer programs. In practice, the pianist plays
repetitive melodic patterns and incorporates them into
musical improvisation.

When developing the approach to live hardware
coding (Diapoulis and Zannos 2012, 2014), the initial
motivation was to make live coding somewhat more
humane. At the time, as a student of material science, I
naively imagined material crystal structures that could
be
live-coded based on a notation analogous to Miller
indices, a notation system used in crystallography.
This notation system offers a three-dimensional spatial
representation of crystal structures in a binary-like
notation. In this manner, elementary building blocks
of material structures can be abstracted so that the
engineer can imagine larger-scale crystal structures.
As a result, what we literally see as a grain of salt can
be reduced to a minimal expression, and from the
minimal expression, we can deduce some of the
material properties such as stiffness and conductance.
The stateLogic machine (Table 1) is an experimental
interface still in development (Diapoulis et al. 2022)
and demonstrates the generation of a formal language
from the bottom up. Initially, three input buttons were
used, which depended on a clock-based paradigm. In this
way, the user could apply stream-based updates within
less than 0.5 seconds. These short-duration updates can
enable pre-reflective processes. It is possible to automate
certain pattern predictions without expending mental
effort, such as looping into even and odd numbers.
However, the clock-based interaction distorts the
perceived immediacy of the interface, especially when
the updates are larger than 100 milliseconds (Nash
2012). In principle, Al-jazzari, Betablocker and iMac
Music are also clock-based systems. Nevertheless, there
are different embodied percepts when the clock rate is
fast enough, transforming the interaction into phenome-
nally continuous percepts.

Technically speaking, these systems may not
influence the language development process but
they do affect the algorithmic structure of the
written programs. We gesturally intervene to modify
the algorithm’s very workings and there is clearly a
minimal distance between the two. For instance, in
Al-jazzari and Betablocker, the coder may experi-
ment with multiple instruction sets or update them
on-the-fly. Such dynamic updates on the level of an
instruction set can account for developing a

https://doi.org/10.1017/S1355771823000444

Musical Live Coding in Relation to Interactivity Variations 157

language on-the-fly. This is because all studied
systems construct the running program by on-the-fly
assemblages of low-level languages. In iMac Music,
Reus (2012) is taking a radical stance and rewires the
internal hardware components of a personal com-
puter (Table 1). This approach goes one step further
and addresses live coding by intervening in the
wirings of the hardware. How would live coding
look when we can hot-swap modular hardware
components? What would previewing algorithms
look like? Would the system re-arrange its constitu-
ent structure to make a new component? I find a
large range of possibilities for human—material
interactions (Ishii et al. 2012) in live coding, and it
is fascinating that we have not yet scratched the
surface of this topic.

5.3. Mixed systems

All studied performances in the mixed category utilise
direct manipulation with the mouse to some extent.
The most diverse performance is that by The Duchess
of Turing, where various systems are used, some of
which are non-conventional, and one that can be
regarded as a bottom-up system. Specifically, the
TOPLAP app (Collins 2015) uses machine listening
algorithms to program an instruction set. I present this
performance, called Using various, because of the
broad variety of systems used. All other performances
use a single programming system and direct manipula-
tion. The performance by uiae and redFrik share many
similarities, but the difference between textual and
visual language is a major difference. Threnoscope by
Magnusson presents an important contribution to
notation systems while Approximate Programming
by Kiefer presents a sophisticated algorithm for on-the-
fly adjustments. I selected The Duchess of Turing
performance to question whether we can actually form
a mental model of the running program using listening
and all other systems because of the diverse direct
manipulation interactions, ranging from simple param-
eter adjustments to complicated tree algorithms.
What happens when the coder is using a mixture of
different systems? How can the performer form a
mental model of the running program(s) by simply
listening to the musical outcome? These questions are
well illustrated in a live coding performance by The
Duchess of Turing (Table 1) for the fifteenth anniversary
of TOPLAP. During the performance, the composer-
programmer uses a variety of systems, such as PureData
(PD), MAX/MSP, CSound and Scheme, and various
systems developed by Nick Collins, such as BBCut,
Autom8 and TOPLAP app. The live coder switches
between systems to generate sound patterns, creating a
mashup of live coding systems that resembles DJ-ing or
bricolage of live coding systems (McLean and Wiggins

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

2010a). The software systems are not interconnected,; it is
rather the musical outcome that connects everything
together.

