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Universal polynomials for singular curves on surfaces
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Abstract

Let S be a complex smooth projective surface and L be a line bundle on S. For
any given collection of isolated topological or analytic singularity types, we show the
number of curves in the linear system |L| with prescribed singularities is a universal
polynomial of Chern numbers of L and S, assuming L is sufficiently ample. More
generally, we show for vector bundles of any rank and smooth varieties of any dimension,
similar universal polynomials also exist and equal the number of singular subvarieties
cutting out by sections of the vector bundle. This work is a generalization of Göttsche’s
conjecture.

1. Introduction

For a pair of a smooth projective surface and a line bundle (S,L), it is a classical problem to
find the number of r-nodal curves in a generic r-dimensional linear subsystem of |L|. Göttsche
conjectured that for any r > 0, there exists a universal polynomial Tr of degree r, such that Tr(L

2,
LKS , c1(S)2, c2(S)) equals the number of r-nodal curves in a general linear subsystem, provided
that L is (5r−1)-very ample. Moreover, the generating series of Tr has a multiplicative structure
and satisfies the Göttsche–Yau–Zaslow formula [Göt98, Tze12]. Recently, Göttsche’s universality
conjecture was proven by the second named author [Tze12] using degeneration methods, and a
different proof was given by Kool–Shende–Thomas [KST11] using BPS calculus and computation
of tautological integrals on Hilbert schemes (see also the approach of Liu [Liu00, Liu04]). In this
paper, we address the question of whether a similar phenomenon is true for curves with higher
singularities.

The goal of this article is to generalize Göttsche’s universality conjecture to curves with
arbitrary isolated (analytic or topological) singularities. Consider a collection of isolated
singularity type α = (α1, α2, . . . , αl(α)). We say a curve C has singularity type α if there exists
l(α) points x1, x2, . . . , xl(α), such that the singularity type of C at xi is exactly αi and C has no
more singular points. We prove the following theorem concerning curves with singularity type α.

Theorem 1.1. For every collection of (analytic or topological) isolated singularity type α, there
exists a universal polynomial Tα(x, y, z, t) of degree l(α) with the following property: given
a smooth projective surface S and an (N(α) + 2)-very ample line bundle L on S, a general
codim(α)-dimensional sublinear system of |L| contains exactly Tα(L2, LK, c1(S)2, c2(S)) curves
with singularity type α.

The constant N(α) :=
∑
N(αi) can be computed explicitly using the defining equation of

each singularity αi, see Definition 2.2.
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For instance, there is a universal polynomial which counts curves with one triple point, two

E8 singularities, and one 5-fold point analytically equivalent to x5 − y5 = 0. The coefficients of

this universal polynomial can be determined if we know the numbers of such curves on finite

pairs of surfaces and (N(α) + 2)-very ample line bundles. However, for most singularity types,

such numbers are not known even for the projective plane. At the end of § 3 we will discuss the

current results on computing universal polynomials.

To characterize the conditions of given singularity type, we study the locus of zero-

dimensional subschemes of a special shape on the surface. The shape is determined by the

singularity type such that if a curve has a prescribed singularity then it must contain a

zero-dimensional closed subscheme of the corresponding shape; moreover, the converse is

true for generic curves. In the case of a node, the locus is the collection of subschemes

isomorphic to SpecC{x, y}/(x, y)2 because a curve C on S is singular at p if and only if C

contains SpecOS,p/m2
S,p. This technique was developed by [Göt98] and [HP95] to show that the

enumeration of nodal curves can be achieved by computing a certain intersection number on

Hilbert schemes of points (called tautological integrals). In this paper, we find a uniform way

of defining such a correspondence from isolated singularity types to the isomorphism types of

zero-dimensional subschemes. As a result, the number of curves with given singularity types

can be expressed again as tautological integrals on Hilbert schemes of points on S. This allows

us to apply a degeneration argument developed in [Tze12] to show the existence of universal

polynomials.

We illustrate our method below, by outlining how it can be applied to enumerate cuspidal

curves.1

(i) If a reduced curve C has a cusp at a point p, then local coordinates at p can be chosen

such that C is locally defined by y2−x3 = 0. Therefore, C contains the subscheme SpecC{x, y}/
〈y2 − x3〉 supported at p. Since we aim to characterize isolated singularities by subschemes of

finite length, we observe that C must contain SpecC{x, y}/〈y2−x3,m4〉. The converse is true for

generic curves. So counting cuspidal curves is equivalent to counting curves having a subscheme

isomorphic to SpecC{x, y}/〈y2 − x3,m4〉.
(ii) Define S0(cusp) to be all subschemes of S isomorphic to SpecC{x, y}/〈y2−x3,m4〉. Then

S0(cusp) is a subset of the Hilbert scheme of seven points S[7]. So we can define S(cusp) to be the

closure of S0(cusp) (with induced reduced structure). It is elementary to see that the dimensions

of S0(cusp) and S(cusp) are both 5.

(iii) Since the locus of cuspidal curves is of codimension two in |L|, we aim to compute the

(finite) number of cuspidal curves in a general linear subsystem V ∼= P2 ⊂ |L|. Suppose that L is

sufficiently ample and let L[7] be the tautological bundle of L in S[7] (Definition 2.3), the number

of cuspidal curves is equal to the number of points in the locus cut out by the three sections in

H0(L[7]) which define V in S(cusp); when the intersection is discrete, this number is represented

by the tautological integral dcusp(S,L) :=
∫
S(cusp) c7−3+1(L

[7]) (the Thom–Porteous formula).

