
BULL. AUSTRAL. MATH. SOC. 30C10

VOL. 47 (1993) [473-481]

ON RELATIONS BETWEEN JACOBIANS AND RESULTANTS
OF POLYNOMIALS IN TWO VARIABLES

TAKIS SAKKALIS

This paper investigates some of the connections between the zeros of a polynomial
vector field F = (/, g): C2 —» CJ and the Jacobian determinant J(f,g) of / and
g. As a consequence, sufficient conditions are given for F to have no zeros. In
addition, in the case where F has an inverse F~l , it is proven that F-1 is also
polynomial.

1. INTRODUCTION

Let f(x,y),g(x,y) be nonzero polynomials with coefficients in C, and let F =
(/,#): C2 —> C2 . A zero of F is a point (xo,yo) S C2 with the property F(xo,yo) =
(0,0).

In this paper we investigate some of the connections between zeros of F and the
Jacobian determinant J(f,g) of / and g. This leads to the consideration of resultants
of the type ReSj, (/ — u,g — v) = A(x,u,v), Res^ (/ — u,g — v) — B(y,u,v), where u
and v are indeterminates. Let k, r be the degrees of A(x,u,v) in x and B(y,u,v) in
y, respectively. Theorem 1 of Section 3 gives necessary and sufficient conditions for A;
and r to be zero in terms of J(f,g). As a consequence, sufficient conditions are given
for F to have no zeros.

In the case where F is 1 — 1 and onto, we show (Section 4) that k — r = 1.
Furthermore, A(x,u,v) — ax + Ao(u,v), B(y,u,v) = by + Bo{u,v), (Lemma 2), and
this gives rise to the well-known fact that F has a polynomial inverse, F-1; Proposition
1 specifically computes F~x. The McKay-Wang inversion formula which generalises
Cramer's rule to two polynomials in two variables, was first derived in [3] and rederived
by Adjamagbo and van den Essen in [1]. Our Proposition 1 also rederives this formula
by using a different approach. As a result, F is completely determined by its "border
polynomials". We conclude with a conjecture regarding the nonexistence of zeros of F.
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2. PROPERTIES OF RESULTANTS

Throughout this paper f(x,y) and g(x, y) are polynomials in x, y with coefficients

in the field C of complex numbers. We begin with the following definitions: The

Jacobian determinant, J(f,g), of / and g is defined by

J(f,g) =
i

8y
i

dx

6x By

Let

a(t) = ant
n H h ait + ao

b(t) = bmtm + • • • + 6i< + 60

be nonzero polynomials of degrees n and m respectively, with coefficients in an inte-

gral domain D. The resultant of a, 6 with respect to t, Rest(a, b), is the following

(m + n) x (m -f- n) determinant:

Rest (a, b) =

an

bm

an-i

On

bm

a0

ax

an

a0

an

... 60

There are several well-known properties of resultants, [2, 6]. We state here those that

will be needed later.

PROPERTY 1. There are polynomials A{t),B(t) G D[t) of degrees n',m' respectively,

n' < m, m' <n so that

a(t)A(t) + b(t)B{t) = Rest (a, 6) .

PROPERTY 2. Rest (a, t ) = 0 ^ a(t) and b(t) have a common factor of positive degree.

PROPERTY 3. Let a(x,y) = anx
n + o ^ i ^ J x " - 1 -I + ai(j/)x + ao(y),b(x,y) =

bmxm + bm^1(y)xm~1 + • • • + bx(y)x + bo(y) G C[j/][x], with an,bm nonzero complex

numbers, and consider p(y) = Res^ (a, 6). If yo G C is a root of p(y), then there exists

an x0 G C with the property a(xo,yo) = 6(x0,2/o) = 0.
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n m

PROPERTY 4. Let a(t) = an Y[ (t - a,) , b(t) = bm f] (t - fij) be the factorisations of

a(t),b(t) in some splitting field E of a, 6 over the quotient field of D. Then

Rest (a, 6) = a™6» J ] JJ (a, - ft) = <

PROPERTY 5. Res« (a, 6c) = Rest (a, 6) Rest (a, c) , for any nonzero c G

DEFINITION 1. Let p(x,y) be a polynomial with coefficients in D whose de-

gree in x is n. We say that p is quasi-regular in x if the coefficient of xn in p(x,y) is
a nonzero constant.