Another interpretation of this performance is that
the language design and programming structures no
longer matter when rendered to sound, as auditory
perception can compensate and perceptually ‘bind’
everything together. Would that be somehow opposed
to the view about the idiomaticity of low-level tools, as
presented in McPherson and Tahiroglu (2020)?
Idiomaticity denotes that the design of a tool,
regardless of how open-ended it is, carries design
constraints that can distinctly shape the musical
outcome. This discussion opens questions about
agency. The notion of idiomaticity of programming
languages looks aligned with a theoretical view of how
influential agency progresses from all parties involved,
to the spectator of the artwork by creating feedback
networks (Dahlstedt 2021). The performance in
question appears to suggest that when information
is materialised, it loses its affiliation.

One engaging live coding performance by uiae,
Using PD (Table 1), demonstrates how gestural
interaction with the mouse modifies the system’s
algorithmic structure. Interestingly, as the different
PD objects move around the programming panel, they
modify their connectivity, likely from the relative
distance between nodes. Fredrik Olofsson (Table 1,
superCollider) also demonstrated a similar approach,
where direct manipulation using the mouse modified
the routing of the audio busses. Another system that
uses direct manipulation is the Threnoscope by Thor
Magnusson (2014b), which uses a generative system
combining graphic scores and text-based program-
ming. Using Threnoscope (Table 1), the coder can
continuously control the parameters of the generated
drone sounds, using interactive visuals that display a
descriptive notation shown as coloured rings.

Chris Kiefer (2015) presented an approach based on
a gestural controller called Approximate Programming
(Table 1). This is based on genetic algorithms and the
exploration of parameter spaces for machine musician-
ship. Approximate programming is an interactive
programming paradigm where the user controls the
generation of different unit generators, using a
multiparameter gestural controller. The major contri-
bution of Kiefer’s work is the dynamic modification of
algorithmic tree structures of interconnected unit
generators. Such an approach to live coding demon-
strates how gestural interactions can be applied to
modify the algorithmic structure of a binary tree.

While it can be difficult to distinguish between
algorithmic and parameter modifications, I would like
to discuss this from a perspective that might clarify
how I use the two terms. For a programmer, a variable
is a powerful abstraction. In programming

https://doi.org/10.1017/S1355771823000444

158 Georgios Diapoulis

environments such as SuperCollider (McCartney
2002), a variable can be a generic box that holds
different things. When a system is using variables as
numerical parameters, such as a filter’s cutoff
frequency, then most likely, the generated sound
patterns are predictable. If we use a variable to apply
simple mappings between a control parameter and a
range of numerical values, then we do not exploit the
affordances of a variable. Of course, in some cases,
simple 1-to-1 mappings are necessary and desirable;
for instance, we may want a single knob to control the
tempo and nothing more than that. Still, I draw
attention to this here to clarify that gestural inter-
actions using the mouse or other input devices may
correspond to either simple modifications of a
numerical parameter or complicated algorithmic
modifications such as structural rearrangements of
binary trees (e.g., Kiefer 2015).

This discussion on intervening with gestures on the
algorithm itself is not related to gesture-sound map-
pings in the sense of running an algorithm to identify
some gestural characteristics and render plausible
sounds. I am interested in how we gesturally modify
or re-program the algorithms on-the-fly. So, to avoid
confusion with gesture-sound mappings, I here focus on
gesture-algorithm mappings, which share some similari-
ties with dynamic mapping strategies (Dahlstedt 2009;
Kiefer 2015).

5.4. Summary of the observations

In this section, I have discussed how meaningful
musical gestures can be produced using typing during
canonical live coding. Inspired by Baalman’s typing
automaticity, I question whether gestures can influ-
ence the programming language. The answer becomes
apparent when I examine the bottom-up systems,
where bodily gestures can operate on pre-reflective
processes and influence the development of the
programming language. An online performance that
creates mashups from various programming lan-
guages may indicate the importance of sound, not
the tool. It is similar to when we have a phase
transition in a material (e.g., water crystallises to ice),
but the process is not reversible anymore, meaning
that when the code is rendered to sound, the process is
no longer reversible. Maybe this performance suggests
that when the tool is ignorant of its consequences to
the environment, it loses its agency.

