
J. Fluid Mech. (2023), vol. 977, A32, doi:10.1017/jfm.2023.971

Direct numerical simulation of flow in open
rectangular ducts

Ming Yu1,2, Davide Modesti3 and Sergio Pirozzoli1,†
1Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18,
00184 Roma, Italia
2State Key Laboratory of Aerodynamics, Mianyang, 621000, PR China
3Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 2, 2629 HS Delft,
The Netherlands

(Received 4 February 2023; revised 12 November 2023; accepted 14 November 2023)

We study turbulent flow in open channels with a free surface and rectangular cross-section,
for various Reynolds numbers and duct aspect ratios. Direct numerical simulations are
used to obtain accurate characterization of the secondary motions, which are found to be
more intense than in closed ducts, and to scale with the bulk, rather than with the friction
velocity. A notable feature of open-duct flows is the presence of a velocity dip, namely
the peak velocity is achieved at some depth underneath the free surface. We find that
the depth of the velocity peak increases with the Reynolds number, and correspondingly
the flow becomes more symmetric with respect to the horizontal midplane. This is also
confirmed from the change of the topology of the secondary motions, which exhibit a
strong corner circulation at the free-surface/wall corners at low Reynolds number, which,
however, weakens at higher Re. The structure of the mean velocity field is such that the log
law applies with good approximation in the direction normal to the nearest wall, which
allows us to explain why predictive friction formulae based on the hydraulic diameter
concept are successful. Additional analysis shows that the secondary motions account for
a large fraction of the frictional drag (up to 15 %).

Key words: turbulence simulation

1. Introduction

Turbulent flows in rectangular ducts are frequently encountered in engineering. Depending
on the type of application, ducts can be either open or closed at the top. In open ducts
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the top side is exposed, forming a free-surface in contact with another fluid, typically air,
whereas in closed ducts the fluid is bounded by walls at all sides. Closed ducts have several
industrial applications in mechanical and aerospace engineering, whereas open ducts are
more common in civil engineering and hydraulics, and typical interest resides in the study
of sediment transport in rivers and man-made canals (Adrian & Marusic 2012), sewage and
draining systems (Sakai 2016) and photo-bioreactors for algae growth (Croze et al. 2013).
Perhaps because of its simpler configuration, the flow in closed ducts has been studied
considerably more than in open ducts, and over the years, several studies have focused on
this type of flow (Gessner & Jones 1965; Madabhushi & Vanka 1991; Gavrilakis 1992;
Huser & Biringen 1993; Yang & Lim 1997; Yang, Tan & Wang 2012; Vinuesa et al. 2014;
Modesti et al. 2018; Pirozzoli et al. 2018). The main feature characterizing flows in ducts
as compared with canonical wall-bounded flows is the occurrence of Prandtl secondary
motions of the second kind in the cross-stream plane (Bradshaw 1987; Nezu 2005; Nikitin,
Popelenskaya & Stroh 2021). In turbulent flow in closed square ducts, secondary motions
are organized as eight counter-rotating eddies bringing fluid from the core towards the
corners, which are responsible for the typical bending of the mean streamwise velocity
isolines (Modesti et al. 2018). Although secondary flows can modify the mean streamwise
velocity and Reynolds stresses, a more in-depth analysis reveals that their contribution to
the global skin-friction and heat transfer coefficients is quite small (Modesti et al. 2018;
Pirozzoli et al. 2018; Modesti & Pirozzoli 2022).

The presence of a free surface significantly modifies the characteristics of the secondary
motions. Early experimental studies (Grega et al. 1995; Hsu et al. 2000; Grega, Hsu &
Wei 2002) found that the cross-stream mean velocity near the free surface is composed
of ‘inner’ and ‘outer’ secondary motions. The former is a weak streamwise vortex located
at the mixed-boundary corner (i.e. between the solid wall and the free surface), and it
scales in viscous units. The latter is a large-scale vortex located beneath the free surface,
inducing a large spanwise slip velocity that brings the fluid particles downwards at the duct
centre. The same authors reported a maximum cross-stream velocity of approximately 3 %
the bulk velocity, slightly higher than in closed duct flow. However, these experimental
results should be treated with caution as the experimental set-up was intrusive. Broglia,
Pascarelli & Piomelli (2003) carried out large-eddy simulation (LES) of open square duct
flow, and found that the inner secondary circulation spans approximately 40 viscous units
from the side wall and approximately 100 viscous units from the free surface. Joung
& Choi (2010) carried out direct numerical simulation (DNS) and confirmed previous
studies both in terms of mean flow statistics and topology of the secondary flows. Using
conditional averages, those authors pointed out that the production of Reynolds shear stress
and secondary motions should be attributed to the directional tendency of the dominant
coherent structures. However, these studies used a computational domain with a short
streamwise length, which might alter large-scale motions. Sakai (2016) carried out DNS
of open ducts over a wide range of aspect ratios, covering Reynolds numbers from the
laminar to the turbulent, and discussed the organization of the secondary motions. That
author hypothesized that the mixed-boundary corner acts as a filter, in a statistical sense,
letting the emergence of more vortices rotating in a certain direction. An extensive review
of different mechanisms for secondary flows in rivers has been performed by Nikora &
Roy (2012), however, secondary flows at mixed corners are not covered.

A characterizing feature of turbulent flows in open ducts is the so called ‘velocity
dip’ phenomenon, namely the fact that, differently from laminar flows, the maximum
streamwise velocity does not occur at the free surface, but below it. This phenomenon was
already observed by hydraulic engineers in the 19th century (Francis 1878; Stearns 1883),
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and it has been reported in numerous experiments (Nezu, Nakagawa & Tominaga 1985;
Kirkgöz & Ardiçlioğlu 1997; Yang, Tan & Lim 2004; Knight et al. 2018) and more recently
also in numerical simulations (Sakai 2016). Nezu et al. (1985) showed that this velocity
dip is absent in channels with aspect ratioA = Lz/Ly > 5, where Lz is the width of the
channel and Ly the fluid depth. This finding was later confirmed by several authors (Knight
et al. 2018), and led to the idea that the velocity dip is caused by the secondary flows, which
remains the most accredited hypothesis up to date. However, spanwise heterogeneous
roughness also induces secondary flows, without inducing a velocity dip. For instance,
Wang & Cheng (2005) performed experiments in wide open-channels with rough bed
strips and reported the formation of large-scale secondary flows, but did not observe a
velocity dip away from the sidewalls. Similar findings have been reported by other authors
for open channel flow (Nikora et al. 2019; Zampiron, Cameron & Nikora 2020, 2021),
and the same has been reported for developing turbulent boundary layers over spanwise
heterogeneous roughness (Wangsawijaya et al. 2020). In the previous open channel flow
experiments, a velocity dip is visible close to the sidewall but not in the central part of
the channel, where only the roughness-induced secondary flows are present. This is also
consistent with early experiments in open rectangular ducts reviewed by Nezu (2005), who
pointed out that corner-induced secondary flows are only important forA < 5, and that
sidewalls effects are marginal in the central channel region.

