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ON RELATIONS BETWEEN JACOBIANS AND RESULTANTS
OF POLYNOMIALS IN TWO VARIABLES

TAKIS SAKKALIS

This paper investigates some of the connections between the zeros of a polynomial
vector field F = (f,g): C* — C* and the Jacobian determinant J(f,g) of f and
g. As a consequence, sufficient conditions are given for F to have no zeros. In
addition, in the case where F has an inverse F~! it is proven that F~! is also
polynomial.

1. INTRODUCTION

Let f(z,y),9(z,y) be nonzero polynomials with coefficients in C, and let F =
(f,9): C* — C*. A zero of F is a point (zo,y0) € C* with the property F(zo,%) =
(0,0).

In this paper we investigate some of the connections between zeros of F' and the
Jacobian determinant J(f,g) of f and g. This leads to the consideration of resultants
of the type Res, (f —u,g —v) = A(z,u,v), Res, (f —u,g —v) = B(y,u,v), where u
and v are indeterminates. Let k, r be the degrees of A(z,u,v) in ¢ and B(y,u,v) in
y, respectively. Theorem 1 of Section 3 gives necessary and sufficient conditions for k
and 7 to be zero in terms of J(f,g). As a consequence, sufficient conditions are given
for F to have no zeros.

In the case where F is 1 — 1 and onto, we show (Section 4) that £ = » = 1.
Furthermore, A(z,u,v) = az + Ao(u,v), B(y,u,v) = by + Bo(u,v), (Lemma 2), and
this gives rise to the well-known fact that F has a polynomial inverse, F~1; Proposition
1 specifically computes F~!. The McKay-Wang inversion formula which generalises
Cramer’s rule to two polynomials in two variables, was first derived in {3] and rederived
by Adjamagbo and van den Essen in [1]. Our Proposition 1 also rederives this formula
by using a different approach. As a result, F' is completely determined by its “border

polynomials”. We conclude with a conjecture regarding the nonexistence of zeros of F'.

Received 15th June 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 $A2.00+-0.00.

473

https://doi.org/10.1017/50004972700015306 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015306

474 T. Sakkalis (2]

2. PROPERTIES OF RESULTANTS

Throughout this paper f(z,y) and g(z,y) are polynomials in z, y with coefficients
in the field C of complex numbers. We begin with the following definitions: The
Jacobian determinant, J(f,g), of f and g is defined by

8f 81

8z [
J(f,9)= \ oy oy |-

bz By

Let

a(t) =ant"+-- -+ a1t + ao
b(t) =bmt™ + -+ it + b

be nonzero polynomials of degrees n and m respectively, with coeflicients in an inte-
gral domain D. The resultant of a, b with respect to t, Res;(a,b), is the following
(m +n) x (m + n) determinant:

aqn AQpn-1 Qg
ay e ay ag
Res; (a,b) = an ... ... ag
b bo
by ... ... ... b

There are several well-known properties of resultants, [2, 6]. We state here those that
will be needed later.

PROPERTY 1. There are polynomials A(t), B(t) € D[t] of degrees n',m' respectively,

n' <m, m' <n so that
a(t)A(t) + b(t)B(t) = Res¢(a,b) .

PROPERTY 2. Res;(a,b) = 0 < a(t) and b(t) have a common factor of positive degree.

PROPERTY 3. Let a(z,y) = anz™ + an-1(y)z™ ! + -+ + a1(y)z + ao(y),b(z,y) =
bnz™ + bm_1(y)z™ 1 + -+ + bi(y)z + bo(y) € Cly][z], with an,b,, nonzero complex
numbers, and consider p(y) = Res., (a,b). If yo € C is a root of p(y), then there exists
an zo € C with the property a(zo,y0) = b(z0,y0) = 0.
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PROPERTY 4. Let a(t) = an [] (t — a:), b(t) = bm [] (¢t — B;) be the factorisations of
=1 i=1
a(t),b(t) in some splitting field E of a,b over the quotient field of D. Then

Res: (a,0) = a7ty [ [ T (e = £5) = ol [] ¥les) = ()"0, [T a(8)) -
i=1 j=1 i=1 i=1
PROPERTY 5. Res;(a,bc) = Res; (a,b) Res; (a,c), for any nonzero ¢ € D[t].