Several performance systems incorporating direct
manipulation have been examined, and I underline the
broad spectrum of interactions, from simple manip-
ulations of numbers to sophisticated algorithms
operating on binary trees. These systems differ from
canonical systems as they offer the user an intuitive
manner for interactions. In cases such as Approximate

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

Programming, the live coder can modify the algorith-
mic structure on-the-fly, using continuous gestural
interactions on multiparameter controllers. This also
exhibits pre-reflective activations during a perfor-
mance. On the other hand, such systems may not allow
code changes to be monitored. When this happens, we
lose the possibility of involuntary imageries due to
notational audiation. Thus, there is a fine line between
intuitive control and how to monitor informative
notations. For instance, in Threnoscope, the live coder
can monitor the descriptive notation as interactive
visualisations of coloured rings and can continuously
control the parametric changes. Thus, if the system’s
temporal updates on the prescriptive notation are too
fast, causing them to become uninformative, we can
facilitate the use of descriptive notations instead
(Magnusson 2019).

6. CONCLUSIONS

This article has explored whether pre-reflective
processes can be activated in live coding. I presented
an embodied cognition view to live coding music
performance by discussing how notation, while
hindering our bodily relationship with the generated
sound patterns, also offers some opportunities. A first
indication comes from the literature review, where the
potential of notational audiation is posited as valuable
to live coders due to involuntary musical imagery.
Typing on a keyboard is an activity that incorporates
serial skilled actions. While this shares similarities with
traditional music performance because they are both
based on serial skilled actions, typing is performed out
of time order, making it difficult to observe entrained
processes in canonical live coding. On the other hand,
two cases of bottom-up live coding systems
(CodeKlavier CKalcuhator and stateLogic machine)
exhibit gestural interactions on timeframes that are
capable of engaging pre-reflective processes during a
performance. Several systems that use direct manipu-
lation are examined, and at least one (Approximate
Programming) also exhibits fast processes, although it
is questionable whether the user can exploit the
prescriptive notation during a performance. Owing
to design constraints, using a descriptive notation can
be an alternative so that involuntary imageries may be
activated due to notational audiation. The study
provides a first account of exploring fast processes in
live coding by conducting observations from online
videos and combining diverse literature, drawing on
music psychology and music perception studies. The
study is limited to solos, which could potentially
constrain the results. But I intentionally limited the
study to musician—system interactions and not musi-
cian—-musician interactions. Thus, some essential
parts of the performer’s interactivity variations are

https://doi.org/10.1017/S1355771823000444

Musical Live Coding in Relation to Interactivity Variations 159

identified, such as the temporal unfolding of bodily
gestures during a performance and how similar or
different this might be from traditional instrumental
performance. Future studies could focus on intersub-
jective experiences in live coding and combine online
video observations with interview studies and ques-
tionnaires to provide a more holistic view of how
practitioners and the community experience fast
processes in musical live coding.

This study contributes to the understanding of live
coding, focusing on the gestural and psychological
aspects of the practice, which have not been extensively
studied before. This benefits both the practitioners, to
increase understanding of the practice from within the
community, and the general electronic music commu-
nity, which may not be familiar with the particular
conditions and practices of live coding. The methodol-
ogy and theoretical background can be helpful to other
under-represented groups practising generative music
and autonomous music systems. As such, it may be
used as a methodological template in how to conduct
observational research from online videos, especially
when there is little theoretical background in the field.

Acknowledgements

I thank Palle Dahlstedt for proofreading and supervi-
sion. I am also thankful to the anonymous reviewers
and guest editors for making this article better.

REFERENCES

American Psychological Association. N.d. Mental Model.
APA Dictionary of Psychology. https://dictionary.apa.
org/mental-model (accessed 23 January 2023).

Baalman, M. 2009. Code LiveCode Live, or Livecode
Embodied. [Performance]. Proceedings of the
International Conference on New Interfaces for Musical
Expression, NIME, 329.

Baalman, M. 2015. Embodiment of Code. Proceedings of the
First International Conference on Live Coding. Leeds:
ICLC, 35-40.

Baalman, M. n.d. Code LiveCode Live. https:/
marijebaalman.eu/projects/code-livecode-live.html (accessed
14 September 2022).

Baily, J. 1999. Ethnomusicological Perspective: Response to
Sawyer’s ‘Improvised Conversations’. Psychology of
Music 27(2): 208-11.