A particular case of open duct flow is that of partially filled pipes, which frequently
occur in practice. Ng et al. (2018) carried out experiments of laminar and turbulent flows
in partially filled pipes up to Reb = ubDh/ν = 30 000, where ub is the bulk flow velocity,
Dh = 4Ac/Pw is the hydraulic diameter (where Ac is the cross-sectional area of the duct,
and Pw is the wetted perimeter of the duct) and ν is the kinematic viscosity of the fluid.
Also in this study the authors observed the velocity dip phenomenon, and attributed it
to the secondary motions. At the top boundary, they found evidence of coherent motions
typical of free-surface flows, namely upwellings, downdrafts and whirlpools (Banerjee
1994), which they attributed to structures originating at the solid wall. Ng et al. (2018) did
not find evidence of the small-scale circulation at the mixed-boundary corners, as reported
in open rectangular and square ducts. However, recent LES (Liu, Stoesser & Fang 2022)
and DNS (Brosda & Manhart 2022) of open pipe flows clearly highlighted the presence
of these small-scale vortices, which were not observed in the experiments, perhaps due to
lack of sufficient resolution.

Liu et al. (2022) analysed the transport equation of turbulent kinetic energy and
streamwise vorticity. They argued that the secondary motions alleviate the very large-scale
motions and reduce the contribution of turbulent shear stress to the skin friction, although
their Reynolds number (Reb = 35 000) was perhaps too low to appreciate the contribution
of the very large-scale motions. Brosda & Manhart (2022) carried out a numerical study
of turbulence in semifilled pipe flow up to Reb ≈ 30 000. The velocity dip, secondary
flows and distribution of the Reynolds stresses were found to be qualitatively consistent
with previous studies. They also found that the small-sized secondary vortices scale in
wall units, whereas the large ones occupy the whole cross-section and scale with the
pipe radius. The same authors also found that the friction diagram of semifilled pipe
flow matches that of pipe flow when the hydraulic diameter is used for normalization,
thus contradicting previous experimental results (Yoon, Sung & Lee 2012; Ng et al. 2018)
claiming much larger friction factor in the case of free-surface flows.

This literature survey highlights scarcity of detailed investigation of turbulence in square
and rectangular open ducts at moderate Reynolds numbers. Most studies on this class
of flows have been carried out experimentally, and several open questions remain, for
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instance regarding the intensity and the topology of the secondary flows and regarding
the scaling of the friction factor. To fill this gap we carry out DNS of open rectangular
ducts at moderate Reynolds number and for various duct aspect ratios, in the attempt to
verify some of the conjectures often quoted in the literature, and to build a more solid
fundamental understanding.

2. Methodology

We solve the compressible Navier–Stokes equations, using our in-house flow solver
STREAmS (Bernardini et al. 2021, 2023) wherein convective terms are discretized using
a fourth-order energy-conserving scheme, which allows us to preserve total kinetic energy
from convection in the inviscid limit (Pirozzoli 2010). Viscous terms are expanded to
Laplacian form and discretized using standard central finite-difference approximations
with the same order of accuracy. In order to alleviate the severe time step limitation
stemming from the acoustic terms in Navier–Stokes equations, we use a semi-implicit
algorithm for time advancement, which allows us to use efficiently our compressible flow
solver at low Mach numbers (Modesti & Pirozzoli 2018). This strategy allows us to avoid
using iterative Poisson solvers, which would be required for solving the incompressible
Navier–Stokes equations in a rectangular duct with sidewalls. This numerical approach
has been rather successful so far, and allowed the authors to perform DNS of square duct
flow at Reb ≈ 80 000, the highest so far (Modesti & Pirozzoli 2022).

We force the streamwise momentum equation to maintain a constant mass flow rate, and
periodicity is exploited in the streamwise direction, whereas isothermal no-slip boundary
conditions are enforced at the duct walls (Modesti & Pirozzoli 2016). Free-slip boundary
conditions are enforced at the free surface, which is a good approximation in the limit
of low Froude number (Brosda & Manhart 2022). Simulations are initialized with a
laminar streamwise velocity profile with superposed cross-stream velocity perturbations,
as described in Pirozzoli et al. (2018), whereas the density and temperature fields are
uniform. Let Lz be the length of the horizontal side of the duct, and Ly the length of the
vertical side, three aspect ratios have been considered, namely A = Lz/Ly = 0.5, 1, 2,
whereas the streamwise domain size Lx = 6πh, with h the half-length of the shortest side.
Issues related to size of the computational box, mesh resolution and statistical convergence
were discussed in a previous publication on a closed square duct (Pirozzoli et al. 2018),
where we performed simulations in domains with three streamwise sizes Lx = 4πh, 6πh
and 8πh, and found a negligible effect of the box dimension. The velocity components
along the streamwise, vertical and horizontal directions are hereafter denoted as u, v and
w, respectively, and the overline symbol is used to indicate statistical averages in the
streamwise direction and in time. For normalization purposes we use the local friction
velocity, uτ = (τw/ρ)

1/2, with τw the local wall shear stress, and the local viscous length
scale, δv = ν/uτ . Here Reτ = huτ /ν, is then the local friction Reynolds number. We
will also consider normalization with global wall units, based on the perimeter averaged
wall-shear stress (τ ∗

w), hence u∗
τ = (τ ∗

w/ρ)
1/2, δ∗v = ν/u∗

τ , with Re∗
τ = hu∗

τ /ν the global
friction Reynolds number. Quantities normalized with local and global wall-units are
denoted as (·)+ and (·)∗, respectively. The DNS are carried out at bulk Mach number
Mb = ub/cw = 0.2 (where cw is the speed of sound at the wall) and friction Reynolds
number Re∗

τ ≈ 350–1200, for three values of the duct aspect ratios A = 0.5, 1, 2, as
listed in table 1. Open duct cases are labelled based on their aspect ratio and for each
aspect ratio three Reynolds number cases are available, low (L), medium (M) and high
(H). Moreover, we have carried out one DNS at bulk Reynolds number Reb = 6000,
matching one of the low-Reynolds-number cases of Sakai (2016) (AR1-S), and two
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DNS to assess the effect of the box dimension (AR1-L-A, AR1-L-B), having domains
with streamwise length (4πh, 8πh). Additionally, we have performed one numerical
experiment in which we artificially suppress the secondary flows (AR1-M0). For the sake
of comparison, three flow cases for a closed square duct (labelled as SD) have also been
computed. The database is representative of incompressible turbulence, as the friction
Mach number Mτ = uτ /cw never exceeds 0.01. In the following we use the overline symbol
to indicate Reynolds averaging (·̄), whereas uppercase and lowercase letters indicate mean
and fluctuating quantities. Flow statistics are averaged in the streamwise direction and in
time for approximately ΔTu∗

τ /h ≈ 300.

