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PRUNED DISCRETE RANDOM SAMPLES
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Abstract

Let Xi, i ∈ N, be independent and identically distributed random variables with values
in N0. We transform (‘prune’) the sequence {X1, . . . , Xn}, n ∈ N, of discrete random
samples into a sequence {0, 1, 2, . . . , Yn}, n ∈ N, of contiguous random sets by replacing
Xn+1 with Yn+1 if Xn+1 > Yn. We consider the asymptotic behaviour of Yn as n→∞.
Applications include path growth in digital search trees and the number of tables in
Pitman’s Chinese restaurant process if the latter is conditioned on its limit value.
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1. Introduction

Let Xi, i ∈ N, be independent and identically distributed random variables with values in
the set N0 = {0, 1, 2, . . .} of nonnegative integers. We assume that

pk := P(Xi = k) > 0 for all k ∈ N0. (1)

In [7] we investigated the gaps in the set {X1, . . . , Xn} ⊂ N0 and found ‘phase transitions’—in
the sense of a qualitative change of behaviour—at two standard discrete distributions. Roughly,
if the tails (qk)k∈N0 ,

qk := P(Xi ≥ k) =
∞∑

j=k

pj , (2)

of the underlying distribution are thinner than that of a Poisson distribution then, with
probability 1, the gaps will eventually vanish as n→∞. In the range between Poissonian and
geometric tail behaviour we still see that the probability of a gap tends to 0. Finally, if the tails
are heavier than that of a geometric distribution then the length of the longest gap in the sample
tends to∞ in probability.

In the present paper we consider the ‘pruned’ samples, by which we mean the sequence of
random sets {0, . . . , Yn} defined inductively by Y1 := 0 and

Yn+1 :=
{

Yn + 1 if Xn+1 > Yn,

Yn otherwise,
for all n ∈ N.
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Pruned discrete random samples 543

Hence, values beyond the current range are reduced so that the range remains contiguous.
Clearly, this leads to a Markov chain (Yn)n∈N with state space N0, starting at 0. This chain is
of pure birth type and thus fully described by the transition probabilities pi,i+1 of moving from
i to i + 1. Indeed, here we have pi,i+1 = qi+1, and it is easy to see that, whenever i → pi,i+1
decreases and has limit 0, then the birth chain can be represented by a pruned discrete random
sample. Our results can therefore be used to obtain the asymptotic behaviour of a wide class
of pure birth processes.

For later use, and also in view of another interpretation of the Y -sequence, we need both the
‘number of failures’and the ‘waiting for the first success’versions of the geometric distribution,
writing Z ∼ Geo0(p) if P(Z = k) = qkp for all k ∈ N0 and Z ∼ Geo1(p) if P(Z = k) =
qk−1p for all k ∈ N, q = 1 − p. We may then regard (Yn)n∈N as the (nonhomogeneous)
renewal process associated with independent lifetimes Gk , Gk ∼ Geo1(qk) for all k ∈ N.

As in [7], our motivation for the study of these processes comes from the analysis of
algorithms and random discrete structures.

Example 1. In the digital search tree (DST) algorithm infinite zero–one sequences xn =
(xn,i)i∈N ∈ {0, 1}N, n ∈ N, are stored sequentially into the nodes u ∈⋃∞

k=0{0, 1}k of a binary
tree in a ‘trickle-down’ manner: starting at the root we use the digits (entries) xn,i of xn to
choose either the left (if xn,i = 0) or right (if xn,i = 1) successor of an occupied node until an
empty node is found. This algorithm and its properties are discussed in [4], [9], and [10].

Suppose now that the xns are independent and that they all have the same distribution µ. For
any node u = (u1, . . . , uk), let µu be the probability that xn has prefix u, i.e. that xn,i = ui for
i = 1, . . . , k. Along a specified path v = (vi)i∈N ∈ {0, 1}∞ the sequence of random trees then
grows like a pruned discrete random sample, with qk equal to µu, u := (v1, . . . , vk). Important
special cases are the symmetric binomial model, with µu = 2−|u|, |u| being the depth of the
node u, and the general binomial model with parameter θ ∈ (0, 1), where µu = θ l(1 − θ)m,
l and m being the number of entries of u that are equal to 0 and 1, respectively. More general
µs appear in connection with the binary search tree (BST) algorithm if we condition on the
value of the limit tree; see [5].