(iv) The degree of the zero cycle dcusp(S,L) does not have any contribution from nonreduced

curves, curves with more than two singular points or with other singularities. Because if a

curve in dcusp(S,L) is nonreduced or has more than two singular points, then it must contain

SpecOS,p/〈y2 − x3,mS,p
4〉 ∪ SpecOS,q/m2

S,q for some points p 6= q in S. Similarly a curve in

dcusp(S,L) with singularity different from cusp must contain SpecC{x, y}/〈(y2 − x3)m,m4〉.

1 Since it is impossible to explain every detail in a short paragraph, please refer to the corresponding sections.
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Dimension count shows that this is impossible for general two-dimensional V and sufficiently

ample L (see Proposition 2.4).

(v) In the last step, we apply the degeneration technique developed in [Tze12]. We show

dcusp(S,L) only depends on the class of [S,L] in the algebraic cobordism group, which only

depends on L2, LK, c1(S)2 and c2(S). Hence dcusp(S,L) is precisely the universal polynomial

we are looking for.

We will define a generating series containing all universal polynomials as coefficients and show

it has a compact exponential description (Corollary 3.3) and is multiplicative (Theorem 3.2),

generalizing the case of nodal curves discussed in [Göt98] and [KP99]. These properties of

generating series impose strong restrictions on universal polynomials and therefore greatly reduce

the computation complexity. After proving the existence of universal polynomials on surfaces, we

also discuss how Göttsche’s conjecture can be generalized to higher dimensional varieties. At the

end of § 3, we discuss a few known cases and the relation with the Thom polynomials. Moreover,

we will discuss the irreducibility and smoothness of the locus of curves with fixed singularity

type α in § 4.

Shortly after our paper was written, we learned that similar results were obtained

independently by Rennemo [Ren12]. Both we and Rennemo compute the number of curves

containing certain types of zero-dimensional subschemes and express the number in tautological

integrals. The main difference between these two papers is the method to prove that tautological

integrals are universal: Rennemo uses Chern–Schwartz–MacPherson class and Hilbert schemes

of ordered points, while we use algebraic cobordism. We also associate topological singularities

with different isomorphism types of zero-dimensional subschemes, but that is minor.

Göttsche’s conjecture also holds for higher dimensional varieties. Consider hypersurfaces or

in general the common zero of sections from several vector bundles Ei on a smooth projective

variety X. If Ei are all sufficiently ample, the numbers of such subvarieties with prescribed

analytic singularities should be universal polynomials of the Chern numbers of X and Ei. The

proofs in Rennemo’s and our papers can be carried to this more general setting without any

change. The discussion about the higher dimensional case is in § 3.

2. Tautological integrals

In this section we construct a tautological integral dα(S,L) on Hilbert schemes of points on S,

and prove that this number can be used to count the number of curves with singularity type α

in |L|. First, we recall some results in singularity theory.

Let C{x, y} be the ring of convergent power series in x and y with maximal ideal m = (x, y),

f be a germ in C{x, y}, and let the Jacobian ideal 〈∂f/∂x, ∂f/∂y〉 be J(f), then the Milnor

number µ(f) and Tjurina number τ(f) are defined as:

µ(f) = dimCC{x, y}/J(f); τ(f) = dimCC{x, y}/〈f + J(f)〉.

Two planar curves C1 and C2 have analytically equivalent singularities at the origin if their

defining germs f1 and f2 in C{x, y} are contact equivalent ; i.e. there exists an automorphism φ of

C{x, y} and a unit u ∈ C{x, y} such that f = u · φ(g). We say they have topologically equivalent

(or equisingular) singularities if the following equivalent conditions are satisfied [GLS07]:

(i) there exist balls B1 and B2 with center 0 such that (B1, B1 ∩ C1, 0) is homeomorphic to

(B2, B2 ∩ C2, 0);
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(ii) C1 and C2 have the same number of branches, Puiseux pairs of their branches C1i and C2i

coincide, and intersection multiplicities i(C1i, C1j) = i(C2i, C2j) for any i, j;

(iii) the systems of multiplicity sequences of an embedded resolution coincide.

It is easy to see that analytic equivalence implies topological equivalence. However, the
converse is true only for ADE singularities. The Milnor number is both analytic and topological
invariant (by a result of Milnor), while the Tjurina number is only an analytic invariant. Therefore
τ(α) and µ(α) are well defined when they are invariants of the singularity α.

Recall that the tangent space of the miniversal deformation space Def of the singular
curve C := {f = 0} at the origin can be naturally identified with C{x, y}/〈f + J(f)〉, and
its dimension is the Tjurina number τ(f). The dimension of the miniversal deformation space
also has an important geometric meaning: it is the expected codimension of the locus of curves
in a linear system with the same analytic singularity α of C at the origin, and is denoted by
codim(α). Roughly speaking, codim(α) is the number of conditions imposed by the singularity
α. If α is a topological singularity type, then inside Def there is the equisingular locus ES,
which parametrizes equisingular or topologically trivial deformations. In this case, codim(α)
is dimCC{x, y}/〈f + J(f)〉 − dimCES and is also the expected codimension of curves with
singularity α in a linear system.