3. General flow features

Figure 1 shows contours of the instantaneous streamwise velocity at similar Reynolds
number (Re∗

τ ≈ 500), for various duct aspect ratios. For clarity we specify that the top
plane corresponds to the free surface, whereas the planes on the lateral and bottom
walls are extracted at a distance of y∗ = 15. In the proximity of the duct walls the
flow is organized into low- and high-speed streaks elongated in the streamwise direction
corresponding to sweep and ejections in the cross-stream plane, which are the typical
hallmark of wall turbulence. At the free surface, the streamwise velocity increases
approaching the duct bisector, but its maximum is located somehow underneath, although
the boundary condition allows the fluid to slip. This feature, also noted in previous
studies (Yoon et al. 2012; Sakai 2016; Brosda & Manhart 2022), is typically attributed
to secondary motions bringing low-speed fluid from the corners towards the free surface
bisector, and then downwards; this is further discussed below. The DNS have been
performed to assess the effect of the box dimension on the mean flow statistics, by
considering three flow cases at the lowest Reynolds number for A=1, with duct length
Lx = {4πh, 6πh, 8πh}. Figure 2 shows the mean streamwise velocity component U and
the cross-stream velocity component V for those three cases, which highlights minor
differences, comparable with those found in closed square ducts (Pirozzoli et al. 2018).
Hence, all DNS have been performed in ducts with streamwise length Lx = 6πh. The DNS
data are further validated by comparing with other references available in the literature.

A comparison of theA = 1 case with the DNS data of Joung & Choi (2010) at lower
Reynolds number (Re∗

τ ≈ 150) is reported in figure 3. Specifically, we show profiles of
the mean velocity and of the turbulence intensities along the bisector of the bottom wall.
The mean velocity shows features typical of canonical wall-bounded turbulence, with the
emergence of a logarithmic layer at increasing Reynolds number, with slope and intercept
similar to the case of pipe and channel flow. In the outer layer, the mean velocities reach
a maximum, before dropping to a slightly lower value, which is a clear indication of the
presence of a velocity dip. Deviations from the data of Joung & Choi (2010) are clearly
due in this case to low-Reynolds-number effects. The velocity fluctuations are shown in
figure 3(b–d). For all the components, the profiles in the lower half of the duct follow the
typical trends of canonical wall-bounded flows, with a near-wall peak of the streamwise
velocity fluctuations located at y+ ≈ 15, hence its outer-scaled distance from the wall
decreases at increasing Reynolds number. In the upper part of the duct centre the profiles
are nearly flat, and the root-mean-square of the three velocity components have similar
intensity, which points to isotropization of the large scales of motion far from walls. Near
the free surface turbulence changes towards a two-component state, with streamwise and
wall-parallel velocity fluctuations similar in magnitude, and vertical fluctuations obviously
inhibited on account of the assumed flatness of the free surface. This is consistent with the
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Figure 1. Instantaneous streamwise velocity u/ub for flow cases (a) AR1-M, (b) AR2-M, (c) AR05-M.
Planes parallel to the duct walls are taken at a distance of fifteen wall units, whereas the top plane is the free
surface.
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Figure 2. Sensitivity to duct length: mean streamwise velocity U (left-hand side) and mean wall-normal
velocity V (right-hand side). Line colours indicate Lx = 4πh (cyan), Lx = 6πh (black) and Lx = 8πh (red).
Ten contour levels are shown in the range 0 < U/ub < 1.18, −0.025 < V/ub < 0.025.

turbulent structures adjacent to the free-surface of the semifilled pipes presented by Brosda
& Manhart (2022).

The distributions of the mean wall shear stress along the lateral and bottom walls are
presented in figure 4, and compared with low-Reynolds-number data from Sakai (2016).
At the bottom walls, the wall shear stress closely resembles that observed in closed
square ducts (Pirozzoli et al. 2018). Specifically, we find that the distributions tend to
become flatter away from the sidewalls as Reynolds number grows, as proposed by Spalart,
Garbaruk & Stabnikov (2018). The prominent peaks which are present at low Reynolds
number tend to become confined to the corner vicinity as the Reynolds number increases.
These peaks are the signature of the corner circulation (Pirozzoli et al. 2018), whose size
scales in wall units, and which becomes progressively distinct from the main secondary
motions at high enough Reτ . Along the sidewalls, the wall shear stress near the bottom
corner resembles that of the closed duct, whereas near the free surface, the wall shear
stress jumps to very high values, also hinting at the presence of a secondary circulation
bringing high-speed fluid towards the corner, whose direction would be opposite to the
main circulation. As the Reynolds number increases, the increase of the wall shear stress
becomes confined to a narrower region. The maximum wall shear stress at the side walls
shows a non-monotonic trend with the Reynolds number. At low Reynolds number the
value peak increases with Reb up to τ̄ ( y)/τw,y ≈ 1.6, whereas further increasing the
Reynolds number the peak value decreases. This behaviour was not observed in the work
of Sakai (2016), as the switch occurs at Reτ ≈ 400, hence higher than they considered.

4. Mean flow structure

The secondary flows are visualized in terms of mean stream function isolines and mean
streamwise vorticity contours in figure 5. In the case of a closed duct, the time-averaged
secondary motions are made up of eight counter-rotating eddies conveying flow towards
the duct corners. Secondary motions in open duct flows withA = 1 are quite different.
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Figure 3. Flow in open duct withA = 1: mean velocity (a) U+ and root-mean-square velocity fluctuations;
(b) u+

rms; (c) v+
rms; (d) w+

rms along the bottom-wall bisector (z = 0). Results from present DNS at different
Reynolds numbers, AR1-L – - – - – (blue), AR1-M – – – – (red) and AR1-H ——–, are compared with
reference DNS data of Joung & Choi (2010) (green). The grey line in panel (a) denotes the logarithmic
fit U+ = 2.44 log y+ + 4.2.
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Figure 4. Flow in open duct withA = 1: distributions of local wall shear stress along the bottom wall (a);
and along the sidewalls (b). Here τw,z and τw,y denote the average shear stress along the bottom and
sidewalls, respectively. Results from present DNS at different Reynolds numbers, AR1-S – - - – - - – (purple),
AR1-L – - – - – (blue), AR1-M – – – – (red) and AR1-H ——–; symbols are DNS data of Sakai (2016),
Reb = 4000 (�, green), Reb = 6666 � (pink).
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Figure 5. Visualization of mean cross-stream motions: lines, stream function (solid, positive;
dashed, negative); contours, streamwise vorticity (red, positive; blue, negative); (a) SD-L; (b) SD-M;
(c) SD-H; (d) AR1-L; (e) AR1-M; ( f ) AR1-H; (g) AR2-L; (h) AR2-M; (i) AR2-H; ( j) AR05-L; (k) AR05-M;
(l) AR05-H. The top-right corner of each panel (d–l) shows a close-up view of the near-corner region.