Example 2. The following construction of a sequence (Xn)n∈N of random partitions

Xn = {Bn,1, . . . , Bn,kn}
of the sets {1, . . . , n}, n ∈ N, is known as Pitman’s Chinese restaurant process; see, e.g. [11].
Starting with X1 = {{1}} we obtain Xn+1 from Xn by choosing the next partition, now of
{1, . . . , n, n+ 1}, to be

Xn+1 = {Bn,1, . . . , Bn,kn, {n+ 1}}
with probability 1/(n+ 1) and

Xn+1 = {Bn,1, . . . , Bn,j−1, Bn,j ∪ {n+ 1}, . . . , Bn,kn}
with probability #Bn,j /(n + 1), j = 1, . . . , kn. Here #A denotes the number of elements of
the set A. Clearly, (Xn)n∈N is a transient Markov chain.

Pitman also introduced parametrized extensions of this process. Of these, the processes
with an infinite base set are h-transforms of each other, and the Doob–Martin compactification
can be given explicitly [5]. The elements of the boundary may be represented by probability
distributions ρ = (ρk)k∈N on N, and, conditionally on the limit being ρ, the random sequence
(Kn)n∈N of partition sizes (number of occupied tables in the restaurant model) is identical in
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544 R. GRÜBEL AND P. HITCZENKO

distribution to (Yn + 1)n∈N, where Yn is the rightmost value in the pruned sample sequence
associated with the distribution ρ̃ = (ρ̃k)k∈N0 on N0 given by ρ̃k := ρk+1, k ∈ N0. This is also
related to Kingman’s paint box construction; again, we refer the reader to [11] for details and
further references.

We are interested in the asymptotic behaviour of Yn, especially in the way the asymptotics
depend on the behaviour of the tail probabilities defined in (2). We will see that, again, there are
phase transitions when the tail behaviour moves from the thin to the heavy end of the spectrum.

In the next section we list and discuss our results; proofs are deferred to Section 3.

2. Results

We begin at the thin end, comparing the Yns to the maxima

Mn := max{X1, . . . , Xn}
of the samples. We have P(Mn < k) = (1 − qk)

n for all k, n ∈ N, i.e. the distribution of the
M-variables depends on the distribution of the X-variables in a simple and explicit way.

Clearly, Yn ≤ Mn for all n ∈ N. Also, a jump in the M-sequence entails a jump of size 1
in the Y -sequence, but note that a jump in the M-sequence may be larger than 1, and that the
Y -sequence may jump where the M-sequence does not. The following result shows that, for
rapidly decreasing tails, we have, with probability 1, Yn = Mn eventually.

Theorem 1. The sequence (Mn − Yn)n∈N converges to 0 with probability 1 as n→∞ if and
only if

∞∑
k=0

qk+1

qk

<∞. (3)

We also have a sufficient condition for convergence in probability in terms of (qk)k∈N. For a
partial converse, i.e. in order to deduce this condition from the in-probability behaviour of the
differences, we use a specific random subsequence of the full sequence.

Theorem 2. If

lim
k→∞

qk+1

qk

= 0 (4)

then the sequence (Mn − Yn)n∈N converges to 0 in probability as n→∞. Furthermore, with

τm := inf{n ∈ N : Yn = m}, m ∈ N,

convergence of the sequence (Mτm − Yτm)m∈N to 0 in probability as m→∞ implies (4).

We note in passing that Theorems 1 and 2 together imply that, for samples from a Poisson
distribution, the differences Mn − Yn converge to 0 in probability but not almost surely.

As in [7], the geometric case turns out to be of special interest, in view of its appearance in
connection with the DST algorithm, and also in view of its role as a borderline case. Because of
our general assumption (1), we use the ‘number of failures’version Geo0(p); see also Remark 1
of [7]. We also put r := 1/q. It is well known that, asymptotically, the sequence of maxima
for samples from this distribution, after an appropriate shift, exhibits periodic distributional
fluctuations. Indeed, with a suitable background construction, see, e.g. [6, p. 454], we see that
Mnm − 
logr mn� converges in distribution along subsequences (nm)m∈N that are such that

lim
m→∞{logr nm} = η for some η ∈ [0, 1). (5)
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Here we have written 
x� := max{k ∈ Z : k ≤ x} for the ‘floor’ of x and {x} := x − 
x� for
its fractional part. The limit distribution is the same as the distribution of 
(log r)Z1 + η�,
with P(Z1 ≤ z) = e−e−z

, the Gumbel distribution. A similar result holds for (Yn)n∈N;
see [3]. Along subsequences (nm)m∈N that satisfy (5), the sequence (Ynm − 
logr mn�)m∈N
converges in distribution, where the distribution of the limit is the same as the distribution of

(− log r)Z2 + η�, with Z2 :=∑∞

j=1 qjVj and (Vj )j∈N an independent and identically
distributed sequence of standard exponentials (Dennert and Grübel [3] only treated the case
p = 1

2 , but the extension to general p is straightforward). Remarkably, for the differences, the
periodicities cancel.