Let us now consider polynomials f(x,y),g(x,y) so that their degress in x and in
y are positive. Since we are going to consider resultants of / and g with respect to x

and y, in view of Property 3, we shall henceforth assume, unless otherwise stated, that
/ and g are quasi-regular in both x and y.

3. A FIRST RELATION

Let u,v be indeterminates. Consider

A(x,u,v) = Ress (/ -u,g- v),

B(y,u,v) = Res* (/ - u,g - v),

and write

A(x,u,v) = Ak{u,v)xk -) h J!I(M,V)Z + A0(U,V),

B(y,u,v) = BT(u,v)yr -\ \- B1(u,v)y + B0{u,v).

Our aim is to investigate the connection between the degrees k and r of A, B and

the nature of the polynomials / and g.

The following theorem provides a necessary and sufficient condition for k and r to

be zero.

THEOREM 1. Let f(x,y) and g(x,y) be quasi-regular in x as well as in y. Let

A(x,u,v), B(y,u,v), k,r be as above. Then, the following conditions are equivalent:

(i) fc = 0.
(ii) r = 0.
(iii) 3<p(u,v), f^O, with <p(f,g) = 0.

(iv) J(f,g) = 0.
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PROOF: We first note that Ao(u,v)Bo(u,v) ^ 0: Since / and g are quasi-regular
in y, it follows that

Res,, (f-u,g- v)\x=0 = Resy (/(0,y) - u,g{0,y) - v) # 0,

hence A0(u,v) — A(0,u,v) ^ 0. Similarly, by the regularity in x, Bo{u,v) ^ 0.
(i)=»(ii). We argue by contradiction. Suppose then that r ^ 1. In that case

pick (uo,vo) G C2 so that BT(uo,vo)Ao(uo,vo) ^ 0, and let j/o £ C be such that
-Bd/Ojî ojUo) = 0. By Property 3, we can find zo G C with the property that f(xo,yo) —
u0 = g(xo,Vo) -v0 — 0. Then

0 = Ress (f(xo,y)-uo,g(xo,y)—v0) = Ress (f{x,y)—uo,g(x,y)-vo)\x=xo = A{xo,uo,vo

But the latter contradicts the hypothesis that A(XQ,UQ,VQ) = AQ(UQ,VO) ^ 0.
(ii)^>(iii). Using Property 1, we get that B(y,f,g) = 0. Since r = 0, 5(i/,w,7;) =

B0(u,v). Hence B0(f,g) = 0. But jBo(ii,i;) ^ 0.
(iii)<=>(iv). Let y>(-u,i;) be of minimal positive degree so that y>(f,g) = 0. Then

I Of 8g -i
si e^

By minimahty, we note that either §£(/,$) ^ 0 or %%(f,g) ^ 0. Thus J(/ ,p) = 0.
Conversely, assume that / , g are algebraically independent. Then since A(x,f,g) =

B(y,f,g) = 0, we see that there exist polynomials K(x,u,v) and H(y,u,v) of minimal
positive degrees in x,y respectively, so that K(x,f,g) = H(y,f,g) = 0. Then

* J L °
But (dK)/(dx){x,f,g) • (dH)/(dy)(y,f,g) ^ 0, and thus J(f,g) £ 0.