Whereas the eddies near the bottom wall are similar to the case of a closed duct, in the
upper part of the duct we have two large counter-rotating vortices which bring momentum
from the sidewalls towards the bisector of the free surface, and which merge with those
from the bottom walls yielding a large global circulation that includes downdraft from
the centre of the free surfaces towards the interior of the duct. Near the mixed-boundary
corners, some inner secondary motions are visible whose circulations are opposite to
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Direct numerical simulation of open rectangular duct flows

the main flow, which were discussed and explained by Grega et al. (1995). Although
these inner secondary motions become smaller as the Reynolds number increases, we
note that at the highest Reb under scrutiny they seem in turn to include two distinct
circulations, one scaling in inner units, and the other in outer units. This is in line with
observations made by Broglia et al. (2003), whose LES indicated the formation of a second
‘outer’ anticlockwise vortical region near the sidewall, directly below the ‘inner’ one. This
is especially visible in figure 5( f ), in which the presence of these additional vortices
causes the bending of the primary stream function isolines. This effect of the Reynolds
number is rather interesting in our opinion, and it suggests that perhaps in the limit of
very high Reynolds number the circulation will eventually result being be symmetric in
the y direction, as comparison of figure 5(c) and figure 5( f ) would seem to indicate.
A similar trend was reported in the experiments of Demiral, Boes & Albayrak (2020) and
the Reynolds-averaged Navier–Stokes (RANS) simulations of Kadia et al. (2022), who
showed that secondary motions in open ducts have a topology similarity to those in closed
ducts, although both studies featured flow in ducts with free surface in the supercritical
regime, which is rather different from our flow case with a flat top surface. Additionally,
RANS simulations should be taken with caution, as the prediction of secondary flows is
not always accurate.

The structure of the flow is similar in ducts with non-unit aspect ratio; however, the
interaction between the bottom wall and the free-surfaces eddies is quite different. In
fact, at A = 2, the large-scale eddies from the free surface reach down to the bottom
wall, encasing and weakening the resident secondary eddies, see figure 5(g–i). On the
other hand, for A = 0.5 interaction between the duct bottom and the free surface is
less significant, and the relative secondary eddies essentially constitute two separate
circulations, see figure 5( j–l). In order to assess the strength of the secondary flows we
use the mean kinetic energy of the secondary flow averaged over the duct cross-section,

Kyz = 1
2Ac

∫
Ac

(V2 + W2) dAc, (4.1)

which shows significant increase with the Reynolds number when scaled by the friction
velocity, both for closed and open ducts, as shown in table 1. However, a different trend is
found between open ducts and closed ducts when Kyz is scaled with the bulk flow velocity,
as it increases with the Reynolds number in closed ducts, and it slightly decreases for open
ducts. This different trend may be due to the fact that the energy of the secondary motions
in open ducts is dominated by eddies close to the free surface, which are more energetic
(Nikitin et al. 2021).

To further address this point in figure 6 we present the maximum of the mean stream
function ψ̄max near the free-surface and at the mixing corner. We again note that in open
ducts, the circulation close to the free-surface seems to decrease slightly with Reynolds
number, whereas it increases slightly for closed ducts, although they both seem to tend to
a similar asymptotic value. Instead, the mixed-corner circulation decreases significantly
with the Reynolds number, indicating increasing relevance of the primary circulation for
increasing Reτ .

The mean streamwise velocity distributions are shown in figure 7. Due to geometrical
symmetry, the maximum mean velocity in closed ducts is always located at the centre. As
observed by Pirozzoli et al. (2018), the velocity isolines in that case tend to be parallel to
the duct walls owing to the effect of the secondary motions. For the open duct cases with
A = 1 (figure 7d–f ), the presence of the free surface breaks the symmetry, making the
velocity isocontours no longer closed, and shifting the maximum velocity farther from the
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Figure 6. Maximum value of the mean stream function ψ̄max/(ubh). Symbols denote different flow cases:
closed square ducts (�, blue); open square ductsA = 1 (•, red),A = 2 (�, orange),A = 0.5 (�, pink);
solid, near the free-surface; dashed, at the mixing-corner.

bottom wall. In laminar open duct flows, the maximum streamwise velocity is located at
the free surface, whereas in the turbulent case it dips below it, as first observed by Francis
(1878) and Stearns (1883). The mean streamwise velocity in open ducts with A = 2,
shows similar velocity dip as in the A = 1 case (figure 7g–i). Interestingly, the mean
streamwise velocity at the bottom wall in this case is rather different from the open and
closed duct cases with unit aspect ratio, as the velocity isolines around the bottom wall
bisector tend to bulge in opposite directions. This effect is probably due to the downwelling
current from the free surface which reaches down to the bottom wall as a result of a
widened free-surface as compared with the A = 1 cases. In open ducts with A = 0.5
(figure 7j–l) the mean streamwise velocity reaches a maximum at the deepest location
amongst all cases here considered, and at the highest Reynolds number the maximum
velocity is reached at approximately a distance h underneath the free surface. In this case,
the bulging of the velocity isolines at the bottom wall follow the typical trend found in
closed ducts and for open ducts withA = 1.

Quantitative information about the velocity maximum Umax is reported in table 1.
The maximum velocity Umax/ub decreases slightly with the Reynolds number, whereas
it increases when normalized in viscous units, as typical of wall turbulence. A minor
difference between the various aspect ratios is that for A=2.0 the drop of Umax/ub
seems slightly weaker for increasing Reynolds number, when compared with flow cases
withA = 1 andA = 0.5. We note that at the highest Reynolds number the maximum
velocity of the open duct case is less than for the closed duct in outer units, suggesting
more efficient turbulent mixing, associated with additional momentum transfer from the
secondary flows. In addition, the maximum location dips down off the free surface at
increasing Reynolds number. This is in agreement with the findings of half-filled pipes by
Brosda & Manhart (2022), that maximum location moves away from the free surface as
the Reynolds number increases.

The mean velocity profiles taken normal to the bottom wall are shown in figure 8,
at various z locations. For ducts with A = 0.5, the velocity profiles exhibit two local
maxima, the first at y ≈ h, and the second at y ≈ 3h, which are particularly visible at
the duct centreline. The former corresponds to the maximum velocity at the edge of the
bottom-wall boundary layer, whereas the second is the velocity dip near the free surface.
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Figure 7. Mean velocity distributions U/ub, for flow cases (a) SD-L, (b) SD-M, (c) SD-H, (d) AR1-L,
(e) AR1-M, ( f ) AR1-H, (g) AR2-L, (h) AR2-M, (i) AR2-H, ( j) AR05-L, (k) AR05-M, (l) AR05-H. The
white cross denotes the position where maximum velocity is attained.