Theorem 3. If the random variables Xi are independent and Xi ∼ Geo0(p) for all i ∈ N,
then

lim
n→∞P(Mn − Yn = k) = πk := ak∑∞

l=0 al

for all k ∈ N0,

where the sequence (ak)k∈N0 is given recursively by a0 := 1 and

ak+1 := 1

1− qk+1

(
qak − p

k−1∑
j=0

qk−j aj

)
for all k ∈ N0.

In the proof we will see that ak > 0 for all k ∈ N, and that indeed
∑∞

l=0 al <∞.
At the heavy end of the spectrum of tail behaviour, Mn and Yn drift apart as n→∞; hence,

we deal with the Yns directly. The following result on sums of geometric random variables is
our main tool for this range of tail behaviour; we believe that it is of interest in its own right.

Theorem 4. Assume that the random variables Gk, k ∈ N, are independent and that
Gk ∼ Geo1(qk), with qk = P(X1 ≥ k) as in (2). Set Sn =∑n

k=1 Gk . Assume further
that

qk+1

qk

→ 1 as n→∞. (6)

(a) Then
Sn

ESn

P−→ 1 as n→∞.

(b) For all m ∈ N, let

rm := ESm

EGm

= qm

m∑
k=1

1

qk

.

Then
Sn

ESn

a.s.−−→ 1 as n→∞
if and only if the following condition holds:

∞∑
m=1

e−δrm <∞ for all δ > 0. (7)

In Section 3.5 we will show that (6) implies that rm→∞, but that the rate may be arbitrarily
slow. In particular, condition (7) is not vacuous.
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In order to use this for the pruned samples, we first recall that a function L : R+ → R is
said to be slowly varying (at∞) if

lim
x→∞

L(αx)

L(x)
= 1 for all α > 0.

A standard example is L(x) = (log x)β, β ∈ R. Clearly, if L is slowly varying then so is
x �→ 1/L(x). Such a function L has a de Bruijn conjugate L#, unique up to asymptotic
equivalence, which is again slowly varying, and satisfies

lim
x→∞L(x)L#(xL(x)) = 1 and lim

x→∞L#(x)L(xL#(x)) = 1.

This is Theorem 1.5.13 of [1], our basic reference for this area. For L(x) = (log x)β, we obtain
L# = 1/L, i.e. L#(x) = (log x)−β .

Note that (Yn)n∈N is the renewal process associated with the lifetimes (Gk)k∈N from
Theorem 4. We now obtain our main result for the heavy-tailed case by a process known
as renewal inversion. We write an ∼ bn for two real sequences (an)n∈N and (bn)n∈N if
limn→∞(an/bn) = 1.

Theorem 5. Suppose that, for some α > 0,

qk ∼ k−αL(k) as k→∞, (8)

with L slowly varying. Then, with probability 1,

Yn ∼ n1/(1+α)L0(n) as n→∞,

where L0 is the de Bruijn conjugate of 1/L.

3. Proofs

For very thin tails, we use a pathwise argument that builds on the corresponding result in [7].
For moderately thin tails, we use suitable bounds for the probability in question, together with
direct arguments. The geometric case is approached via a suitable bivariate Markov chain. For
heavy tails, we first prove the result on sums of geometrically distributed random variables and
then obtain the result on the asymptotics of pruned samples.

In addition to the processes X = (Xn)n∈N, Y = (Yn)n∈N, and M = (Mn)n∈N, we define
another process 	 = (	n)n∈N by 	n := Mn − Yn, n ∈ N.