Bishop, L., Bailes, F. and Dean, R. T. 2012. Musical
Imagery and the Planning of Dynamics and Articulation
during Performance. Music ~ Perception: An
Interdisciplinary Journal 31(2): 97-117.

Blackwell, A. F. and Collins, N. 2005. The Programming
Language as a Musical Instrument. Proceedings of 17th
Psychology of Programming Interest Group, University of
Sussex, 120-30.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

Blackwell, A. F., Cocker, E., Cox, G., McLean, A. and
Magnusson, T. 2022. Live Coding: A User’s Manual.
Cambridge, MA: MIT Press.

Bovermann, T. and Griffiths, D. 2014. Computation as
Material in Live Coding. Computer Music Journal 38(1):
40-53.

Brattico, E., Brattico, P. and Jacobsen, T. 2009. The Origins
of the Aesthetic Enjoyment of Music—A Review of the
Literature. Musicae Scientiae 13(2_suppl): 15-39.

Brodsky, W., Kessler, Y., Rubinstein, B. S., Ginsborg, J.
and Henik, A. 2008. The Mental Representation of Music
Notation: Notational Audiation. Journal of Experimental
Psychology: Human Perception and Performance 34(2): 427.

Clayton, M., Jakubowski, K., Eerola, T., Keller, P. E.,
Camurri, A., Volpe, G. and Alborno, P. 2020.
Interpersonal Entrainment in Music Performance:
Theory, Method, and Model. Music Perception: An
Interdisciplinary Journal 38(2): 136-94.

Collins, N. 2015. Live Coding and Machine Listening.
Proceedings of the First International Conference on Live
Coding. Leeds: ICLC, 4-11.

Collins, N. and McLean, A. 2014. Algorave: Live
Performance of Algorithmic Electronic Dance Music.
Proceedings of the International Conference on New
Interfaces for Musical Expression. London: NIME:
355-8.

Collins, N., McLean, A., Rohrhuber, J. and Ward, A. 2003.
Live Coding in Laptop Performance. Organised Sound
8(3): 321-30.

Dahlstedt, P. 2009. Dynamic Mapping Strategies for
Expressive Synthesis Performance and Improvisation.
International Symposium on Computer Music Modeling
and Retrieval. Berlin: Springer, 227-42.

Dabhlstedt, P. 2012. Between Material and Ideas: A Process-
Based Spatial Model of Artistic Creativity. In
J. McCormack and M. d’Inverno (eds.), Computers and
Creativity. Berlin: Springer, 205-33.

Dahlstedt, P. 2018. Action and Perception: Embodying
Algorithms and the Extended Mind. In A. McLean and
R. Dean (eds.) The Oxford Handbook of Algorithmic
Music. Oxford: Oxford University Press, 41-65.

Dabhlstedt, P. 2021. Musicking with Algorithms: Thoughts
on Artificial Intelligence, Creativity, and Agency. In E.
R. Miranda (ed.) Handbook of Artificial Intelligence for
Music. Cham: Springer, 8§73-914.

Diapoulis, G. and Dabhlstedt, P. 2021a. An Analytical
Framework for Musical Live Coding Systems Based on
Gestural Interactions in Performance Practices.
Proceedings of the International Conference on Live
Coding. Valdivia, Chile: ICLC.

Diapoulis, G. and Dahlstedt, P. 2021b. The Creative Act of
Live Coding Practice in Music Performance. Proceedings
of the 32nd Psychology of Programming Interest Group,
York, UK.

Diapoulis, G. and Zannos, 1. 2012. A Minimal Interface for
Live Hardware Coding. Live Interfaces, 1CSRiM,
University of Leeds.

Diapoulis, G. and Zannos, 1. 2014. Tangibility and low-
Level Live Coding. International Computer Music
Conference. Athens: ICMC&SMC.

https://dictionary.apa.org/mental-model
https://dictionary.apa.org/mental-model
https://marijebaalman.eu/projects/code-livecode-live.html
https://marijebaalman.eu/projects/code-livecode-live.html
https://doi.org/10.1017/S1355771823000444

160 Georgios Diapoulis

Diapoulis, G., Zannos, 1., Tatar, K. and Dahlstedt, P. 2022.
Bottom-Up Live Coding: Analysis of Continuous
Interactions towards Predicting Programming Behaviours.
Proceedings of the International Conference on New
Interfaces for Musical Expression. Auckland: NIME.