In between these two maxima, the streamwise velocity profile shows a plateau, which
becomes more evident at increasing Reynolds number. Deviations from the equilibrium
law-of-the-wall (channel and pipe flow data are reported for reference) become evident
towards the sidewalls, although the double peak organization is also visible away from the
duct centreline. In general, agreement with the canonical law-of-the-wall is rather poor,
and large deviations are observed as the sidewalls are approached. Similar result are found
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Figure 8. Mean velocity profiles at various z/h locations (with the increment of 0.1h, grey lines) for flow
cases with AR05-H (a,b), AR1-H (c,d), AR2-H (e, f ), normalized by local viscous units (a,c,e) and global
viscous units (b,d, f ). Profiles at selected stations are highlighted: z = 0.25hA (- - - - -, blue); z = 0.5hA
(– - – - –, green); z = 0.75hA (– – – –, red); z = hA (——–). Symbols denote turbulent channel flow by
Bernardini, Pirozzoli & Orlandi (2014) (�) and turbulent pipe flow by Pirozzoli et al. (2021) (�, red) at Reτ ≈
500. The log law u+ = 2.44 log( y+)+ 5.2 is shown with magenta lines (——–, pink).

for ducts with different aspect ratio, the main difference being that ducts withA = 1 and
A = 2 only have one velocity maximum near the free surface.

In the attempt to find a simpler description of the mean velocity distribution, we build
on ideas of Keulegan (1938) and Pirozzoli et al. (2018), who showed that velocity profiles
in closed square ducts are controlled by the closest wall. In the framework of open ducts,
a similar idea was advanced by Yang & Lim (1997) and Yang et al. (2012). According to
those studies, flow in square and rectangular ducts features distinct flow regions, which are
controlled by nearest wall, as shown in figure 9.
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Figure 9. Illustration of flow regions controlled from the bottom wall (zone 1) and from the side wall (zone 2),
forA = 1 (a), forA = 2 (b), forA = 0.5 (c). The dash–dotted line denotes the bottom wall bisector, whereas
the dashed line denotes the corner bisector. Dotted lines indicate representative locations along which mean
velocity profiles are extracted.

In figures 10 and 11 we show the velocity profiles in the two regions, as a function of
the distance from the closest wall, limited to the flow cases at higher Re. When plotted in
this fashion, the velocity profiles close to the bottom wall (figure 10) show close similarity
with the classical law-of-the-wall. The mean velocity profiles reported in this fashion agree
well with the reference DNS data of plane channel flow and circular pipe flow, with a small
scatter among profiles at different spanwise locations. This agreement is very good both
when profiles are reported in local and in global viscous units, although the former scaling
brings close universality in the vicinity of the wall, and the latter in the outer region.
All the profiles show a similar logarithmic slope, although profiles in ducts with lower
aspect ratio are shifted downwards, indicating reduced flow rate close to the bottom wall
at matched pressure drop, which was also clear in the mean velocity contours of figure 7.
Figure 11 shows the mean velocity profiles in the flow region controlled by the sidewall,
at various y/h locations, including at the free surface. Also in this case we find that all
profiles follow the canonical law of the wall with good accuracy, the only exception being
the limit profile at the free surface, probably because the wall shear stress at the mixed
corner largely overshoots the mean value, which is otherwise fairly constant along the
sidewall (see figure 4). Local and global wall scaling yield similar universality, although
the latter yields slightly smaller scatter across the velocity profiles in the outer region.

Based on all previous observations, in figure 12 we sketch a tentative model for the
structure of the secondary motions and related organization and streamwise velocity for
increasing Reynolds number. The mean streamwise velocity profiles show that, with good
accuracy, the flow can be regarded as made up of three nearly independent regions,
controlled by the nearest wall, and the maximum velocity dips towards the duct centre
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Figure 10. Mean velocity profiles at various z/h locations ( with the increment of 0.1h, grey lines) in the flow
region controlled by the bottom wall, as a function of the wall distance (see figure 9), for flow cases AR05-H
(a,b), AR1-H (c,d) and AR2-H (e, f ). The profiles are scaled in local viscous units (a,c,e) and in global viscous
units (b,d, f ) Profiles at selected stations are highlighted: z = 0.25hA (- - - - -, blue); z = 0.5hA (– - – - –,
green); z = 0.75hA (– – – –, red); z = hA (——–). Symbols denote turbulent channel flow by Bernardini
et al. (2014) (�) and turbulent pipe flow by Pirozzoli et al. (2021) (�, red) at Reτ ≈ 500.
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Figure 11. Mean velocity profiles at various y/h locations (with the increment of 0.1h, grey lines) in the flow
region controlled by the sidewall, as a function of the wall distance (see figure 9), for flow cases AR05-H (a,b),
AR1-H (c,d) and AR2-H (e, f ). The velocity profiles are scaled in local viscous units (a,c,e) and in global
viscous units (b,d, f ). Profiles at selected stations are highlighted: y = 0.25hA (- - - - - -, blue); y = 0.5hA
(– - – - –, green); y = 0.75hA (– – – –, red); y = hA (——–); and at the free surface (– - - – - - –, orange).
Symbols denote turbulent channel flow by Bernardini et al. (2014) (�) and turbulent pipe flow by Pirozzoli
et al. (2021) (�, red) at Reτ ≈ 500.
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Figure 12. Sketch of the flow organization in the cross-stream plane: (a) mean streamwise velocity and
(b) stream function.

at increasing Reynolds number. Therefore, in the limit of infinite Reynolds number we
expect that the velocity isolines of open ducts become indistinguishable from those in a
closed duct, and in both cases the asymptotic state is plug flow. Of course, close to the
free-surface the flow will remain different compared with the solid walls, at any finite
Reynolds number, but in an outer-units representation, such as the one of figure 7, the
free-surface boundary will become visibly indistinguishable from the solid walls. This is
also supported by the asymptotic boundary layer theory of Pullin, Inoue & Saito (2013),
according to which in the asymptotic state of the wall layer is slip-flow with a singularity
at the wall to account for the boundary condition. In open ducts the direct consequence is
that the mean streamwise velocity should become symmetric, with the maximum velocity
attained at the duct centre. As for the secondary flows, the Reynolds number of the present
dataset is not high enough to extrapolate an asymptotic state; however, we find hints that
the core circulation in open ducts will eventually become symmetric as well, with a pair
of counter-rotating eddies in each corner, whose intensity saturates to a fraction of the
bulk flow velocity, whereas the corner circulations become progressively more confined
towards the wall.