A natural question is, in order to determine the singularity type of f = 0 at the origin, is
it sufficient to look at the first several terms of f? For example, does the curve y2 = x3 + xy99

have a cusp because the term x99 can be ignored? The answer is yes, provided the terms being
ignored are of sufficiently high degrees, according to the finite-determinacy theorem.

Definition 2.1. We say that a germ f is (analytically) k-determined if f ≡ g (mod mk+1)
implies they are contact equivalent; i.e. there exists an automorphism φ of C{x, y} and a unit
u ∈ C{x, y} such that f = u · φ(g). In other words, if f and g differ by an element in mk+1, then
the curves f = 0 and g = 0 have analytically equivalent singularities at the origin.

Theorem 2.1 [GLS07, Theorem 2.23]. If f is (analytically) k-determined, then

mk+1 ⊆ mJ(f) + 〈f〉.

Conversely, if

mk ⊆ mJ(f) + 〈f〉,

then f is k-determined.

Corollary 2.2 [GLS07, Corollary 2.24]. For any germ f ∈ m ⊂ C{x, y}, f is τ(f)-determined.

As a result, all representatives of an analytical (respectively topological) singularity α are
τ(α)-determined (respectively µ(α)-determined). Therefore we can define k(α) to be the smallest
k such that all representatives of α are k-determined.

Definition 2.2. For any isolated planar (analytic or topological) singularity α, pick a
representative fα ∈ C{x, y} and let N(α) be the length of the zero-dimensional closed subscheme
ξα = SpecC{x, y}/〈fα,mk(α)+1〉.

The number N(α) only depends on k(α) and the multiplicity of fα at the origin, which is an
invariant of the singularity.

Example 2.1. If α is a simple node, we can choose fα = xy. Then τ(α) = codim(α) = 1, k(α) = 2,
ξα = SpecC{x, y}/〈xy,m3〉 and N(α) = 5.
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Example 2.2. If α is an ordinary cusp, we can choose fα = y2 − x3. Then τ(α) = codim(α) = 2,
k(α) = 3, ξα = SpecC{x, y}/〈y2 − x3,m4〉 and N(α) = 7.

Example 2.3. If α is an analytical n-fold point (n > 3) which is defined by fα = xn − yn, then
τ(α) = codim(α) = (n− 1)2 = dimCC[xiyj | 0 6 i, j 6 n− 2], k(α) = 2n− 4, ξα = SpecC{x, y}/
〈xn − yn,m2n−3〉.

Example 2.4. If α is a topological n-fold point (n > 3), we can choose fα = xn− yn again. Then
τ(fα) = (n− 1)2, codim(α) = n(n+ 1)/2− 2 (all terms of degree less than n have to vanish), it
is not easy to compute k(α) but it satisfies 2n− 4 6 k(α) 6 µ(α) = (n− 1)2.

Recall that if α = (α1, α2, . . . , αl(α)) is a collection of isolated planar (analytic or topological)
singularity types, a curve C has singularity type α if C is singular at exactly l(α) distinct points
{x1, x2, . . . , xl(α)} and the singularity type at xi is αi. Note we consider the topological and
analytic singularities defined by the same germ to be different singularities.

Define

N(α) =

l(α)∑
i=1

N(αi) and codim(α) =

l(α)∑
i=1

codim(αi).

If the line bundle is sufficiently ample, the conditions imposed by the singularities are
independent, and codim(α) is the expected codimension of the locus of curves with singularity
types α in |L|.

For a smooth surface S, let S[N(α)] be the Hilbert scheme of N(α) points on S. Define

S0(α) ⊂ S[N(α)] to be the set of points
∐l(α)
i=1 ηi satisfying the following conditions:

(i) the ηi are supported on distinct points of S;

(ii) every ηi is isomorphic to SpecC{x, y}/〈gi,mk(αi)+1〉, for some germ gi such that gi = 0 has
singularity type αi at the origin.

Consider the closure S(α) = S0(α) as a closed subscheme in S[N(α)] with reduced induced
scheme structure. For every n ∈ N, let Zn ⊂ S × S[n] be the universal closed subscheme with
projections pn : Zn → S, qn : Zn → S[n].

Definition 2.3. If L is a line bundle on S, define L[n] = (qn)∗(pn)∗L. Because qn is finite and
flat, L[n] is a vector bundle of rank n on S[n] and it is called the tautological bundle of L.

To count curves with singularity type α, we use the cycle

Λα(S,L) := cN(α)−codim(α)(L
[N(α)]) ∩ [S(α)]

in the Chow group of S[N(α)].

Lemma 2.3. The cycle Λα(S,L) is a zero cycle; i.e. dim S(α) = N(α)− codim(α).

Proof. It suffices to prove that for every isolated singularity α, the dimension of S0(α) is equal
to N(α)− codim(α).

Suppose that α is an analytic singularity, by definition every closed subscheme in S0(α) is
only supported at one point on S. Define the projection p : S0(α)→ S to be the map sending a
closed subscheme to its support, then the fiber over a point is the collection of closed subschemes
SpecC{x, y}/〈g,mk(α)+1〉 supported at that point such that g = 0 has singularity α. If we pick
a representative f , all such g are in the orbit of f under the group action by K = C{x, y}∗ n
Aut(C{x, y}). Let orb(f) be the orbit of f in C{x, y}/mk(α)+1 under the action of the restriction
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of K on the C{x, y}/mk(α)+1. According to [GLS07], orb(f) is smooth and its tangent space at

f is

(m · J(f) + 〈f〉+ mk(α)+1)/mk(α)+1.