(iv)=j>(i). Assume that k^l. Pick (uo,t>o) G C2 so that Ak(uo,vo)Ao(uo,vo) ^ 0
and let xo G C be such that A(xo,uo,vo) — 0. By a property similar to Property 3, we
can find yo G C such that f(xo,yo)—v-o = g{%o,yo)—Vo = 0. Furthermore, we note that
the polynomials f(x,y) — uo and g(x,y)—vo have no common factor of positive degree
for otherwise the common factor h(x,y) has positive y-degree and A(x,uo,vo) = 0
by Property 5, contradicting Ao(uo,vo) ^ 0. Let f(x,y) = f(x + xo,y + yo) — «o,
g(x,y) = g{x + x0,y + y0)-v0. Then /(0,0) = g(0,0) = 0 and J(f,g) = 0. Using
(iii) we can find tp{u,v) of minimal positive degree so that ip(j,'g) = 0. Furthermore,
since <p(0,0) — 0, tp(u,v) has no constant term. In that case we see that f(x,y) and
~g{x,y) have a common factor of positive degree, d(x,y) say. The latter implies that
d{x — xo,y — yo) is a common factor of positive degree of f(x,y)—Uo and g(x,y)—vg. D
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REMARK 1. Quasi-regularity cannot be dropped from the hypothesis of the theorem as
the following example indicates: Let f(x,y) — xy + 1, g(x,y) = xy + 2. Then J{f,g) =
0 but A(x,u,v) = x(u — v + 1), B(y,u,v) = y{u — v + 1) and thus k = r = 1.

The above theorem takes a special form when f(x,y) and g(x,y) are homogeneous
polynomials. Before we can state it we shall need the following result, due to Swan,
which is an easy consequence of Property 4.

LEMMA 1. Let n,m > 1, a,b G C, ab^ 0. Then

Res* {axn - u,bxm - v) = ( - l ) n (am'dvnld -

where d = gcd ( m , n ) .

In view of the above, we then have the following well-known result:

COROLLARY 1 . Let f{x,y),g(x,y) be homogeneous polynomials, not necessarily

quasi-regular in x,y, of positive degrees n,m respectively. Then

where c £ C, d = gcd (m, n). In particular, cf — g if m = n.

PROOF: By a linear change of coordinates we may assume that f(x,y) and g(x,y)
are quasi-regular in x. Suppose first that J(f,g) = 0. Then Resx (/ — u,g — v) =
B{y,u,v) = B0{y,u,v) = Resx(axn - u,bxm - v) = (-1)" {am'dvnld - bnldumld)d,

where a,b are the coefficients of xn,xm in f(x,y), g(x,y) respectively. But Bo{f,g) =
0. The converse is trivial. D

COROLLARY 2 . Let f{x,y),g(x,y) be polynomials of positive degrees in x,
quasi-regular in x. Then

J{fi9) = 0 => Res,; (/, g) = c, c is a constant.

PROOF: Res,. (f,g) = .Bo(0,0). D

Quasi-regularity is essential in the hypothesis of the above corollary as Remark
1 shows. Also, as a consequence of the above corollary and Theorem 1, if f,g are
algebraically dependent polynomials, then they either have no zeros or they have a
common factor of positive degree.

When only one parameter is allowed in (1), Theorem 1 takes a somewhat different
form. We begin with the following. Let h(x,y) be irreducible in C[x,j/] of positive
degree in both x and y, quasi-regular in x and y. Consider

A

(la) p(y, u) = Res,, (/ - u, h) = ^ Pj(u)yj
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where A is the y-degree of p(y,u). Note that po(u) has positive degree because h

has positive degree in x. The following theorem provides a necessary and sufficient
condition for A = 0.

THEOREM 2 . Let h,p(y,u) be as above. Then the following conditions are equiv-

alent:

(i) A = 0.
(ii) h(x,y) divides J(f,h).

(iii) There is a unique uo so that h divides f — UQ .

(iv) po(u) = c(u-u0)
9, where q = degx h(x,y),c £ C.

PROOF: (i)=>(ii). Let «o be such that po{uo) = 0. Then / — UQ = h • d by
Property 2 and a computation shows that J(f, h) = h • J(d, h).

(ii) => (iii). For this we consider the following cases:
a ) h divides fv. We are going to show that A = 0. We argue by contradiction.
Suppose then that A ^ 1. Pick uo € C so that p\(uo) ^ 0 and let yo £ C be

such that p(yo,uo) = 0. By Property 3, we can find x$ £ C with the property that
f(xo,yo) — UQ — h(xo,yo) — 0. We also note that h divides fx since it divides J(f,h).