4.1. Friction
A key quantity in the design of open ducts is the friction factor. It is generally assumed
(Keulegan 1938; Knight et al. 2018) that for the purpose of estimating the friction factor
( f = 8τ ∗

w/(ρu2
b)) in ducts with cross-sectional shape other than circular, the same friction

formulae developed for pipe flow can be used, upon substitution of the pipe diameter with
the hydraulic diameter Dh. Assuming that the law-of-the-wall applies at all points in the
normal direction to the nearest solid wall, Pirozzoli (2018) found that better universality
of the friction factor distribution can be achieved by using an effective hydraulic diameter
De, whose general definition is

De = 2yme3/2+C, C = ym

A

∫ 1

0
P(ηym) log η dη, (4.2a,b)

where η = y/ym, ym is the apothem of the duct, and P(d) is the length of the locus of points
at distance d from the nearest wall. Equation (4.2a,b) is based on the idea that the distance
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Figure 13. Variation of hydraulic diameter (Dh, ——–), and effective diameter (De, – – – –), with duct aspect
ratio.

from the closest wall is the controlling parameter determining the streamwise velocity and
it is derived by assuming that log-law applies along a locus of points P(d). In the present
case of rectangular open ducts, the classical definition yields

Dh = 4Lz

2 +A , (4.3)

whereas (4.2a,b) yields

De =
⎧⎨
⎩

Lz e1/2−A/4
A ≤ 2,

2Lz

A
e1/2−1/A

A > 2.
(4.4)

Differences between the two length scales are shown in figure 13. It is clear that differences
are quite small forA ≈ 1 ducts, whereas they become significant for shallow or tall ducts.
In the flow cases under consideration, differences are at most 10 %, for theA = 0.5 case.

Not many data regarding the friction factor of open ducts are available in the literature,
which also show some contradictory results. Experiments of open pipe flow (Ng et al.
2018) show much higher friction factor than for a filled pipe, even when the hydraulic
diameter is used, whereas DNS results show good universality (Brosda & Manhart 2022).

In figure 14 we plot the friction factor and the friction Reynolds number against Reb
(figure 14a,b) and ReDe (figure 14c,d), for open and closed ducts (Pirozzoli et al. 2018),
along with the results of open ducts by Sakai (2016), and consider Prandtl’s friction
formula for smooth pipes as reference,

1/f 1/2 = A log10(Rebf 1/2)− B, (4.5)

with constants A = 2.0, B = 0.8. We find that DNS data for open ducts at various aspect
ratios have good universality when reported in terms of Reb based on either Dh or De
(namely ReDh = ubDh/ν, ReDe = ubDe/ν) , although some small improvement is visible
when results are reported using the effective hydraulic diameter, especially for flow cases
withA = 0.5, as expected. The reference DNS data of Sakai (2016) do not seem to follow
Prandtl friction law well, because of the limited Reynolds number of those cases. Similar
conclusions can be drawn for the friction Reynolds number.
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Figure 14. Friction factor (a,c), and friction Reynolds number (b,d), as a function of bulk Reynolds number
based on the hydraulic diameter (a,b), and on the effective diameter (c,d) (Pirozzoli 2018). Symbols denote
different flow cases: closed square ducts (�, blue); open square ductsA = 1 (•, red); open ducts withA = 2
(�, orange); open ducts withA = 0.5 (�, pink); open duct withA = 1 from Sakai (2016) (�, green). Lines
refer to the Kármán–Prandtl friction law.

4.2. Reynolds stresses
Spatial inhomogeneity of the flow in the y and z directions gives rise to a complex
distribution of the Reynolds stress tensor, τij = ρuiuj, whose components are shown in
figures 15, 16 and 17 for flow cases AR1-H, AR2-H and AR05-H, respectively. The
streamwise normal component τ11 peaks in the buffer layer near the solid walls, excluding
the corner region. The minimum is instead located near the position of the maximum
velocity, where production of turbulence kinetic energy is zero. As for the other two normal
stresses τ22 and τ33, the intensities are stronger along the corresponding wall-normal
directions, and weaker in the corresponding wall-parallel directions. At the free surface,
τ22 is zero due to the non-penetration boundary condition, whereas the intensity of the
τ33 component is high, especially near the bisector, which indicates intense turbulent
activity right below the free surface. The turbulent shear stresses τ12 and τ13 are strong
near the bottom and sidewalls, respectively, whereas the secondary shear stress τ23 is in
comparison much weaker. The secondary shear stress is nearly negligible on the bottom
and sidewalls, although it has a comparable intensity with the other components at the
bottom and top corners, suggesting that its mixing action is limited to the corner regions,
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Figure 15. Components of the Reynolds stress tensor in the cross-stream plane for case AR1-H: (a) τ+
11,

(b) τ+
22, (c) τ+

33, (d) τ+
12, (e) τ+

13, (d) τ+
23.

whereas it is not relevant close to the side and bottom walls. Similar distributions of the
Reynolds stresses τ11, τ22 and τ12 have also been observed in the studies of Demiral et al.
(2020) and Kadia et al. (2022). This general organization is found regardless of the duct
aspect ratio, although characterizing differences are visible, which are due to the imprint
of the secondary flows. A notable difference is for instance the bulging of the Reynolds
stresses isolines forA = 2 (figure 16) at the bottom wall, which are moulded by the strong
downwelling mean motions.

For flow cases withA = 0.5 we note that τ23 is weaker than for the other aspect ratios,
and confined very close to the corners, suggesting weaker interaction among the duct walls.
In this case, the distribution of τ23 and of the secondary flows in figure 5(h) also suggest
less influence of the free surface on the turbulence organization.

These observations are consistent with our model for the mean streamwise velocity
(figure 9), and we conclude that the relative importance of the free surface is determined
by its relative extension compared with fluid depth, hence the influence is higher for
increasing aspect ratio A. Hence it is not surprising that the flow case with A = 0.5,
which has the smallest share of free surface compared with the overall perimeter, shows
secondary flows which are quite similar to the case of a closed duct.

In figures 18 and 19 we show the normal Reynolds stress component τ11 as a function
of the distance from the closest wall, as in figure 9, normalized both in local and
global viscous units. Both in the region close to the bottom and the sidewall, local
scaling successfully yields universality of the peak streamwise velocity variance, which
well matches that in pipe and channel flow. Local wall scaling also seems to yield
closer similarity with pipe and channel flow in the outer region, possibly because of the
interaction of the outer layer with the wall. Overall, the Reynolds stress profiles follow
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Figure 16. Components of the Reynolds stress tensor in the cross-stream plane for case AR2-H: (a) τ+
11,

(b) τ+
22, (c) τ+

33, (d) τ+
12, (e) τ+

13, (d) τ+
23.

quite closely the data of turbulent channel and pipe flow, with the only exception of the
profiles taken at the free surface, where differences are expected due to the large variation
of the wall-stress at the mixed corner. Such discrepancies of the Reynolds stress at the
free-surface appear to be smaller when normalized by global viscous units.