3.1. Proof of Theorem 1

Suppose first that (3) is satisfied. Let ν1 := 1 and, for k > 1,

νk := inf{n > νk−1 : Xn > Xνk−1}
be the jump times of the process M . With probability 1, these are all finite. Let

Ak := {ω ∈ � : Xn(ω) = Mνk
(ω) for some n ∈ {νk(ω)+ 1, . . . , νk+1(ω)− 1}}

be the event that theX-process visits the old maximum before it achieves the next new maximum.
Let A∞ := lim supk→∞Ak be the event that infinitely many of the Aks, k ∈ N, happen. Finally,
let

B∞ := {ω ∈ � : there exists a k0 such that, for all k ≥ k0, Mνk+1(ω) = Mνk
(ω)+ 1} (9)

be the event that, eventually, the jumps of M all have size 1.
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Let ω ∈ A∞ ∩ B∞, with k0 = k0(ω) as in (9). Suppose that 	νk0
(ω) = j . Consider the

evolution of the associated M- and Y -paths from n = νk0(ω) onwards: M jumps by at most 1,
and then Y also jumps by 1; furthermore, if Y visits the old maximum between two jump times,
then 	 decreases by 1 if it is greater than 0. By the definition of A∞, there will be infinitely
many of these visits; hence, 	n(ω) = 0 from some n0 = n0(ω) onwards.

For the proof of sufficiency of (3), it is therefore enough to show that P(B∞) = 1 and
P(A∞) = 1. The first of these is an immediate consequence of Theorem 1 of [7]. For the
second, we consider Ak: on Mνk

= j , this is the event that the post-νk process (Xνk+n)n∈N hits
j when it first leaves the set {0, . . . , j − 1}. A straightforward calculation leads to

P(Ak | Mνk
= j) = pj

qj

. (10)

From (1) and (3), it follows that

α := inf
j∈N0

pj

qj

> 0. (11)

The post-νk process (Xνk+n)n∈N and the pre-νk process (Xνk∧n)n∈N are independent; hence,
(10) and (11) together lead to

P(Ak | Fνk
) ≥ α for all k ∈ N,

with (Fn)n∈N the natural filtration associated with the process X. Clearly, Ak ∈ Fνk+1 , and
P(A∞) = 1 now follows with Lévy’s generalization of the Borel–Cantelli lemma; see, e.g. [8,
Corollary 6.20].

For the proof of the necessity of (3), we note that, as 	n has nonnegative integer values, if
	n→ 0 almost surely then there is a set A with P(A) = 1 such that,

for all ω ∈ A, there exists an n0 ∈ N such that, for all n ≥ n0, 	n(ω) = 0.

On this set, the gaps will eventually vanish as the Y -process can only increase by steps of size 1;
hence, we can apply the other direction of Theorem 1 of [7].

3.2. Proof of Theorem 2

We first show that condition (4) is sufficient. For this, we need the following auxiliary
statement.

Lemma 1. If qk+1/qk → 0 as k→∞ then

qm

m−1∑
j=1

1

qj

→ 0 as m→∞.

Proof. Let ε > 0 be given. For η > 0, pick k0 ∈ N such that qk+1/qk < η for k ≥ k0.
Then, for m > k0, we have

qm

m−1∑
j=1

1

qj

= qm

k0−1∑
j=1

1

qj

+
m−1∑
j=k0

qm

qj

< qm

k0−1∑
j=1

1

qj

+
m−1∑
j=k0

ηm−j < qm

k0−1∑
j=1

1

qj

+ η

1− η
.

If η is such that η < min{ε/3, 1
2 } then η/(1− η) < 2η < 2ε/3. Since qm→ 0, we can find an

m0 such that, for m ≥ m0, qm

∑k0−1
j=1 1/qj < ε/3. This proves the lemma.
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We next show that (4) implies that Mn − Yn → 0 in probability, which is the first part of
Theorem 2.

Take ε > 0, and consider P(Mn − Yn > ε). Since both random variables are integer valued
we have, for all m0 ∈ N,

P(Mn − Yn > ε) ≤ P(Mn ≥ Yn + 1)

=
∞∑

m=1

P(Mn ≥ m, Yn = m− 1)

≤ P(Yn ≤ m0)+
∞∑

m=m0

P(Mn ≥ m, Yn = m− 1)

= P(Yn ≤ m0)+
∞∑

m=m0

P(Mn ≥ m | Yn = m− 1)P(Yn = m− 1).

The key step is the following bound on the conditional probability.