But since SpecC{x, y}/〈f,mk(α)+1〉 and SpecC{x, y}/〈u · f,mk(α)+1〉 describe the same closed

subscheme if u is a unit in C{x, y}/mk(α)+1−m(f) (where m(f) is the multiplicity of f at the

origin), orb(f)/(C{x, y}/mk(α)+1−m(f))∗ is isomorphic to the fiber of p over every point on S.
The discussion above and Theorem 2.1 imply

dimCS
0(α)

= 2 + dimC(m · J(f) + 〈f〉+ mk(α)+1)/mk(α)+1 − dimCC{x, y}/mk(α)+1−m(f)

= dimC(J(f) + 〈f〉)/mk(α)+1 − dimCC{x, y}/mk(α)+1−m(f)

= dimCC{x, y}/mk(α)+1 − dimCC{x, y}/(J(f) + 〈f〉)− dimCC{x, y}/mk(α)+1−m(f)

= (dimCC{x, y}/〈f,mk(α)+1〉+ dimC〈f,mk(α)+1〉/mk(α)+1)

− codim(α)− dimCC{x, y}/mk(α)+1−m(f)

= N(α) + dimCC{x, y}/mk(α)+1−m(f) − codim(α)− dimCC{x, y}/mk(α)+1−m(f)

= N(α)− codim(α).

If f = 0 defines an analytic singularity α and a topological singularity β at the origin, it

follows from definition that dimCS
0(β) = dimCS

0(β) + dimCES, N(α) = N(β), and codim(β) =

codim(α) − dimCES. Therefore the desired equality is established for topological singularity

types. 2

By the previous lemma, we can define dα(S,L) to be the degree of the zero cycle Λα(S,L).

Definition 2.4. We call a line bundle L k-very ample if for every zero-dimensional subscheme

ξ ⊂ S of length k + 1, the natural restriction map H0(S,L)→ H0(ξ, L⊗Oξ) is surjective.

If L and M are very ample, L⊗k ⊗M⊗l is (k + l)-very ample. In particular, very ampleness

implies 1-very ampleness.

Proposition 2.4. Assume L is (N(α) + 2)-very ample, then a general linear subsystem V ⊂ |L|
of dimension codim(α) contains precisely dα(S,L) curves whose singularity types are α.

Proof. The structure of the proof is very similar to [Göt98, Proposition 5.2]. However, we have

to make a generalization to deal with all singularity types.

If {si} is a basis of V , then {(qn)∗(pn)∗si} are global sections in H0(L[N(α)]). By the ampleness

assumption, H0(L)→ L|ξ is surjective for every ξ ∈ S[N(α)]. Therefore, for general V the locus

W where {(qn)∗(pn)∗si} are linearly dependent is of the expected dimension N(α)− codim(α),

and W is Poincare dual to cN(α)−codim(α)(L
[N(α)]) by the Thom–Porteous formula, see

[Ful98, Example 14.4.2]. Consequently,

[W ∩ S(α)] = cN(α)−codim(α)(L
[N(α)]) ∩ [S(α)] = Λα(S,L).

Because the dimension of S(α)\S0(α) is less than N(α) − codim(α), Λα(S,L) is only

supported on S0(α) for general V . By an argument similar to [Göt98, Proposition 5.2], W

is smooth for general V . Therefore dα(S,L) is the number of curves in a general codim(α)-

dimensional linear subsystem in |L| which contain a point in S0(α).
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Next, we show curves in Λα(S,L) can not have more than l(α) singular points. If C is a curve
in Λα(S,L) with l(α) + 1 singular points, then C must contain a point in

S′(α) =

{l(α)+1∐
i=1

ηi

∣∣∣∣ l(α)∐
i=1

ηi ∈ S0(α) and ηl(α)+1
∼= SpecC{x, y}/m2

}
⊂ S[N(α)+3].

In a general linear subsystem of dimension codim(α) in |L|, the number of such curves can be
computed by

cN(α)+3−codim(α)(L
[N(α)+3]) ∩ [S′(α)].

But it vanishes because

dim S′(α) = dimS(α) + 1 < N(α) + 3− codim(α).

It also follows that all curves in Λα(S,L) must be reduced.
Finally, we prove that curves in Λα(S,L) must have singularity type precisely α. Let C be a

curve in Λα(S,L), then it must contain some point
∐l(α)
i=1 ηi in S0(α) and hence has singularity ‘at

least’ αi at xi, where xi is the support of ηi. If the singularity type of C is not α, without loss of
generality we can assume the singularity type at x1 is not α1. Let η1 = SpecC{x, y}/〈g1,mk(α1)+1〉
and the germ of C at x1 be f . Since C contains η1, f ∈ 〈g1,mk(α1)+1〉 so f ≡ u·g1 (mod mk(α1)+1).
If u is a unit, then u−1f also defines C and the finite-determinacy theorem implies C must have
singularity precisely α1 and this is a contradiction. Otherwise, u is not a unit and f is in the

ideal 〈g1m,mk(α1)+1〉. Let S̃0(α) be the set of SpecC{x, y}/〈g1m,mk(α1)+1〉 ∪ (
∐l(α)
i=2 ηi) such

that there exists η1 = SpecC{x, y}/〈g1,mk(α1)+1〉 and
∐l(α)
i=1 ηi ∈ S0(α). The natural map from

S0(α) to S̃0(α), which sends
∐l(α)
i=1 ηi to SpecC{x, y}/〈g1m,mk(α1)+1〉 ∪ (

∐l(α)
i=2 ηi), is surjective

and therefore dim S0(α) > dim S̃0(α). Let S̃(α) be the closure of S̃0(α) in S[N(α)+1] and apply
the Thom–Porteous formula to S̃(α), we see C contributes a positive number in the counting∫
S̃(α) cN(α)+1−codim(α)(L

[N(α)+1]). On the other hand, this intersection is empty because

N(α) + 1− codim(α) > N(α)− codim(α) = dim S(α) > dim S̃(α).