5. Contributions to velocity and friction

To quantitatively evaluate the role of turbulent fluctuations and secondary motions to the
mean streamwise velocity field and to skin friction, we utilize the generalized form of the
Fukagata–Iwamoto–Kasagi (FIK) identity introduced by Modesti et al. (2018), which is
derived from the mean streamwise momentum equation

ν∇2U =
(
∂UV
∂y

+ ∂UW
∂z

)
+

(
∂uv
∂y

+ ∂uw
∂z

)
− Pwτ

∗
w

ρAc
, (5.1)

with the three terms at the right-hand side representing the effects of mean cross-stream
convection, turbulent convection and the mean driving pressure gradient. Accordingly, the
mean velocity can be split as

U = UC + UT + UV , (5.2)

which will be referred to as the convection, turbulent and viscous velocity contributions,
respectively. Due to the linearity of the Laplace operator, these are determined by solving
the following Poisson equations:

ν∇2UC =
(
∂UV
∂y

+ ∂UW
∂z

)
,

ν∇2UT =
(
∂uv
∂y

+ ∂uw
∂z

)
,

ν∇2UV = −Pwτ
∗
w

ρAc
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)
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Figure 17. Components of the Reynolds stress tensor in the cross-stream plane for case AR05-H: (a) τ+
11,

(b) τ+
22, (c) τ+

33, (d) τ+
12, (e) τ+

13, (d) τ+
23.

with homogeneous boundary conditions. The bulk velocity in the duct may accordingly be
evaluated as

ub = τ ∗
wPw

ρν
ub1 + ubT + ubC, ubX = 1

Ac

∫
Ac

UX dAc, (5.4a,b)

where we have introduced the unitary velocity field u1 defined as solution of
∇2u1 = −1/Ac, which by construction is only a function of the duct geometry. Hence,
the viscous velocity field may be expressed as UV = τ ∗

wPwu1/(ρν). Inserting the friction
factor f = 8τ ∗

w/(ρu2
b) into (5.4a,b) one obtains

f = 8
ub1ReP

(
1 − ubT

ub
− ubC

ub

)
= fV + fT + fC, (5.5)

where ReP = ubPw/ν is the bulk Reynolds number based on the duct perimeter.
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Figure 18. Streamwise Reynolds stress component at various z/h locations (with the increment of 0.1h) in
the flow region close to the bottom wall, as a function of the distance from the bottom wall (see figure 9)
for flow cases AR05-H (a,b), AR1-H (c,d) and AR2-H (e, f ). Profiles are scaled in local viscous units (a,c,e)
and in global viscous units (b,d, f ). Profiles at selected stations are highlighted: z = 0.25hA (- - - - -, blue);
z = 0.5hA (– - – - –, green); z = 0.75hA (– – – –, red); z = hA (——–). Symbols denote turbulent channel
flow by Bernardini et al. (2014) (�) and turbulent pipe flow by Pirozzoli et al. (2021) (�, red) at Reτ ≈ 500.

The distributions of the viscous and turbulent terms are shown in figure 20, for
both open and closed ducts. The viscous contribution shows the typical distribution
of Hagen–Poiseuille flows (White 2006). The turbulent velocity contribution is always
negative, consistently with the fact that turbulent transport increases drag, and UT depends
on the Reynolds number. The effect of Reynolds number on the turbulent velocity
contribution is more pronounced for the open square duct, in which the minimum velocity
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Figure 19. Streamwise Reynolds stress component at various y/h locations (with the increment of 0.1h) in the
flow region close to the sidewall, as a function of the distance from the sidewall (see figure 9) for flow cases
AR05-H (a,b), AR1-H (c,d) and AR2-H (e, f ). Profiles are scaled in local viscous units (a,c,e) and in global
viscous units (b,d, f ). Profiles at selected stations are highlighted: y = 0.25hA (- - - - -, blue); y = 0.5hA (–
- – - –, green); y = 0.75hA (– – – –, red); y = hA (——–); and at the free surface (– - - – - - –, orange).
Symbols denote turbulent channel flow by Bernardini et al. (2014) (�) and turbulent pipe flow by Pirozzoli
et al. (2021) (�, red) at Reτ ≈ 500.

was seen to visibly move away from the free surface. In general, as the Reynolds number
increases the isolines of UT tend to close, and the magnitude of turbulence-associated
velocity at the free-surface decreases, which is consistent with the description in figure 12.

The contribution to the streamwise velocity from mean cross-stream convection is
shown in figure 21. Both in closed and open ducts the role of mean cross-stream convection
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Figure 20. Contributions to mean streamwise velocity U, each normalized by the corresponding bulk values,
(a,c,e,g) viscous UV/uVb, (b,d, f,h) turbulent UT/|uTb|, of (a,b) SD, (c,d) AR1, (e, f ) AR2, (g,h) AR05;
flooded, L; dashed lines, M; solid lines, H. Contour levels from −2.0 to 2.0, in intervals of 0.2.

is to redistribute momentum transport across the duct cross-section by depleting the core
(in closed ducts) and the free surface (in open ducts), in favour of the corners, where the
velocity is lower.

The contributions of the various terms to the duct friction factor are summarized in
table 2. For all cases, the primary contribution to the skin friction comes from turbulence,
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Figure 21. Contribution of mean cross-stream convection term to mean streamwise velocity, UC/|uCb|:
(a) SD-L, (b) SD-M, (c) SD-H, (d) AR1-L, (e) AR1-M, ( f ) AR1-H, (g) AR2-L, (h) AR2-M, (i) AR2-H,
( j) AR05-L, (k) AR05-M, (l) AR05-H, contour levels from −8.0 to 8.0, in intervals of 0.5.

which increases up to 90 % at the highest Reynolds number, whereas the contribution
of viscosity drops to approximately 5 %. Regarding the secondary motions, in closed
ducts their contribution to the skin friction is limited to approximately 5 %, and the
increment with the Reynolds number is rather slow. Secondary motions seem to play a
more significant role in open ducts, as their contribution to skin friction exceeds 10 % in
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Case fV × 103 fT × 103 fC × 103 fV/f (%) fT/f (%) fC/f (%)

SD-L 0.812 2.384 0.142 24.30 % 71.44 % 4.26 %
SD-M 0.32 2.248 0.136 11.85 % 83.12 % 5.03 %
SD-H 0.1428 1.916 0.1536 6.451 % 86.60 % 6.95 %

AR1-L 0.3528 2.148 0.196 12.64 % 80.01 % 7.26 %
AR1-M 0.2232 1.924 0.2348 8.78 % 82.50 % 8.71 %
AR1-H 0.0988 1.608 0.2132 4.85 % 84.06 % 11.10 %

AR2-L 0.1228 1.26 0.204 7.82 % 79.17 % 13.01 %
AR2-M 0.0788 1.14 0.2064 5.53 % 79.97 % 14.50 %
AR2-H 0.0356 0.944 0.186 3.06 % 80.99 % 15.95 %

AR05-L 0.3368 2.192 0.0828 12.88 % 83.96 % 3.16 %
AR05-M 0.2288 2.112 0.0808 9.44 % 87.23 % 3.33 %
AR05-H 0.0932 1.664 0.094 5.03 % 89.89 % 5.08 %

Table 2. Contribution of viscous, turbulent and mean cross-stream convection terms to friction factor.

open ducts with A = 1 and A = 2. On a final note, it seems that the contribution of
convection increases substantially with the Reynolds number for all cases, supporting the
fact that the intensity of the secondary flows scales with the bulk flow velocity, as we also
proposed in our previous work (Pirozzoli et al. 2018).