Emmerson, S. 2017. Living Electronic Music. Abingdon:
Routledge.

Godoey, R. I. 2004. Gestural Imagery in the Service of
Musical Imagery. International Gesture Workshop.
Berlin, Heidelberg: Springer.

Goday, R. 1. 2021. Constraint-Based Sound-Motion Objects
in Music Performance. Frontiers in Psychology, 12.
https://doi.org/10.3389/fpsyg.2021.732729.

Goldman, A. 2019. Live Coding Helps to Distinguish
between Embodied and Propositional Improvisation.
Journal of New Music Research 48(3): 281-93.

Griffiths, D. 2006. Betablocker. General Public Licence
(GPL). www.pawfal.org/flotsam/betablocker/betablocker.
scm (accessed 9 May 2023).

Griffiths, D. 2007. Game Pad Live Coding Performance. Die
Welt als virtuelles Environment. Dresden: TMA
Helleraue.

Haga, E. 2008. Correspondences between Music and Body
Movement. Doctoral dissertation, University of Oslo.
Haworth, C. 2018. Technology, Creativity, and the Social in
Algorithmic Music. In A. McLean and R. Dean (eds.)
The Oxford Handbook of Algorithmic Music. Oxford:

Oxford University Press, 557-81.

Hutchins, C. C. 2015. Live Patch/Live Code. Proceedings of

the First International Conference on Live Coding. Leeds:
ICLC, 147-51.

Ishii, H., Lakatos, D., Bonanni, L. and Labrune, J. B. 2012.
Radical Atoms: Beyond Tangible Bits, toward
Transformable Materials. interactions 19(1): 38-51.

Jakubowski, K. 2020. Musical Imagery. In A. Abraham
(ed.) The Cambridge Handbook of the Imagination.
Cambridge: Cambridge University Press, 187-206.

Jensenius, A. R. 2022. Sound Actions: Conceptualizing
Musical Instruments. Cambridge, MA: MIT Press.

Jensenius, A. R., Wanderley, M. M., Godey, R. I. and
Leman, M. 2010. Musical Gestures: Concepts and
Methods in Research. In R. I. Godey and M. Leman
(eds.) Musical Gestures: Sound, Movement, and Meaning.
New York: Routledge, 12-35.

Keller, P. E. 2008. Joint Action in Music Performance. In
F. Morganti, A. Carassa and G. Riva (eds.) Enacting
Intersubjectivity: A Cognitive and Social Perspective on
the Study of Interactions. Amsterdam: 10S Press, 205-21.

Keller, P. E. 2012. Mental Imagery in Music Performance:
Underlying Mechanisms and Potential Benefits. Annals
of the New York Academy of Sciences 1252(1): 206-13.

Keller, P. E. and Appel, M. (2010). Individual Differences,
Auditory Imagery, and the Coordination of Body
Movements and Sounds in Musical Ensembles. Music
Perception 28(1): 27-46.

Kiefer, C. 2015. Approximate Programming: Coding
through Gesture and Numerical Processes. Proceedings
of the First International Conference on Live Coding,
ICSRiM, University of Leeds.

Kosslyn, S. M. 1996. Image and Brain: The Resolution of the
Imagery Debate. Cambridge, MA: MIT Press.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

Leman, M. 2007. Embodied Music Cognition and Mediation
Technology. Cambridge, MA: MIT Press.

Leman, M. 2016. The Expressive Moment: How Interaction
(with Music) Shapes Human Empowerment. Cambridge,
MA: MIT Press.

Leman, M. and Godey, R. 1. 2010. Why Study Musical
Gestures?. In R. I. Godey and M. Leman (eds.) Musical
Gestures: Sound, Movement, and Meaning. New York:
Routledge, 3-11.

Loveday, C., Woy, A. and Conway, M. A. 2020. The Self-
Defining Period in Autobiographical Memory: Evidence
from a Long-Running Radio Show. Quarterly Journal of
Experimental Psychology 73(11): 1969-76.

Magnusson, T. 2011. The ixi lang: A supercollider Parasite
for Live Coding. Proceedings of the International
Computer Music Conference. Huddersfield: ICMC.