This is a contradiction and C must have singularity type precisely α. 2

Remark. Kleiman pointed out to us that one can associate every topological singularity α with a
complete ideal Iα, such that a general element in Iα defines a curve with singularity α. Therefore
we can also associate α to the isomorphism type of SpecC{x, y}/Iα. This approach is taken by
Rennemo [Ren12], and it may weaken the ampleness condition needed in Proposition 2.4 and in
Theorem 3.4.

3. Universal polynomials and generating series

In this section, we prove the existence of a universal polynomial that counts the number of curves
of singularity type α. In particular, we will prove a degeneration formula for the tautological
integrals dα(S,L), and show dα(S,L) is the universal polynomial we are looking for. Moreover,
we construct the generating series of dα(S,L) and show the series has a compact exponential
description.

Let U be a curve and ∞ ∈ U be a specialized point, consider a flat projective family of
schemes π : X → U that satisfies:

(i) X is smooth and π is smooth away from the fiber π−1(∞);
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(ii) π−1(∞) =: X1
⋃
DX2 is a union of two irreducible smooth components X1 and X2 which

intersect transversally along a smooth divisor D.

In [LW11], Li and Wu constructed a family of Hilbert schemes of n points π[n] : X [n] → U , whose

smooth fiber over t 6= ∞ is X
[n]
t , the Hilbert scheme of n points on the smooth fiber Xt of π.

To compactify this moduli space, one has to replace X by a new space X [n] so that X and X [n]
have the same smooth fibers over t 6=∞, but over ∞ the fiber of X [n] is a semistable model

X [n]∞ = X1 ∪∆1 ∪∆2 ∪ . . .∆n−1 ∪X2,

where ∆i
∼= PD(OD ⊕NX1/D). The fiber of X [n] over ∞ is the union of products

n⋃
k=0

(X1/D)[k] × (X2/D)[n−k]

for all possible n > k > 0, where points in (X1/D)[k] are subschemes of length k supported on
the smooth locus of X1 ∪∆1 ∪ · · · ∪∆i.

Li and Wu proved that the moduli stack X [n] is a separated and proper Deligne–Mumford
stack of finite type over U . If L is a line bundle on X , there is a tautological bundle L[n]

whose restriction on smooth fibers X
[n]
t is the tautological bundle of L|Xt and its restriction

on (X1/D)[k] × (X2/D)[n−k] is the direct sum of tautological bundles of L1 := L|X1 and

L2 := L|X2 . Recall S(α) ⊂ S[N(α)] is the closure of the set of points
∐l(α)
i=1 ηi so that the ηi

are supported on distinct points of S and of the isomorphism type associated to αi. Similarly we

can define (X1/D)(α) (respectively (X2/D)(α)) by taking the closure of the set of points
∐l(α)
i=1 ηi

in (X1/D)[N(α)] (respectively (X2/D)[N(α])) so that the ηi are supported on distinct points and
of the isomorphism type associated to αi. Tautological integrals on relative Hilbert schemes can
now be defined by

dα(Xi/D,Li) =

∫
(Xi/D)(α)

cN(α)−codim(α)(L
N(α)
i ).

Lemma 3.1. There is a family of cycles X (α) ⊂ X [N(α)] such that

X (α) ∩X [N(α)]
t = Xt(α) for t 6=∞

and
X (α) ∩ ((X1/D)[m] × (X2/D)[N(α)−m]) =

⋃
(X1/D)(α1)× (X2/D)(α2),

where the sum is over all α1 and α2 satisfying α = α1 ∪ α2, N(α1) = m, N(α2) = N(α) −m.
Furthermore, X (α) is flat over U via the composition X (α) ↪→ X [N(α)] → U .

Proof. Let X 0(α) be the union of all Xt(α), for all smooth fibers Xt over t ∈ U . Define X (α) to be

the closure of X 0(α) in X [N(α)], then by definition X (α)∩X [N(α)]
t = Xt(α). Since X is a smooth

family of complex varieties, for every point p in X one can choose an analytic neighborhood Vp
around p such that Vp is a trivial fibration over its image in U .

Suppose b is a point in X (α) which lies over ∞. Write b as the union of disjoint schemes
bi, so that bi is only supported at one point pi. Then pi must belong to the smooth locus of a
component Y of some semistable model X [n]∞ = X1 ∪∆1 ∪∆2 ∪ . . . ∪∆n−1 ∪X2 for some n.
Since b is in the closure of X 0(α), there is a sequence of points {bj} in X 0(α) approaching b. By
shrinking Vpi , we can assume {Vpi} are pairwise disjoint and every bj is in

⋃
i Vpi , thus every bj

is the disjoint union of closed subschemes bji of Vpi .
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Since Vpi ⊂ X → U is a trivial fibration over its image, there is a projection qi : Vpi → Y

whose image is a small open neighborhood of pi on Y . Since qi is a trivial projection which does

not change the isomorphism type of zero-dimensional schemes,
∐
i qi(bji) is a sequence in X (α)

that approaches
∐
i bi = b. It follows that bi is in Y (βi), where βi is the union of several αi,

because if we take the limit of a family of a union of closed subschemes of types α1, . . . , αl(α),

some closed subschemes would approach each other and create a degenerated isomorphism type.