6. Suppression of secondary flows

We also carried out a numerical experiment by artificially suppressing the secondary
motions. For that purpose we force the streamwise-averaged cross-stream velocity
components to have zero mean by setting

v(x, y, z, t) → v(x, y, z, t)− v̄x( y, z, t), (6.1a)

w(x, y, z, t) → w(x, y, z, t)− w̄x( y, z, t), (6.1b)

at each Runge–Kutta substep, where (.)
x

denotes the streamwise averaging operator.
The method to suppress the secondary flows is rather simple and it is equivalent to
adding a body force f ( y, z, t) to the Navier–Stokes equations which exactly suppresses
the secondary flows. Therefore, the solution does not satisfy the canonical Navier–Stokes
equations, but the equations with the addition of the spatial forcing. We first analyse the
instantaneous flow field comparing the u and v velocity components for the cases with and
without secondary flows, see figure 22.

For flow case AR1-M, the velocity dip is evident even in the instantaneous streamwise
velocity, whereas for flow case AR1-M0 it is more difficult to pinpoint the location of the
maximum streamwise velocity from the instantaneous flow. It is evident that the secondary
flow is responsible for a fuller streamwise velocity profile, due to the additional momentum
transfer which is absent in flow case AR1-M0. We also note that in the instantaneous flow
field of AR1-M, high-speed sweeps protruding towards the corner are present, whereas
low momentum regions at the corner are evident for AR1-M0.

The intensity of the instantaneous wall-normal velocity component v does not seem
affected by the suppression of the secondary flows, probably because the intensity of
the turbulent fluctuations is approximately an order of magnitude higher than the mean
cross-stream velocity components. However, we note lower coherence in v for flow case
AR1-M0 as a result of suppression of the large-scale structures.
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Figure 22. Streamwise velocity component u/ub (a,b) and wall-normal velocity component v/ub (c,d) in the
cross-stream plane and for flow case AR1-M (a–c) and for AR1-M0 (b–d).

Figure 23(a) shows the mean streamwise velocity in the cross-stream plane for flow
case AR1-M, and AR1-M0. In the absence of secondary flows the velocity isolines are
rounded, the velocity distribution is less full and the maximum velocity is higher (see
table 1) because of the reduced momentum transfer. This is not sufficient to completely
cancel the velocity dip, and the maximum velocity still occurs below the free surface,
although much closer to it compared with flow case AR1-M. A similar conclusion can be
drawn from figure 23, showing the mean velocity profile at the symmetry plane, where it
is evident that the maximum velocity for flow case AR1-M0, still occurs below the free
surface.

The purpose of this numerical experiment was to assess the causality link between the
secondary flows and the velocity dip; however, the results are not fully conclusive, and
data at much higher Reynolds number would be needed to fully clarify this point.
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Figure 23. Mean streamwise velocity in the cross-stream plane (a) for flow case AR1-M (isolines) and for
AR1-M0 (contours). The associated maximum velocity location is shown with a cross for AR1-M, and a plus
for AR1-M0. In panel (b) we show the mean streamwise velocity profiles at z/h = 0 for flow case AR1-M
(——–) and AR1-M0 (– – – –, red).

7. Conclusions

We have carried out DNS of square and rectangular open duct flows with aspect ratios
A = 0.5, 1, 2, and up to Reτ ≈ 1200, addressing several open research questions for
this flow. Open-duct flow has been so far studied extensively using experiments, whereas
previous simulations were limited to low Reynolds number, which left some uncertainty
about the structure of the secondary flows. Using the present DNS dataset we have been
able to determine precisely the topology of the secondary flows, for different Reynolds
numbers and aspect ratios, and compared the results with the case of closed ducts.
In agreement with previous studies, we find that secondary flows in open ducts are
substantially different from those in closed ducts, featuring only four large-scale eddies
instead of eight. However, we find hints of a different flow topology slowly emerging
at increasingly high Reynolds number, with a large-scale circulation becoming clearly
visible at the mixed-boundary corner, which is a possible hint that in the limit of very high
Reynolds number the secondary flows eventually attain double symmetry. This behaviour
is supported by the Reynolds number trend observed for the mean streamwise velocity.
As the Reynolds number increases, the streamwise velocity peak moves away from the
free surface, and the velocity isolines tend to become parallel to it, indicating that the
limit state is plug flow. This limit state is consistent with the theory of Pullin et al. (2013)
for high-Reynolds-number boundary layers, and also with the idea that wall turbulence is
impervious to the boundary conditions, and the only role of walls is to set the wall shear
stress.

The limit state that we are suggesting would imply that the velocity dip phenomenon
is not due to the downwelling motion imparted by the secondary flows. To shed light on
this issue, we have also carried out numerical experiments in which we have artificially
suppressed the secondary flows to understand their role in the formation of the velocity dip.
Suppressing the secondary flows indeed yields reduced momentum transport; however,
the outcome is not fully conclusive, and data at higher Reynolds number and for different
aspect ratios would be required to precisely confirm this causality link.

Friction data accurately follow Prandtl’s law for circular pipe when reported with the
bulk Reynolds number based on the hydraulic diameter, and slight improvement is visible
when the effective diameter is used instead. The success of the hydraulic diameter is

977 A32-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

97
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.971


Direct numerical simulation of open rectangular duct flows

justified by the fact that the mean velocity is controlled by the closest wall, therefore the
duct can be decomposed into flow regions where the standard law-of-the-wall applies.
A friction decomposition based on the popular FIK identity shows that secondary flows
are more important than in closed ducts and they contribute up to 15 % of the total friction
factor forA = 2.

Although this work has shed light on some facets of flows in open ducts, several
important research avenues remain open, and we believe that DNS is a powerful tool that
could bring important advancement in this respect. Specifically, numerical simulations
at higher Reynolds number and different aspect ratios would certainly help in clarifying
some of the points we make in the paper. Additionally, flows in open ducts of different
cross-section such as trapezoidal, or semicircular would certainly expand our knowledge
of the subject. Finally, high-Reynolds-number simulations of more realistic configurations
featuring rough walls, particle transport, or both, would contribute to transferring
fundamental knowledge towards engineering design.
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