DEFINITION 1. Let p(z,y) be a polynomial with coefficients in D whose de-
gree in = is n. We say that p is quasi-regular in z if the coefficient of z™ in p(z,y) is
a nonzero constant.

Let us now consider polynomials f(z,y),g(z,y) so that their degress in z and in
y are positive. Since we are going to consider resultants of f and g with respect to &
and y, in view of Property 3, we shall henceforth assume, unless otherwise stated, that

f and g are quasi-regular in both z and y.

3. A FIRST RELATION

Let u,v be indeterminates. Consider

A(z,u,v) = Resy (f —u,9 —v),
B(y,u,v) = Res, (f — u,g9 —v),

and write

Az, u,v) = Ar(u,v)e® + - + A1 (n,v)z + Ao(x,v),

1
M) B(y,u,v) = B.(u,v)y" + - -+ + B1(u,v)y + Bo(u,v).

Our aim is to investigate the connection between the degrees k and r of A, B and
the nature of the polynomials f and g.
The following theorem provides a necessary and sufficient condition for k and r to

be zero.
THEOREM 1. Let f(z,y) and g(z,y) be quasi-regular in z as well asin y. Let
A(z,u,v), B(y,u,v), k,r be as above. Then, the following conditions are equivalent:
(i) k=0.
(i) r»=0.
(ii)) 3p(u,v), ¢ #0, with ¢(f,g9) = 0.
(iv) J(f,9)=0.
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PRoOF: We first note that Ag(u,v)Bo(u,v) # 0: Since f and g are quasi-regular
in y, it follows that

Resy (f —u,g— 'U)|z=0 = Resy (.f(oay) - uag(oay) - v) 7é Oa

hence A¢(u,v) = A(0,u,v) # 0. Similarly, by the regularity in z, Bo(u,v) # 0.

(i)=>(ii). We argue by contradiction. Suppose then that r > 1. In that case
pick (uo,v0) € C* so that Br(uo,vo)A4o(uo,v0) # 0, and let yo € C be such that
B(yo,u0,v0) = 0. By Property 3, we can find o € C with the property that f(zo,y0)—
uo = g(€0,¥%0) — vo = 0. Then

0= Resy (f(zo,y)—uo,y(a:o,y)-—vo) = Resy (f("ca y)—ug,g(:c, y)—vﬂ)},;:zO = A(:Bo,uo,‘vo)-

But the latter contradicts the hypothesis that A(zg,u0,v0) = Ao{ue,ve) # 0.
(i1) = (iii). Using Property 1, we get that B(y, f,g) = 0. Since r =0, B(y,u,v) =
By(u,v). Hence Bo(f,g) = 0. But Bo(u,v) # 0.
(ii) & (iv). Let p(u,v) be of minimal positive degree so that ¢(f,g) = 0. Then

8f 8 =
5 sl LE(fal |0
By minimality, we note that either %(_f,g) #0 or %(f,g) # 0. Thus J(f,g) =0.
Conversely, assume that f, g are algebraically independent. Then since A(z, f,g) =

B(y, f,g9) = 0, we see that there exist polynomials K(z,u,v) and H(y,u,v) of minimal
positive degrees in @,y respectively, so that K(z, f,¢9) = H(y, f,9) = 0. Then

8K (z,f,9) %—If(z,f,y)] [% g—i]:[—%—z’g(z,f,g) 0
Hw.fe) Bwie] (82 % 0 ~8H(y, f,g)

8z By
But (8K)/(0z)(=, f,9) - (0H)/(8y)(y, f,g) # 0, and thus J(f,g) # 0.