Therefore the splitting b =
∐
i bi corresponds to a partition α = β1 ∪ β2 ∪ · · · ∪ βn+1 such that b

is in

(X1/D)(β1)× (∆1/D)(β2)× · · · × (∆n−1/D)(βn)× (X2/D)(βn+1)

and therefore belongs to (X1/D)(α1)× (X2/D)(α2) if there exists m such that

α1 = β1 ∪ β2 ∪ · · · ∪ βm, α2 = βm+1 ∪ · · · ∪ βn+1.

On the other hand, if α = β1 ∪ β2 ∪ · · · ∪ βn+1 then

(X1/D)(β1)× (∆1/D)(β2)× · · · × (∆n−1/D)(βn)× (X2/D)(βn+1)

is a subset of X (α). This is because the trivialized neighborhood allows us to translate subschemes

away from the fiber of ∞ by following sections of Vpi → U and this translation does not change

isomorphism types. We conclude that

X (α) ∩ ((X1/D)[m] × (X2/D)[N(α)−m]) =
⋃

(X1/D)(α1)× (X2/D)(α2)

as desired.

The open part X 0(α) is irreducible and it dominates the curve U . Since the scheme structure

of X (α) is the induced reduced structure, X (α) is flat over U . 2

Assign a formal variable xα to every isolated singularity type α and define xα =
∏l(α)
i=1 xαi if

α = (α1, α2, . . . , αl(α)). The multiplication xα′ · xα′′ is equal to xα if and only if α is the union of

α′ and α′′. The multiplication is commutative because permutations of αi do not change α.

Definition 3.1. For a line bundle L on S (L does not need to be ample), let dα(S,L) = 1 if α

is the empty set (it corresponds to the number of smooth curves in |L| through dim |L| general

points). Define the generating series

T (S,L) =
∑
α

dα(S,L)xα

and similarly

T (S/D,L) =
∑
α

dα(S/D,L)xα

if D is a smooth divisor of S.

Theorem 3.2. There exist universal power series A1, A2, A3, A4 in Q[[xα]] such that the

generating series T (S,L) has the form

T (S,L) = AL
2

1 ALKS2 A
c1(S)2

3 A
c2(S)
4 . (3.1)
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Proof. The proof uses algebraic cobordism of pairs of smooth schemes and vector bundles, and
degeneration of Quot schemes, which are developed in [LP12, LP04] and [LW11]. We only need
to use the special case of pairs of surfaces and line bundles and degeneration of Hilbert schemes
of points, which is summarized in [Tze12, §§ 2 and 3].

Let [Xi, Li] be pairs of surfaces and line bundles. Suppose

[X0, L0] = [X1, L1] + [X2, L2]− [X3, L3]

is the double point relation obtained from a flat morphism X → P1 and a line bundle L on X .
That means X is a smooth 3-fold, X0 is the smooth fiber over 0 and the fiber over∞ is X1∪X2,
intersecting transversally along a smooth divisor D. Moreover, X3 = P(OD ⊕ NX1/D) ∼=
P(NX2/D ⊕ OD) is a P1 bundle over D, Li = L|Xi for i = 0, 1, 2 and L3 is the pullback of
L|D to X3. The algebraic cobordism group of pairs of surfaces and line bundles ω2,1 is defined to
be the formal sum of all pairs modulo double point relations. The class of [S,L] in ω2,1 is uniquely
determined by all Chern numbers of L and S; i.e. L2, LK, c1(S)2 and c2(S) (see [LP12, Tze12]).

For every double point relation induced by X → P1, because some fiber Xt could be singular,
we can find an open subset U of P1 such that 0,∞∈ U and all other fibers Xt over U are smooth.
Therefore Li and Wu’s construction of relative Hilbert schemes [LW11] can be applied to the
family

π : XU := X ×
P1
U → U.

The line bundle L on X induces the tautological bundle LU [n] on X [n]
U . By Lemma 3.1 the

restrictions of the flat 1-cycle
∫
XU (α) cN(α)−codim(α)(LU [N(α)]) on fibers over 0 and ∞ are zero

cycles of the same degree, which implies

dα(X0, L0) =
∑

α=α1∪α2

dα1
(X1/D,L1)dα2

(X2/D,L2)

and
T (X0, L0) = T (X1/D,L1)T (X2/D,L2). (3.2)

To derive a relation of generating series without relative series, we apply (3.2) to four families:
X , the blowup of X1 × P1 along D × {∞}, the blowup of X2 × P1 along D × {∞}, the blowup
of X3 × P1 along D × {∞}, and multiply all equalities. Therefore, a double point relation

[X0, L0] = [X1, L1] + [X2, L2]− [X3, L3]

implies

T (X0, L0) =
T (X1, L1)T (X2, L2)

T (X3, L3)
. (3.3)

Equation (3.3) implies that T induces a homomorphism from the algebraic cobordism group ω2,1

to C[[xα]]. So (3.1) can be proved by quoting the theorem that the algebraic cobordism group
ω2,1 is isomorphic to Q4 by the morphism [S,L] to (L2, LK, c1(S)2, c2(S)) (see [LP12, Tze12]). 2

Corollary 3.3. The generating series T (S,L) has an exponential description

T (S,L) = exp

(∑
α

aα(L2, LK, c1(S)2, c2(S))xα
# Aut(α)

)
where every aα(L2, LK, c1(S)2, c2(S)) is a linear polynomial in L2, LK, c1(S)2 and c2(S).
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Proof. Since lnT is an additive homomorphism from ω2.1 to C[[xα]], so is every coefficient of xα
in lnT . 2

The following theorem shows Göttsche’s conjecture holds for curves on smooth surfaces with
any given topological or analytic singularities.