Therefore f(xo,yo)-uo = fx{x0,y0) = fy{xo,yo) = 0 and {{x,y) £ C2 | f-u0 = 0} is
a singular curve (over C2 ). Now let 5" = {u £ C | p\(u) ^ 0}, and for each u £ S, let
Cu be the curve {(x,y) £ C2 | / — u = 0}. We observe that every Cu is singular (over
C2 ). But Cv is singular if and only if v £ f[(x,y) \ fx = fy = 0], an impossibility as
Sard's theorem indicates, [5]. Thus A = 0.

/?) h does not divide fy. Let (xo,yo) £ C2 be with the properties h(xo,yo) = 0 and
fy{xo,yo)'hy(xo,yo) 7̂  0, and let uo = f(xo,yo)- In that case using the Inverse Function
theorem we can find C°° functions y = <p(x), y = ip(x) with <f(xo) = V'C ô) = 2A> and
h(x,<p{x)) — f(x,ij>(x)) — uo = 0 in a neighbourhood U of xo • But since h divides
J(f,h) we conclude that f'(x) = ip'(x) near XQ . That implies tp(x) = ij>(x) in U, and
thus h divides / — UQ . Finally, we note that uo is unique since h is irreducible.
(iii) => (iv) Let uo,ui be zeros of po(u). Then f — UQ = h • do, f — ui — h • di, and
thus ui — uo = h(do — di) or ui = Uo. Therefore po(u) = c(u — uo) , for some c £ C,
k ^ 1. But then since h is quasi-regular in a;, /i(x,0) has 9 zeros—counted with
multiplicities. That, along with Property 4, shows that k = q. D

Now let g = /i™1 ti%2 • • • h™', rij; ^ 1, be the prime factorisation of g in C[z,2/],

and let qi = deghi(x,y), i = l,...,s. Note that every hi(x,y) is quasi-regular in x

and y.

Using the previous theorem and Property 5 we can obtain the following:

COROLLARY 3 . Let f,g,h{ be as above. Then

(i) Resx ( / — u,g) = p{u) O hi divides J(f, hi) for all i = 1 , . . . , s .
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(ii) Suppose that Resx ( / — u,g) — p(u). Then

a

p(u) = c JJ(w -Ui)m', U{,c € C and mi = nj • qiti = 1,. . . ,s .

4. THE INVERTIBILITY OF F

Let f(x,y),g(x,y) be as before and let TH = deg/(a;,0), n2 = degf(O,y), mx =

deg (7(1,0), 77X2 = deg g(0,y) and F = (f,g) : C2 —> C2 . For convenience we assume

that F(0,0) = (0,0). In this section we shall state a necessary and sufficient condition,

in terms of the polynomials A(x,u,v) and B(y,u,v), for the map F to be 1 — 1 and

onto. Our results are similar to the ones in [1], and they come as a natural by-product

of our earlier considerations.

LEMMA 2 . Let f,g,F,A(x,u,v) and B(y,u,v) be as above. Then F is 1-1 and

onto =>• A(x,u,v) = ax + Ao(u,v), B(y,u,v) = by + Bo(u,v), where a, b 6 C, ab 7̂  0.

PROOF: We shall first prove that Jfc = r = 1. We first note by Property 1 that

k,r ^ 1 since F is onto. Pick (uojfo) € C2 so that Ak(uo,vo) ^ 0. Since F is

an automorphism, / and g are quasi-regular in x [3], and thus by Property 3 the

polynomial p(x) = A(x,uo,vo) has only one root, say XQ . We are going to compute

p'(xo). Let the unique y0 be such tha t f(xo,yo) — UQ = g(xo,yo) — vo = 0 . Now

let x = x,y = y - yo and write f(x,y) = f{x,y), g{x,y) = ~g(x,y). Observe that

degf(xo,y) = deg/(xo,y) and degg(xo,y) = degg~(xo,y). Now using the Chain rule

for resultants [4, Theorem 6, p.349] we have :

(2) Ress (f(x,y) - uo,g{x,y) - v0) = Res, (f{x,y) - uo,g(x,y) - v0).