(iv)=>(i). Assume that k> 1. Pick (ug,ve) € C? so that Ag(uo,ve)Ao(uo,ve) #0
and let =g € C be such that A(zo,u0,v) = 0. By a property similar to Property 3, we
can find yo € C such that f(zo,y0)—uo = g(zo,y0)—vo = 0. Furthermore, we note that
the polynomials f(z,y)—uo and g(z,y) —vo have no common factor of positive degree
for otherwise the common factor h(z,y) has positive y-degree and A(z,uo,v0) = 0
by Property 5, contradicting Ao(uo,v0) # 0. Let f(z,y) = f(z + 2o,y + %o) — uo,
9(z,y) = g(z + %o,y + yo) — vo. Then F(0,0) = §(0,0) = 0 and J(f,g) = 0. Using
(iii) we can find ¢p(u,v) of minimal positive degree so that ¢ (f,7) = 0. Furthermore,
since (0,0) = 0, ¢(u,v) has no constant term. In that case we see that f(z,y) and
g(z,y) have a common factor of positive degree, d(z,y) say. The latter implies that
d(z — zo,y — Yo) is a common factor of positive degree of f(z,y)—uo and g(z,y)—vo. a
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REMARK 1. Quasi-regularity cannot be dropped from the hypothesis of the theorem as
the following example indicates: Let f(z,y) = zy+1, g(z,y) = zy+2. Then J(f,g) =
0 but A(z,u,v) =z(u—v+1), Bly,v,v)=y(ze~v+1) and thus k=r=1.

The above theorem takes a special form when f(z,y) and g(z,y) are homogeneous
polynomials. Before we can state it we shall need the following result, due to Swan,

which is an easy consequence of Property 4.
LEMMA 1. Let n,m>1, a,b€ C, ab# 0. Then
d
Res; (az™ — u,be™ — v) = (-1)" (a"‘/dv"/d - b"/du'"/d) ,
where d = ged (m,n).
In view of the above, we then have the following well-known result:

COROLLARY 1. Let f(z,y),9(z,y) be homogeneous polynomials, not necessarily

quasi-regular in z,y, of positive degrees n,m respectively. Then
J(f’g) =0& cfm/d =gn/d )

where ¢ € C, d = gcd (m,n). In particular, cf = g if m =n.

PROOF: By a linear change of coordinates we may assume that f(z,y) and g(z,y)
are quasi-regular in z. Suppose first that J(f,g) = 0. Then Res, (f —u,g —v) =
B(y,u,v) = Bo(y,u,v) = Res, (az™ —u,bc™ —v) = (-1)" (a’"/dv"/d - b"/du"‘/d)d,
where a,b are the coeflicients of z™,2™ in f(z,y), g(z,y) respectively. But Bo(f,g) =
0. The converse is trivial.

COROLLARY 2. Let f(z,y),9(z,y) be polynomials of positive degrees in z,
quasi-regular in . Then

J(f,9) = 0= Res(f,g) = ¢, c is a constant.

PROOF: Res, (f,g) = Bo(0,0). 0

Quasi-regularity is essential in the hypothesis of the above corollary as Remark
1 shows. Also, as a consequence of the above corollary and Theorem 1, if f,g are
algebraically dependent polynomials, then they either have no zeros or they have a
common factor of positive degree.

When only one parameter is allowed in (1), Theorem 1 takes a somewhat different
form. We begin with the following. Let h(z,y) be irreducible in C[z,y] of positive
degree in both z and y, quasi-regular in z and y. Consider

A
(1a) p(y,u) = Res, (f —u,h) = ) _ pj(u)y’

j=0
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where X is the y-degree of p(y,u). Note that pg(u) has positive degree because h
has positive degree in z. The following theorem provides a necessary and sufficient

condition for A =0.

THEOREM 2. Let h,p(y,u) be as above. Then the following conditions are equiv-
alent:
(i) Ar=0.
(i) h(z,y) divides J(f,h).
(iii)) There is a unique ug so that h divides f — uy.
(iv) po(u) = c(u — ug)?, where ¢ = deg, h(z,y),c € C.