Theorem 3.4. For every collection of isolated singularity type α, there exists a universal
polynomial Tα(x, y, z, t) of degree l(α) with the following property: given a smooth projective
surface S and an (N(α) + 2)-very ample line bundle L on S, a general codim(α)-dimensional
sublinear system of |L| contains exactly Tα(L2, LK, c1(S)2, c2(S)) curves with singularity type
precisely α.

Proof. We compare the coefficient of xα in (3.1). The coefficient of xα in T (S,L) is dα(S,L);
on the right-hand side the coefficient of xα can be computed by binomial expansion (note L2,
LK, c1(S)2 and c2(S) are integers) and it is a polynomial of degree l(α). Therefore dα(S,L) is
always a universal degree d polynomial of L2, LK, c1(S)2 and c2(S). Moreover, Proposition 2.4
implies that dα(S,L) is the universal polynomial Tα(L2, LK, c1(S)2, c2(S)) counting the number
of curves with singularity type α. 2

Recently both we and Rennemo [Ren12] realized Göttsche’s conjecture can also be generalized
to the higher dimension case. Here we only state the theorem for analytic singularities but in
fact the same statement should hold for any isolated complete intersection singularity satisfying:

(i) if the singularity type is k-determined, then for any variety Y which has the singularity
type at p, all SpecOY,p/mk+1

Y,p are of the same length (every isolated complete intersection
singularity is finitely determined);

(ii) the locus of points in the punctual Hilbert scheme isomorphic to those in (i) is a constructible
set.

Definition 3.2. If E is a vector bundle on X, E is called k-very ample if for every closed
subscheme ξ of length k+1, the natural restriction map H0(X,E)→H0(ξ, E⊗Oξ) is surjective.

Theorem 3.5. Let X be a smooth projective complex variety of dimension n and Ei be
vector bundles of rank ri. Suppose α is a collection of analytic isolated complete intersection
singularities, every vector bundle Ei is (N(α) + n)-very ample, Vi are general dimension mi

linear subspaces of P(H0(Ei)) and
∑
mi = codim(α). For each i we take a section si in Vi and

consider the common zero of si, then the number of such subvarieties of X with singularity type
α is a universal polynomial of Chern numbers of X and Ei.

Proof. The tautological bundle of Ei on the Hilbert scheme of n points X [n] can be defined by
pulling back Ei to the incidence scheme, then pushing forward the result to X [n]. The final result

E
[n]
i is a vector bundle of rank nri. The argument in § 2 shows the number of subvarieties in

question is given by the tautological integral∫
X(α)

∏
i

cN(α)ri−mi(E
N(α)
i ).

By [Ren12, Theorem 1.1], the tautological integral above is a universal polynomial in the Chern
numbers of X and Ei. Therefore the theorem is proved. We note that the proof of Theorem 3.4
can also be used to show the tautological integral is universal, because the results in algebraic
cobordism and degeneration of Hilbert schemes are established for any dimension. 2
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Although the universal polynomial Tα(S,L) is equal to dα(S,L), the degree of a explicit zero

cycle on Hilbert schemes, there is no known way to compute dα(S,L) directly. Usually the explicit

formula is obtained by other methods and here are some cases where the universal polynomials

are known.

– If α is r nodes for any r ∈ N, the universal polynomial of r-nodal curves on surfaces can

be determined by combining any two of [BL00, CH98] and [Vak00], or by [KST11]. The

explicit formula for r 6 8 was proved and listed in [KP99] and [Vai95].

– If α is r nodes, Vainsencher [Vai03] computed the number of r-nodal hypersurfaces when

r 6 6.

– Kleiman and Piene [KP99] also computed Tα in many cases when the codimension is low,

such as α = (D4), (D4, A1), (D4, A1, A1), (D4, A1, A1, A1), (D6), (D6, A1) and (E7).

– When there is only one singular point, Kerner [Ker06] found an algorithm to enumerate

the number of plane curves with one fixed topological type singularity, provided that the

normal form is known.

– If α is a collection of hypersurface singularities, then we believe the Legendre characteristic

classes [Kaz03, §§ 8–10] should give universal polynomials for singular hypersurfaces in any

dimension. The explicit formula of Legendre characteristic classes when the codimension

is at most four is listed in [Kaz03, § 8] and it agrees with Kleiman and Piene’s results on

surfaces. However, we do not know how to prove it using algebro-geometric methods.

Another possible way to compute universal polynomials is through the aα (L2, LK, c1(S)2,

c2(S)) in Corollary 3.3. Since every aα has only four terms and they determine Tα, it might be

easier to compute the aα directly. When α is r nodes and r 6 8, the aα were realized as algebraic

cycles in [Qvi11].