Magnusson, T. 2014a. Herding Cats: Observing Live
Coding in the Wild. Computer Music Journal 38(1): 8-16.

Magnusson, T. 2014b. Improvising with the Threnoscope:
Integrating Code, Hardware, GUI, Network, and
Graphic Scores. Proceedings of the International
Conference on New Interfaces for Musical Expression.
London: NIME, 19-22.

Magnusson, T. 2019. Sonic Writing: Technologies of
Material, Symbolic, and Signal Inscriptions. London:
Bloomsbury Academic.

Marklin, R. W. and Simoneau, G. G. 2004. Design Features
of Alternative Computer Keyboards: A Review of
Experimental Data. Journal of Orthopaedic & Sports
Physical Therapy 34(10): 638-49.

McCartney, J. 2002. Rethinking the Computer Music
Language: SuperCollider. Computer Music Journal
26(4): 61-8.

McKechnie, L. E. F. 2008. Unstructured Observation. In
Lisa M. Given (ed.), The Sage encyclopedia of Qualitative
Research Methods. Thousand Oaks, CA: Sage, 907-8.

McLean, A. 2014. Stress and Cognitive Load. Collaboration
and Learning through Live Coding. Report from Dagstuhl
Seminar, 13382: 145-6.

McLean, A. and Wiggins, G. A. 2010a. Bricolage
Programming in the Creative Arts. Proceedings of the

22nd Psychology of Programming Interest Group,
Madrid.
McLean, A. and Wiggins, G. 2010b. Tidal-Pattern

Language for the Live Coding of Music. Proceedings
of the 7th Sound and Music Computing Conference, SMC,
331-4.

McLean, A. and Wiggins, G. A. 2011. Texture: Visual
Notation for Live Coding of Pattern. Proceedings of the

2011 International Computer Music Conference,
Huddersfield.

McPherson, M. J. and Limb, C. J. 2019. Improvisation:
Experimental Considerations, Results, and Future

Directions. In Rentfrow, P. J. and D. J. Levitin (eds.)
Foundations in Music Psychology. Cambridge, MA:
MIT Press.

McPherson, A. and Tahiroglu, K. 2020. Idiomatic Patterns
and Aesthetic Influence in Computer Music Languages.
Organised Sound 25(1): 53-63.

Myers, B. 1994. Challenges of HCI Design and
Implementation. Interactions 1(1): 73-83.

https://doi.org/10.3389/fpsyg.2021.732729
http://www.pawfal.org/flotsam/betablocker/betablocker.scm
http://www.pawfal.org/flotsam/betablocker/betablocker.scm
https://doi.org/10.1017/S1355771823000444

Musical Live Coding in Relation to Interactivity Variations 161

Nash, C. 2012. Supporting Virtuosity and Flow in Computer
Music. Doctoral dissertation, University of Cambridge.

Nilson, C. 2007. Live Coding Practice. Proceedings of the 7th
International Conference on New Interfaces for Musical
Expression. New York: NIME: 112-17.

Nilson, C. 2016. Collected Rewritings: Live Coding Thoughts,
1968-2015. Burntwood, UK: Verbose. https://composer
programmer.com/research/collectedrewritings.pdf

Noriega, F. 1. and Veinberg, A. 2019. The Sound of
Lambda. Proceedings of the 7th ACM Sigplan
International Workshop on Functional Art, Mousic,
Modeling, and Design. Berlin: FARM, 56-60.

Palmer, C. 1997. Music Performance. Annual Review of
Psychology 48(1): 115-38.

Palmer, C. 2012. 10 Music Performance: Movement and
Coordination. In D. Deutsch (ed.) The Psychology of
Music, 3rd edn. London: Elsevier, 405-22.

Repp, B. H. and Su, Y. H. 2013. Sensorimotor
Synchronization: A Review of recent Research (2006—
2012). Psychonomic Bulletin & Review 20(3): 403-52.

Reus, J. 2012. iMac Music. https://web.archive.org/web/
20161027164504/https://[jonathanreus.com/portfolio/imac-
music/ (accessed 8 April 2023).

Roberts, C. and Kuchera-Morin, J. 2012. Gibber: Live Coding
Audio in the Browser. Proceedings of the International
Computer Music Conference. Ljubljana: ICMC.