PRrRoOF: (i)=(ii). Let uo be such that po(uo) = 0. Then f — ug = h-d by
Property 2 and a computation shows that J(f,h) = h-J(d,h).
(1) = (iii). For this we consider the following cases:
a) h divides f,. We are going to show that A = 0. We argue by contradiction.
Suppose then that A > 1. Pick uo € C so that pa(up) # 0 and let yo € C be
such that p(yo,20) = 0. By Property 3, we can find zq € C with the property that
f(zo,y0) —uo = h(zo,y0) = 0. We also note that h divides f, since it divides J(f,h).
Therefore f(zo,y0) — 2o = fz(Z0,%0) = fy(z0,%) =0 and {(z,y) € C* | f —uo =0} is
a singular curve (over C*). Now let § = {u € C | pa(u) # 0}, and for each u € §, let
C. be the curve {(z,y) € C* | f — u = 0}. We observe that every C, is singular (over
C?). But C, is singular if and only if v € f[(z,y) | f- = fy = 0], an impossibility as
Sard’s theorem indicates, [5]. Thus A = 0.
B) h does not divide f,. Let (zo,y0) € C* be with the properties h(zo,y0) = 0 and
fy(zo,y0) -hy(2o,y0) # 0, and let ug = f(2o,y0). In that case using the Inverse Function
theorem we can find C'* functions y = p(z), y = ¥(z) with ¢(zo) = ¥(z0) = yo and
h(z,¢(z)) = f(z,%(z)) — wo = 0 in a neighbourhood U of z¢. But since h divides
J(f,h) we conclude that ¢'(z) = 9'(z) near zo. That implies p(z) = ¥(z) in U, and
thus h divides f —uy. Finally, we note that uy is unique since h is irreducible.
(ii)= (iv) Let ug,u; be zeros of po(u). Then f—uo =h-do, f —uy = h-d;, and
thus 2y — ug = h(dy — d1) or u; = ug. Therefore pp(u) = c(u - uo)k, for some c € C,
k > 1. But then since h is quasi-regular in z, h(z,0) has ¢ zeros—counted with
multiplicities. That, along with Property 4, shows that k = q. 0

Now let g = hAT' h3?---h7* n; > 1, be the prime factorisation of g in Clz,y],
and let ¢; = degh;(z,y), = 1,...,5. Note that every hi(z,y) is quasi-regular in =z
and y.

Using the previous theorem and Property 5 we can obtain the following:

COROLLARY 3. Let f,g,h; be as above. Then
(1) Res, (f —u,9) = p(u) & h; divides J(f,hi) forall i =1,...,s.
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(1) Suppose that Res, (f —u,g) = p(v). Then

8
p(u):cn(u—u.-)m‘, uj,c€Candm;=mn; -¢,i=1,...,s.
=1

4. THE INVERTIBILITY OF F

Let f(z,y),9(z,y) be as before and let n; = deg f(=,0), n; = deg f(0,y), m, =
deg g(z,0), mz = degg(0,y) and F = (f,g) : C2* — C?. For convenience we assume
that F(0,0) = (0,0). In this section we shall state a necessary and sufficient condition,
in terms of the polynomials A(z,u,v) and B(y,u,v), for the map F to be 1 —1 and
onto. Our results are similar to the ones in [1], and they come as a natural by-product
of our earlier considerations.

LEMMA 2. Let f,g,F, A(z,u,v) and B(y,u,v) be as above. Then F is 1—1 and
onto = A(z,u,v) = az + Ao(u,v), B(y,u,v) = by + Bo(u,v), where a,b € C,ab #0.

ProoF: We shall first prove that k = » = 1. We first note by Property 1 that
k,r > 1 since F is onto. Pick (ug,vp) € C? so that Ap(uo,v0) # 0. Since F is
an automorphism, f and g are quasi-regular in z [3], and thus by Property 3 the
polynomial p(z) = A(z,uo,v0) has only one root, say zo. We are going to compute
p'(z0). Let the unique yo be such that f(zo,y0) — wo = g(z0,y0) — vo = 0. Now
let T = 2,7 = y — yo and write f(z,y) = f(Z,7), 9(=,¥) = 9(ZF,y)- Observe that
deg f(zo,y) = deg f(zo,7) and deg g(zo,y) = degg(zo,7). Now using the Chain rule
for resultants [4, Theorem 6, p.349] we have :

(2) Res‘y (.f(mvy) - uOyg(z)y) - 'UO) = Resi G(zjﬁ) - u(hy(iag) - ’Uo).