4. Irreducibility of Severi strata of singular curves

The locus of irreducible reduced degree d plane curves with r nodes is a locally closed subset in

|O(d)| on P2. Its closure is called the Severi variety and has been studied extensively, especially

its degree. In particular, the irreducibility of Severi varieties for every d and r was proved by

Harris [Har86]. In this section we will prove the irreducibility for the Severi strata of curves

with arbitrary analytic singularities in the linear system of a sufficiently ample line bundle on

all smooth surfaces. A similar method is used in [Kem13] for the nodal case.

Theorem 4.1. Let α = (α1, α2, . . . , αl(α)) be a collection of analytic singularity types, S be a

complex smooth projective surface and L be an (N(α) + 2)-very ample line bundle on S. Define

V
d,α
0 (S,L) to be the locally closed subset of |L| parametrizing curves with singularity type exactly

α in |L|, and V d,α(S,L) to be the closure of V
d,α
0 (S,L). Then V

d,α
0 (S,L) is smooth, V d,α(S,L)

is irreducible, and their codimensions in |L| are both codim(α) =
∑l(α)

i=1 τ(αi).

Proof. Let C be the universal family of curves in |L| with projection C → |L|, and let C[n] be the

relative Hilbert scheme of n points of the family. There are natural projections from C[n] to S[n]

and from C[n] to |L|.
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Consider the following commutative diagram.

|L| C[N(α)]oo // S[N(α)]

V d,α(S,L)

OO

Σ0

ee

//

OO

S0(α)

OO

The right part of the diagram is Cartesian; i.e. Σ0 is defined to be C[N(α)] ×
S[N(α)]

S0(α), and

a closed point of Σ0 is a subscheme ξ ∈ S0(α) satisfying ξ ⊂ C for some curve [C] ∈ |L|.
If L is (N(α)−1)-very ample, fibers of C[N(α)] → S[N(α)] are all projective spaces of constant

dimension dim |L| −N(α) , so Σ0 → S0(α) is a projective bundle. Because S0(α) is smooth and
connected [GLS07], Σ0 is also smooth connected and thus irreducible. Moreover,

dim Σ0 = dimS0(α) + dim |L| −N(α) = dim |L| − codim(α).

The image Im(Σ0)⊂ |L| is the collection of curves which contain at least one closed subscheme

in S0(α), and thus it containsV
d,α
0 (S,L). Its closure Im(Σ0) contains V d,α(S,L) as a closed subset.

By Proposition 2.4, V
d,α
0 (S,L) intersects a general linear subspace of codim(α) at finite points.

Therefore V
d,α
0 (S,L) is of codimension codim(α) in |L| and so is its closure V d,α(S,L).

Since Im(Σ0) is irreducible and

dim Im(Σ0) 6 dim |L| − codim(α) = dimV d,α(S,L),

Im(Σ0) is an irreducible variety that contains a closed subset V d,α(S,L) of the same dimension,
which implies V d,α(S,L) = Im(Σ0) is irreducible.

Next, we prove V
d,α
0 (S,L) is smooth. Let s ∈H0(L) define a curve C with singularity type α.

The germ of |L| at s maps to the miniversal deformation space Def of the singularities of C.
The corresponding map of tangent spaces Ts|L| = H0(L)/〈s〉 → H0(L ⊗ OC/J(s)) is onto if

h0(L ⊗ OC/J(s)) =
∑l(α)

i=1 τ(αi) 6 N(α) + 3, because L is (N(α) + 2)-very ample. For every
singularity type αi ∈ α, let fαi be a germ that defines αi at the origin. Since fαi is (analytically)

k(αi)-determined, mk(αi)+1 ⊆ mJ(fαi) + 〈fαi〉 (Theorem 2.1). We check

τ(αi) = dimCC{x, y}/〈fαi , J(fαi)〉 6 dimCC{x, y}/〈fαi ,mJ(fαi)〉
6 dimCC{x, y}/〈fαi ,mk(αi)+1〉 = N(αi).

So
∑l(α)

i=1 τ(αi) 6
∑l(α)

i=1 N(αi) = N(α). It follows that the map to miniversal deformation

space is a surjective map and thus V
d,α
0 (S,L) is smooth and of codimension codim(α) =∑l(α)

i=1 τ(αi) in |L|. 2
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Göt98 L. Göttsche, A conjectural generating function for numbers of curves on surfaces, Comm. Math.
Phys. 196 (1998), 523–533.

GLS07 G. M. Greuel, C. Lossen and E. Shustin, Introduction to singularities and deformations (Springer,
2007).

Har86 J. Harris, On the Severi problem, Invent. Math. 84 (1986), 445–461.

HP95 J. Harris and R. Pandharipande, Severi degrees in cogenus 3, Preprint (1995),
arXiv:alg-geom/9504003.

Kaz03 M. E. Kazarian, Multisingularities, cobordisms, and enumerative geometry, Russian Math.
Surveys 58 (2003), 665.

Kem13 M. Kemeny, The universal severi variety of rational curves on k3 surfaces, Bull. Lond. Math.
Soc. 45 (2013), 159–174.

Ker06 D. Kerner, Enumeration of singular algebraic curves, Israel J. Math. 155 (2006), 1–56.

KP99 S. Kleiman and R. Piene, Enumerating singular curves on surfaces, Contemp. Math. 241 (1999),
209–238.

KST11 M. Kool, V. Shende and R. Thomas, A short proof of the Göttsche conjecture, Geom. Topol. 15
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