WEIGHTED COMPOSITION OPERATORS ON ORLICZ-SOBOLEV SPACES

SUBHASH C. ARORA[™], GOPAL DATT and SATISH VERMA

(Received 29 April 2005; revised 22 July 2006)

Communicated by A. J. Pryde

Abstract

For an open subset Ω of the Euclidean space \mathbb{R}^n , a measurable non-singular transformation $T: \Omega \to \Omega$ and a real-valued measurable function u on \mathbb{R}^n , we study the weighted composition operator $uC_T: f \mapsto u \cdot (f \circ T)$ on the Orlicz-Sobolev space $W^{1,\varphi}(\Omega)$ consisting of those functions of the Orlicz space $L^{\varphi}(\Omega)$ whose distributional derivatives of the first order belong to $L^{\varphi}(\Omega)$. We also discuss a sufficient condition under which uC_T is compact.

2000 Mathematics subject classification: primary 47B33. 47B38; secondary 46E30, 46E35.

1. Introduction

Let $\varphi : [0, \infty) \to [0, \infty)$ be a Young function ([1, 6]). Thus φ is a continuous, convex, strictly increasing function satisfying $\varphi(0) = 0$, $\lim_{t\to\infty} \varphi(t) = \infty$, $\lim_{t\to0+} \varphi(t)/t = 0$ and $\lim_{t\to+\infty} \varphi(t)/t = +\infty$. We say that φ satisfies the Δ_2 -condition if there exist constants k > 0, $t_0 \ge 0$ such that $\varphi(2t) \le k\varphi(t)$ for all $t \ge t_0$. Associated with φ , we have the complementary Young function $\psi : [0, \infty) \to [0, \infty)$ defined by $\psi(s) = \sup\{st - \varphi(t) : t \ge 0\}$.

Let $(\Omega, \mathscr{A}, \mu)$ be a measure space where Ω is an open subset of the Euclidean space \mathbb{R}^n and \mathscr{A} be the σ -algebra of Lebesgue measurable subsets of Ω and μ be the Lebesgue measure. The *Orlicz space* $L^{\varphi}(\Omega)$ is defined as the set of all (equivalence classes of) real-valued measurable functions f on Ω such that $||f||_{\varphi} < \infty$, where $||\cdot||_{\varphi}$ denotes the *Luxemberg norm* defined by

$$||f||_{\varphi} = \inf \left\{ k > 0 : \int_{\Omega} \varphi \left(\frac{|f|}{k} \right) d\mu \leq 1 \right\}.$$

^{© 2007} Australian Mathematical Society 1446-7887/07 \$A2.00 + 0.00

 $L^{\varphi}(\Omega)$ is a Banach space with respect to the above norm.

The Orlicz-Sobolev space $W^{1,\varphi}(\Omega)$ is defined as the set of all real-valued functions f in $L^{\varphi}(\Omega)$ whose weak partial derivatives $\partial f/\partial x_i$ (in the distributional sense) belong to $L^{\varphi}(\Omega)$, i = 1, 2, ..., n. It is a Banach space with respect to the norm:

$$\|f\|_{1,\varphi} = \|f\|_{\varphi} + \sum_{i=1}^{n} \left\|\frac{\partial f}{\partial x_{i}}\right\|_{\varphi}$$

On the σ -finite measure space $(\Omega, \mathscr{A}, \mu)$, let $T : \Omega \to \Omega$ be a *measurable* (that is $T^{-1}(A) \in \mathscr{A}$ for every $A \in \mathscr{A}$) non-singular transformation (that is, $\mu(T^{-1}(A)) = 0$ whenever $\mu(A) = 0$). Let the function $f_T = d(\mu \circ T^{-1})/d\mu$ be the Radon-Nikodym derivative. Suppose u is a real-valued measurable function defined on \mathbb{R}^n . Then T induces a well-defined weighted composition linear transformation uC_T on $W^{1,\varphi}(\Omega)$ defined by

$$(uC_T f)(x) = u(x) f(T(x)), \quad x \in \Omega, \ f \in W^{1,\varphi}(\Omega).$$

If uC_T maps $W^{1,\varphi}(\Omega)$ into itself and is bounded then we call uC_T a weighted composition operator on $W^{1,\varphi}(\Omega)$ induced by T with weight u. If $u \equiv 1$ then C_T is called a composition operator induced by T.

Our present study of weighted composition operators on the Orlicz–Sobolev space $W^{1,\varphi}(\Omega)$ is motivated by the work of Kamowitz and Wortman ([4]). Other similar references include ([2, 3, 5] and [7]). In Section 2 we define the composition operator on $W^{1,\varphi}(\Omega)$ and Section 3 is devoted to the study of the compact weighted composition operator on $W^{1,\varphi}(\Omega)$.