Roberts, C. and Wakefield, G. 2018. Tensions and
Techniques in Live Coding Performance. In A. McLean
and R. Dean (eds.) The Oxford Handbook of Algorithmic
Music. Oxford: Oxford University Press, 293-317.

Rohrhuber, J., de Campo, A., Wieser, R., Van Kampen, J. K.,
Ho, E. and Holzl, H. 2007. Purloined Letters and
Distributed Persons. Music in the Global Village
Conference, Budapest.

Roos, F. and McLean A. 2023. Strudel: Live Coding
Patterns on the Web. Proceedings of the International
Conference on Live Coding. Utrecht: ICLC.

Salazar, S. and Armitage, J. 2018. Re-engaging the Body
and Gesture in Musical Live Coding. Proceedings of the
International Conference on New Interfaces for Musical
Expression. Blacksburg, VA: NIME.

https://doi.org/10.1017/51355771823000444 Published online by Cambridge University Press

Sayer, T. 2015. Cognition and Improvisation: Some
Implications for Live Coding. Proceedings of the
International Conference on Live Coding. Leeds: ICLC.

Shapiro, L. and S. Spaulding 2021. Embodied Cognition. In
E. N. Zalta (ed.) The Stanford Encyclopedia of
Philosophy, Winter edn. https://plato.stanford.edu/
archives/win2021/entries/embodied-cognition/ (accessed
18 January 2023).

Shepard, R. N. and Metzler, J. 1971. Mental Rotation of
Three-Dimensional Objects. Science 171(3972): 701-3.
Snee, H. 2013. Making Ethical Decisions in an Online
Context: Reflections on Using Blogs to Explore
Narratives of Experience. Methodological Innovations

Online 8(2): 52-67.

Tanimoto, S. L. 2015. Livesolving: Enabling Collaborative
Problem Solvers to Perform at Full Capacity.
Proceedings of the International Conference on Live
Coding. Leeds: ICLC.

Theodosopoulou Bourlogianni, D. 2021. Music and
Autobiographical Memory: How an Analysis of
Desert Island Discs May Help Conceptualise
Personalised Music Interventions for People Living
with Dementia. Doctoral dissertation, University of
East Anglia.

Varela, F. J., Thompson, E. and Rosch, E. 2017. The
Embodied Mind, Revised Edition: Cognitive Science and
Human Experience. Cambridge, MA: MIT Press.

Zatorre, R. J. and Halpern, A. R. 2005. Mental Concerts:
Musical Imagery and Auditory Cortex. Neuron 47(1):
9-12.

VIDEOGRAPHY

McCallum, L. 2011. Show Us Your Screens. Vimeo,
February 22. https://vimeo.com/20241649 (accessed 14
April 2023).

Villasetior, H. 2019. Dar forma al espacio: Primer
Festival Expresiones Contemporaneas. YouTube, 10
November. https://youtu.be/vVARqRuMoPx8 (accessed
14 April 2023).

https://composerprogrammer.com/research/collectedrewritings.pdf
https://composerprogrammer.com/research/collectedrewritings.pdf
https://web.archive.org/web/20161027164504/https://jonathanreus.com/portfolio/imac-music/
https://web.archive.org/web/20161027164504/https://jonathanreus.com/portfolio/imac-music/
https://web.archive.org/web/20161027164504/https://jonathanreus.com/portfolio/imac-music/
https://plato.stanford.edu/archives/win2021/entries/embodied-cognition/
https://plato.stanford.edu/archives/win2021/entries/embodied-cognition/
https://vimeo.com/20241649
https://youtu.be/vARqRuMoPx8
https://doi.org/10.1017/S1355771823000444

	Musical Live Coding in Relation to Interactivity Variations
	1.. INTRODUCTION
	2.. METHOD
	3.. TRADITIONAL AND LIVE CODING MUSIC PERFORMANCE
	4.. FROM NOTATION TO SOUND AND FROM SOUND TO MUSICAL MINDS
	4.1.. How the interaction is performed
	4.2.. Pre-reflective processes in machine musicianship
	4.3.. Summary on interaction, perception and cognition

	5.. LIVE CODING HERE AND THERE
	5.1.. The case of canonical live coding
	5.2.. The case of bottom-up live coding
	5.3.. Mixed systems
	5.4.. Summary of the observations

	6.. CONCLUSIONS
	Acknowledgements

	REFERENCES
	Videography