Lemma 2. For any m ≥ 1, we have

P(Mn ≥ m | Yn = m− 1) = 1−
m−1∏
j=1

(
1− qm

qj

)
≤ qm

m−1∑
j=1

1

qj

. (12)

Once we prove this lemma the proof of the theorem may be completed as follows. For
η > 0, first pick m0 ∈ N such that, for m ≥ m0, qm

∑m−1
j=1 1/qj < η/2. This is possible by

Lemma 1. Then, since Yn →∞ in probability, there exists n0 ∈ N such that, for n ≥ n0, we
have P(Yn ≤ m0) < η/2. It now follows that, for n ≥ n0, we have

P(Mn − Yn > ε) ≤ P(Yn ≤ m0)+ η

2

∞∑
m=m0

P(Yn = m− 1) ≤ η.

Proof of Lemma 2. Describe the event {Yn = m− 1} in terms of the sequence (Xk). First,
with τ0 := 0 and τm (m ∈ N) as in the theorem,

{Yn = m− 1} = {τm−1 ≤ n < τm} =
⋃

1≤k1<···<km−1≤n

m−1⋂
j=1

{τj = kj } ∩ {τm > n}.

Note that the union is over pairwise disjoint events. Therefore, it is enough to show that, for all
1 ≤ k1 < · · · < km−1 ≤ n and m ≥ 1,

P

(
Mn ≥ m

∣∣∣∣ m−1⋂
j=1

{τj = kj } ∩ {τm > n}
)
= 1−

m−1∏
j=1

(
1− qm

qj

)
. (13)

Fix 1 ≤ k1 < · · · < km−1 ≤ n. The event
⋂m−1

j=1 {τj = kj } ∩ {τm > n} means that

X∗[1:k1−1] = 0, Xk1 ≥ 1, X∗[k1+1,k2−1] ≤ 1, Xk2 ≥ 2, . . . ,

Xkm−1 ≥ m− 1, X∗[km−1+1,n] ≤ m− 1,
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where, for a set A ⊂ N, X∗A = maxk∈A Xk , and, for nonnegative integers a ≤ b,
[a, b] = {a, a + 1, . . . , b}. Therefore, conditionally on this event, Mn ≥ m means that
max1≤j≤m−1 Xkj

≥ m. Thus, the conditional probability in (13) is

P

(
max

1≤j<m
Xkj
≥ m

∣∣∣∣ m−1⋂
j=1

{τj = kj } ∩ {τm > n}
)

= 1− P

(m−1⋂
j=1

{Xkj
< m}

∣∣∣∣ m−1⋂
j=1

{τj = kj } ∩ {τm > n}
)

.

By the above description in terms of random variables (Xk) of the event we are conditioning
on, the independence of the Xks, and the definition of the conditional probability, we see that
the last probability is

P(j ≤ Xkj
< m; j = 1, . . . , m− 1)

P(Xkj
≥ j ; j = 1, . . . , m− 1)

=
m−1∏
j=1

qj − qm

qj

=
m−1∏
j=1

(
1− qm

qj

)
.

This shows (13) and completes the proof as the inequality in (12) is clear.

For the proof of the second part of Theorem 2, we begin with

P(Xτm = j) =
∞∑
l=1

P(Xl = j | τm = l)P(τm = l).

In view of {τm = l} = {Xl ≥ m} ∩ {Yl−1 = m − 1} and the fact that Yl−1 is a function of
X1, . . . , Xl−1 we have P(Xl = j | τm = l) = P(X1 = j | X1 ≥ m), which leads to

P(	τm > 0) ≥ P(Xτm ≥ m+ 1) = P(X1 ≥ m+ 1 | X1 ≥ m) = qm+1

qm

.

Hence, if (4) does not hold, i.e. if lim supm→∞(qm+1/qm) > 0, then P(	τm > 0) cannot
converge to 0.

3.3. Proof of Theorem 3

We require the following auxiliary result which roughly says that the limit distribution of a
process does not change if its clock is slowed down in a specific manner.

Proposition 1. Suppose that Y = (Yn)n∈N and D = (Dn)n∈N0 are independent Markov chains,
where Y is of pure birth type with birth probabilities

P(Yn+1 = i + 1 | Yn = i) = 1− P(Yn+1 = i | Yn = i) = µi > 0 for all i ∈ N0,

and start at 0, and that D is irreducible and aperiodic, with state space E, transition
probabilities

P(Dn+1 = j | Dn = i) = pD(i, j) for all i, j ∈ E,

and stationary distribution π = (πi)i∈E . Let Z = (Zn)n∈N be defined by

Zn := (Yn, DYn) for all n ∈ N.
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Then Z is a Markov chain with state space N0 × E and transition probabilities

pZ((i, j), (i, j)) = 1− µi for all i ∈ N0, j ∈ E, (14)

pZ((i, j), (i + 1, k)) = µi pD(j, k) for all i ∈ N0, j, k ∈ E. (15)