We get p'(zo) by differentiating the above resultant with respect to T and evaluating
the result at £ = zo. This amounts to differentiating the last column only of the
determinant defining the resultant, since f(z9,0)—uo = g(zo,0)—uo = 0. By expanding
the resulting determinant by its last column and then expanding the two cofactors by

their last columns, we get:

n f(z yY)— up G(To,Y) — v _
(3) pl(m) =(-1)™ [Resi (f( 0 ;) o,g( 0,1;) o)} .J(‘f,g)(zo,o)_
The above shows that p'(z¢) # 0, since 0 is the only common root of f(z¢,¥) — uo
and g(zg,¥) — vo, and thus k = 1. Similarly, we can prove that r = 1. Now suppose
that A;(u,v) is not a nonzero constant. In that case we pick (u;,v1) € C* so that

Ai(v1,v1) = 0. Then, depending upon whether Ao(u1,v;) is nonzero or zero, the
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polynomials f —u; and g —v; will either have no common zero or will have a common
factor of positive degree. But this is a contradiction to F being 1 — 1 and onto. 0

We say that F has a polynomial inverse if there is a polynomial map G(z,y) =
(p(z,v),q(=,y)) so that G o F(z,y) = (z,y). For a polynomial map F = (f,g) we
define its degree, deg F(z,y), to be the highest degree of the monomials in f(z,y) and
9(z,y).

The following Proposition describes precisely what the inverse G of F is, in the
case where F' is 1 — 1 and onto.

PROPOSITION 1. Let F, a, b, Ag(u,v), Bo(u,v) be as in Lemma 2 and
G(z,y) = (—(A4o(z,y))/a ,—(Bo(z,y))/b). Then G is the inverse of F(z,y). Fur-
thermore, deg F(z,y) = deg G(z,y) .

PROOF: In view of Lemma 2 and Property 1 we have:

" = (=z,y) .

Go F(z,y) = G(f,9) = (_Ao(f,y) ,_Bo(l{,g) )

For the second assertion, we note that Ao(u,v) = Res, (f(0,y) — »,g(0,y) —v), and
thus deg A¢(u,v) = max(na,m;) and, similarly deg Bo(z,v) = max(n;,m1). Thus,

deg G = max (n1,n2,m1,m3). But since the Newton polygons of an automorphism are
triangles we see that deg F(z,y) = deg G{z,y), [3]. 1]

Finally, we may use the so-called “border polynomials” of F(z,y) to describe
explicitly its inverse, G(z,y). These are f(z,0), g(z,0), f(0,y) and g(0,y). Using
Lemma 2 we get:

(4)
AO('"')'") = Resy (f(oa y) - ’u.,g(o,y) - v) ) Bo(u,'v) = Res; (f(.’l:,O) - u,g(:c,O) - ‘U) .

Furthermore, (3) together with the Chain rule for resultants shows that

(5) o= (-1 [Res, (202, L89) g7, 00,01,

Yy Y
Likewise
(6) b= (1) [Res, (122, 220N (1, 9)0,0)
Thus,

PropOsSITION 2. If F =(f,9) is 1 —1 and onto, F has a polynomial inverse
G which is completely determined by the border polynomials of F'.
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5. A CONJECTURE

Let F = (f,g) be as before, but not necessarily F(0,0) = (0,0). It is clear that F
has no zeros if there exist polynomials p(z,y), ¥(z,y) so that fo+ gy = 1. The latter
is equivalent-by Property 3-to the fact that Res,(f,g) = ¢1 and Res,(f,g9) = ¢z,
c1c2 #0, ¢; € C.

In Section 3 we saw that if J(f,g) = 0, then Res;(f,g9) = ¢,c € C. Further-
more, (Corollary 3), whenever every irreducible factor h of g divides J(f,h), then
Res. (f,g9) = c. We believe that a partial converse of Corollary 2 is true; we state it in
the form of the following;:

CONJECTURE. Let f(z,y),9(z,y) be quasi-regular in z. Then Res; (f,g9) = ¢,
¢ € C = there exists a point (zo,y0) € C* for which J(f,g)(zo,y0) = 0.

REMARK 2. We note that the above conjecture is trivially true in the case where ¢ =0.
We conclude with a consequence of the above conjecture in relation to the Jacobian

conjecture.

REMARK 3. Let F = (f,g) : C2 — C? be such that J(f,g) = 1. Then, if the above

conjecture is true, F' is onto.

PRrROOF: By a linear change of coordinates we may suppose that f,g are quasi-
regular in z. Now, if there exists a point (s,t) for which F~(s,t) = 0, then
Res, (f —s,9—t) =c # 0. But J(f —s,9-t) = J(f,g) = 1, contradicting the con-
Jecture. 0
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