We get p'(zo) by differentiating the above resultant with respect to x and evaluating

the result at ic — XQ . This amounts to differentiating the last column only of the

determinant defining the resultant, since /(xojO)—Mo = (̂̂ OjO)—UQ — 0. By expanding

the resulting determinant by its last column and then expanding the two cofactors by

their last columns, we get:

(3) p'(x0) = ( - l ) n

The above shows that p'(xo) 7̂  0, since 0 is the only common root of f(xo,y) — UQ

and ~g(xo,y) — vo, and thus k = 1. Similarly, we can prove that r = 1. Now suppose

that Ai(u,v) is not a nonzero constant. In that case we pick (tii,i>i) 6 C2 so that

Ai(ui,vi) — 0. Then, depending upon whether .Ao(ui,i;:i) is nonzero or zero, the
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polynomials / — ui and g — V\ will either have no common zero or will have a common
factor of positive degree. But this is a contradiction to F being 1 — 1 and onto. D

We say that F has a polynomial inverse if there is a polynomial map G{x,y) =

(p{x,y),q(x,y)) so that G o F{x,y) = (x,y). For a polynomial map F = (f,g) we
define its degree, deg F(x,y) , to be the highest degree of the monomials in f(x,y) and

g{*,y)-
The following Proposition describes precisely what the inverse G of F is, in the

case where F is 1 — 1 and onto.

PROPOSITION 1. Let F, a, b, Ao(u,v), Bo(u,v) be as in Lemma 2 and

G(x,y) = (-(A0(x,y))/a ,-(B0{x,y))/b). Then G is tie inverse of F(x,y). Fur-

thermore, deg F(x,y) = degG(x,y).

PROOF: In view of Lemma 2 and Property 1 we have:

For the second assertion, we note that AQ(U,V) = Ress (f(0,y) — u,g(0,y) — v), and
thus degAo(u,v) — max(n2,m2) and, similarly degBo{u,v) = max(ni ,mi) . Thus,
deg G = max (ni, ni, mj , 7712). But since the Newton polygons of an automorphism are
triangles we see that deg F(x,y) = degG(x,y), [3]. D

Finally, we may use the so-called "border polynomials" of .F(a:,y) to describe

explicitly its inverse, G{x,y). These are /(a:,0), g(x, 0), f(0,y) and g(0,y). Using

Lemma 2 we get:

(4)

J4O(«,IO = R e s» (/(O.y) - «,ff(0,») - v) , B0(u,v) = Res, (/(*,0) - u,g{x,0) - v) .

Furthermore, (3) together with the Chain rule for resultants shows that

(5) a = ( - 1 ) - [Ress

Likewise

(6) 6 = (-ir

Thus,

PROPOSITION 2 . If F — {f,g) is 1 — 1 and onto, F has a polynomial inverse

G which is completely determined by the border polynomials of F.
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5. A C O N J E C T U R E

Let F - (f,g) be as before, but not necessarily F(0 ,0) = (0,0) . It is clear that F

has no zeros if there exist polynomials ip(x,y), ij>(x,y) so that ftp-\-gij) — 1. The latter

is equivalent-by Property 3-to the fact that Resx(f,g) = ci and Ress ( / ,g) = c?.,

cic2 ^ 0 , c , - e C .

In Section 3 we saw that if J(f,g) = 0, then Resx (f,g) — c,c 6 C. Further-

more, (Corollary 3), whenever every irreducible factor h of g divides J(f,h), then

Res,; (f,g) = c. We believe that a partial converse of Corollary 2 is true; we state it in

the form of the following:

CONJECTURE. Let f(x,y),g(x,y) be quasi-regular in x. Then Resz(f,g) =c,

c 6 C => there exists a point (xo,yo) £ C2 for which J{f,g){xo,yo) = 0.

REMARK 2. We note that the above conjecture is trivially true in the case where c = 0.

We conclude with a consequence of the above conjecture in relation to the Jacobian

conjecture.

REMARK 3. Let F - (f,g) : C2 -> C2 be such that J(f,g) = 1. Then, if the above
conjecture is true, F is onto.

PROOF: By a linear change of coordinates we may suppose that f,g are quasi-
regular in x. Now, if there exists a point (s,t) for which F~1(s,t) = 0, then
Resx ( / — s,g — t) = c ^ 0. But J(f - s,g — t) = J(f,g) = 1, contradicting the con-
jecture. D
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