Furthermore,
lim

n→∞P(DYn = k) = πk for all k ∈ E. (16)

Proof. We first show that

P(Zn+1 = (in+1, jn+1) | Z0 = (i0, j0), . . . , Zn = (in, jn)) (17)

is the same as
P(Zn+1 = (in+1, jn+1) | Zn = (in, jn)). (18)

For this, it is enough to consider paths with in+1 ∈ {in, in + 1} and jn+1 = jn if in+1 = in.
Also, (i0, . . . , in) has to be of the form

(0, . . . , 0︸ ︷︷ ︸
ν0

, 1, . . . , 1︸ ︷︷ ︸
ν1

, . . . , l, . . . , l︸ ︷︷ ︸
νl

)

with l ∈ N0 and ν0 + · · · + νl = n. Then

(j0, . . . , jn) = (k0, . . . , k0︸ ︷︷ ︸
ν0

, k1, . . . , k1︸ ︷︷ ︸
ν1

, . . . , kl, . . . , kl︸ ︷︷ ︸
νl

).

In such cases (17) reduces to either

P(Yn+1 = l, Dl = kl | Y0 = 0, . . . , Yn = l, D0 = k0, . . . , Dl = kl)

or
P(Yn+1 = l + 1, Dl+1 = kl+1 | Y0 = 0, . . . , Yn = l, D0 = k0, . . . , Dl = kl),

which equals 1 − µl or µl pD(kl.kl+1), respectively. The same values appear for (18). This
shows that Z is a Markov chain and also confirms (14) and (15).

For the proof of (16), let k ∈ E and ε > 0. A decomposition with respect to the value of the
clock together with the independence of Y and D results in

P(DYn = k) =
∞∑

m=0

P(Dm = k)P(Yn = m).

The ergodic theorem for Markov chains gives limm→∞ P(Dm = k) = πk , so, for a suitable
m0,

|P(Dm = k)− πk| ≤ 1
2ε for all m ≥ m0.

As the birth probabilities are all strictly greater than 0, it follows further that Yn converges to∞
with probability 1, and, hence, in probability. This implies that, for some n0,

P(Yn < m0) ≤ 1
2ε for all n ≥ n0.
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Combining these we obtain, for all n ≥ n0,

|P(DYn = k)− πk| ≤
(m0−1∑

m=0

+
∞∑

m=m0

)
|P(Dm = k)− πk|P(Yn = m)

≤ P(Yn < m0)+ sup
m≥m0

|P(Dm = k)− πk|
≤ ε.

This completes the proof of the proposition.

We remark in passing that, in contrast to Y and D, the process (DYn)n∈N is not a time-
homogeneous Markov chain; indeed, if limi→∞ µi = 0 then the ‘stay where you are’
probabilities P(DYn+1 = k | DYn = k) tend to 1 as n→∞ for each k ∈ E.

For the proof of Theorem 3, we now define the bivariate process V = (Vn)n∈N by Vn :=
(Yn, 	n) for all n ∈ N. The dynamics of V are given by Vn+1 = �(Vn, Xn+1) with

�((i, j), k) =

⎧⎪⎨
⎪⎩

(i, j) if k ≤ i,

(i + 1, j − 1) if i < k ≤ i + j,

(i + 1, j + l − 1) if k = i + j + l for some l ∈ N.

This implies that V is a Markov chain with state space N0 × N0 and transition probabilities

pV ((i, j), (i, j)) = 1− qi+1,

pV ((i, j), (i + 1, j − 1)) = qi+1 − qi+j+1,

pV ((i, j), (i + 1, j + k)) = pi+j+k+1, k ∈ N0,

in the general case. For Geo0(p), as in the theorem, we obtain

pV ((i, j), (i, j)) = 1− qi+1,

pV ((i, j), (i + 1, j − 1)) = qi+1(1− qj ),

pV ((i, j), (i + 1, j + k)) = qi+1 pqj+k, k ∈ N0.

Now let D = (Dn)n∈N0 be a Markov chain, independent of Y , with state space E = N0, starting
at 0, and transitions

pD(j, j − 1) = 1− qj , pD(j, j + k) = pqj+k for all k ∈ N0. (19)

Clearly, D is irreducible and aperiodic, and positive recurrence follows with Foster’s theorem [2,
p. 167].

Let Z = (Zn)n∈N with Zn := (Yn, DYn) for all n ∈ N. By Proposition 1, Z is a Markov chain
and, on the basis of the above computations, it is easily checked that pZ = pV . Markov chains
with the same transition probabilities and the same initial value are equal in distribution; in
particular, (	n)n∈N has the same distribution as (DYn)n∈N. The final statement in Proposition 1
now implies that 	n converges in distribution to the stationary distribution π of D. Invariance
of π under the transition mechanism (19) means that π solves

πk = (1− qk+1)πk+1 +
k∑

j=0

pqjπk−j for all k ∈ N0,

which implies that it is of the form given in the theorem.
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3.4. Proof of Theorem 4

We begin with a lemma.

Lemma 3. Assume that qk+1/qk → 1 as k→∞. Then, as m→∞,

qm

m∑
k=1

1

qk

→∞, (20)

but it may go to∞ at an arbitrarily slow rate.

Proof. For the first assertion, take an arbitrary M > 0. Since qk+1/qk → 1, there exists an
m0 such that, for m ≥ m0, we have qm+1/qm > 1− 1/M . Then, for m > m0,

qm

m∑
k=1

1

qk

≥
m∑

k=m0+1

qm

qk

≥
m∑

k=m0+1

(
1− 1

M

)m−k

=
m−m0−1∑

j=0

(
1− 1

M

)j

= M

(
1−

(
1− 1

M

)m−m0
)

≥ M(1− e−1),

provided m−m0 ≥ M . This shows (20).
To prove the second assertion of the lemma, let k1, k2, . . . ∈ N and ε1, ε2, . . . decreasing to

0 be given. Let the first k1 qms be defined by

(1− ε1), (1− ε1)
2, . . . , (1− ε1)

k1 ,

the next k2 by

(1− ε1)
k1(1− ε2), (1− ε1)

k1(1− ε2)
2, . . . , (1− ε1)

k1(1− ε2)
k2 ,

and so on, with the last group of km qks given by

m−1∏
j=1

(1− εj )
kj (1− εm),

m−1∏
j=1

(1− εj )
kj (1− εm)2, . . . ,

m−1∏
j=1

(1− εj )
kj (1− εm)km.

Set Kr =∑r
i=1 ki . Then, for Kr−1 ≤ k ≤ Kr , we have

r∏
j=1

(1− εj )
kj ≤ qk ≤

r−1∏
j=1

(1− εj )
kj .

Hence,
Kr∑

k=Kr−1+1

1

qk

≤ kr

r∏
j=1

(1− εj )
−kj ,
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and, therefore, provided that the kj s are increasing,

Km∑
k=1

1

qk

≤ km

m∑
k=1

k∏
j=1

(1− εj )
−kj .

It follows that, for Km−1 ≤ n ≤ Km,

qn

n∑
k=1

1

qk

≤ km

m−1∏
j=1

(1− εj )
kj

m∑
k=1

k∏
j=1

(1− εj )
−kj

= km

m∑
k=1

k∏
j=1

(1− εj )
−kj

m−1∏
j=1

(1− εj )
kj

= km

{m−1∑
k=1

m−1∏
j=k+1

(1− εj )
kj + (1− εm)−km

}
,

where, as usual, we adopt the convention that a product over an empty range is 1. Now, upon
setting εi = 1/ki we see that the term in the curly braces is bounded by an absolute constant
C ≤ e/(e− 1)+ 4 (this may be seen by choosing k1 ≥ 2 and using the elementary inequality
1− x ≤ e−x to bound the first sum). Thus,

qn

n∑
k=1

1

qk

≤ Ckm,

which can go to∞ arbitrarily slowly. This proves the lemma.

We now turn to the proof of Theorem 4.
Recall that if G ∼ Geo1(p) then its moment generating function is

EeλG = peλ

1− (1− p)eλ
=

(
1− 1− e−λ

p

)−1

,

whenever eλ(1− p) < 1, i.e. λ < − log(1− p). Therefore, for any t > 0, we have

P(Sn > t) = P(exp(λSn) > eλt ) ≤ e−λt
EeλSn = e−λt

n∏
k=1

(
1− 1− e−λ

qk

)−1

.

Note that, for any β > 1, if 0 ≤ x ≤ (β − 1)/β then 1/(1 − x) ≤ eβx . We will choose a
suitable β in a moment. For now, note that if λ > 0 is such that (1− e−λ)/qk < (β − 1)/β for
each k = 1, . . . , n, we obtain

P(Sn > t) ≤ exp

{
−λt + β(1− e−λ)

n∑
k=1

1

qk

}
≤ exp

{
−λ

(
t − β

n∑
k=1

1

qk

)}
,

where in the last step we used the inequality 1 − e−λ ≤ λ valid for any λ. Now, fix arbitrary
ε > 0 and set t = (1+ ε)

∑n
k=1 1/qk . Then, choose β > 1 so that δ := 1 + ε − β > 0.
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Finally, set λ = qn(β − 1)/β. Then all the earlier requirements are satisfied (note that since
(qk) is decreasing, we do have 1− e−λ ≤ qk(β − 1)/β for every k ≤ n) and we obtain

P(Sn > (1+ ε)ESn) ≤ exp

{
−δqn

n∑
k=1

1

qk

}
.

But this means that

P

(
Sn

ESn

− 1 > ε

)
≤ exp

{
−δqn

n∑
k=1

1

qk

}
. (21)

To bound the lower tail

P

(
Sn

ESn

− 1 < −ε

)
,

we proceed in a similar fashion: namely, for any λ > 0, this last probability is equal to

P(e−λSn > e−λ(1−ε)ESn) ≤ eλ(1−ε)ESn

n∏
k=1

Ee−λGk

= eλ(1−ε)ESn

n∏
k=1

(
1+ eλ − 1

qk

)−1

.

As before, we note that if 0 < β < 1 then, for 0 ≤ x ≤ (1−β)/β, we have 1/(1+ x) ≤ e−βx .
Therefore, the right-hand side above is further bounded by

exp

{
λ(1− ε)ESn − β(eλ − 1)

n∑
k=1

1

qk

}
≤ exp

{
λ(1− ε − β)

n∑
k=1

1

qk

}
,

provided of course that, for a chosen β, λ satisfies (eλ−1)/qk ≤ (1−β)/β for every 1 ≤ k ≤ n.
It is clear that, for a given β, we may choose λ = cqn for a suitable constant c dependent only
on β. (In fact, we may choose c = log(1+ (1− β)/β).) And now, as earlier, given ε > 0, it
is enough to choose β < 1 so that δ := β − (1− ε) > 0 to obtain

P

(
Sn

ESn

− 1 < −ε

)
≤ exp

{
−δqn

n∑
k=1

1

qk

}
. (22)

Clearly, (21), (22), and (20) imply the first part and the sufficiency of (7) for the almost-sure
convergence of Sn/ESn in the second part of our theorem.

To prove the necessity of (7), suppose that Sn/ESn converges almost surely. We will show
that (7) holds (which in turn will imply that the limit has to be 1). Pick any δ > 0. Note that

Gn

ESn

= Sn

ESn

− ESn−1

ESn

Sn−1

ESn−1
,

and that, by (20),
ESn−1

ESn

= 1− EGn

ESn

= 1− 1

qn

∑n
k=1 q−1

k

→ 1.
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It follows that Gn/ESn→ 0 almost surely. Take any δ1 such that 0 < δ1 < δ. Since the events
{Gm > δ1ESm} are independent, it follows by the Borel–Cantelli lemma that

∞∑
m=1

P(Gm ≥ δ1ESm) <∞.

But, since Gm is geometric with parameter qm, we obtain

P(Gm ≥ δ1ESm) ≥ P(Gm ≥ �δ1ESn�)
= (1− qm)�δ1ESm�−1

≥ (1− qm)δ1ESm

= ((1− qm)q
−1
m δ1δ

−1
)δqm

∑m
k=1 q−1

k .

Since δ1/δ < 1, for all m sufficiently large

(1− qm)q
−1
m δ1δ

−1 ≥ e−1.

Thus,
∞∑

m=1

exp

{
−δqm

m∑
k=1

1

qk

}
<∞,

which proves (7).

3.5. Proof of Theorem 5

From [1, Theorem 1.5.11] we obtain

ESm =
m∑

k=1

1

qk

∼ mα+1

L(m)
as m→∞. (23)

Together with (8) this shows that (7) is satisfied. By Theorem 4 and (23),

Sm ∼ mα+1

L(m)
as m→∞,

almost surely.
For a function f : R+ → R, we define its ‘inverse’ f← by

f←(y) := inf{x ∈ R : f (x) ≥ y}.
Then n → Yn is the inverse of m → Sm in this sense, and the statement of the theorem now
follows with [1, Proposition 1.5.15].
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