2. Composition operator on $W^{1,\varphi}(\Omega)$

LEMMA 2.1. Let $f_T, \partial T_k/\partial x_i \in L^{\infty}(\mu)$ with $\|\partial T_k/\partial x_i\|_{\infty} \leq M$, M > 0 for i, k = 1, 2, ..., n, where $T = (T_1, T_2, ..., T_n)$ and $\partial T_k/\partial x_i$ denotes the first order partial derivative (in the classical sense). Then for each f in $W^{1,\varphi}(\Omega)$ we have $f \circ T \in L^{\varphi}(\Omega)$ and if the Young function φ satisfies the Δ_2 -condition then the first order distributional derivatives of $(f \circ T)$, given by

(2.1)
$$\frac{\partial}{\partial x_i} (f \circ T) = \sum_{k=1}^n \left(\frac{\partial f}{\partial x_k} \circ T \right) \frac{\partial T_k}{\partial x_i}$$

for $i = 1, 2, \ldots, n$, are in $L^{\varphi}(\Omega)$.

[2]

PROOF. For f in $W^{1,\varphi}(\Omega)$, we have

$$\|f \circ T\|_{\varphi} = \inf \left\{ k > 0 : \int_{\Omega} \varphi \left(\frac{1}{k} |f \circ T| \right) d\mu \le 1 \right\}$$

$$\leq \inf \left\{ k > 0 : \int_{\Omega} \varphi \left(\frac{|f|}{k} \right) f_{T} d\mu \le 1 \right\}$$

$$\leq \inf \left\{ k > 0 : \|f_{T}\|_{\infty} \int_{\Omega} \varphi \left(\frac{|f|}{k} \right) d\mu \le 1 \right\}$$

$$\leq \inf \left\{ k > 0 : \int_{\Omega} \varphi \left(\frac{|f|}{k} \right) d\mu \le 1 \right\} = \|f\|_{\varphi}$$

provided $||f_T||_{\infty} \leq 1$. Therefore in this case $f \circ T \in L^{\varphi}(\Omega)$.

Now we assume that $1 < ||f_T||_{\infty} < \infty$. Then for $f \neq 0$ we have

$$\int_{\Omega} \varphi\left(\frac{|f \circ T|}{\|f_{\mathcal{T}}\|_{\infty} \|f\|_{\varphi}}\right) d\mu \leq \int_{\Omega} \varphi\left(\frac{|f|}{\|f_{\mathcal{T}}\|_{\infty} \|f\|_{\varphi}}\right) f_{\mathcal{T}} d\mu$$
$$\leq \int_{\Omega} \frac{1}{\|f_{\mathcal{T}}\|_{\infty}} \varphi\left(\frac{|f|}{\|f\|_{\varphi}}\right) \|f_{\mathcal{T}}\|_{\infty} d\mu \leq 1.$$

Thus $||f \circ T||_{\varphi} \le ||f_T||_{\infty} ||f||_{\varphi}$ and hence $f \circ T \in L^{\varphi}(\Omega)$.

By the same arguments as were used to show that $\partial f/\partial x_k$ is in $L^{\varphi}(\Omega)$, it follows that $(\partial f/\partial x_k) \circ T \in L^{\varphi}(\Omega)$, for each k = 1, 2, ..., n. Also $\partial T_k/\partial x_i \in L^{\infty}(\mu)$, therefore

$$\left(\frac{\partial f}{\partial x_k} \circ T\right) \frac{\partial T_k}{\partial x_i} \in L^{\varphi}(\Omega) \quad \text{for each } i, k = 1, 2, \dots, n.$$

Hence, by the triangle inequality, it follows that the function on the right hand side of (2.1) belongs to $L^{\varphi}(\Omega)$ for each i = 1, 2, ..., n.

Now $f \in W^{1,\varphi}(\Omega)$ and φ satisfies the Δ_2 -condition, so there exists (by [1, Theorem 8.28(d) Page 247]) a sequence $\langle f_m \rangle$ in $C^{\infty}(\Omega) \cap W^{1,\varphi}(\Omega)$ such that $f_m \to f$ in $W^{1,\varphi}(\Omega)$. Hence $f_m \to f$ and for i = 1, 2, ..., n we have

$$\frac{\partial f_m}{\partial x_i} \quad \to \quad \frac{\partial f}{\partial x_i} \quad \text{in } L^{\varphi}(\Omega)$$

Let $g \in \mathscr{D}(\Omega)$ (the space of all infinitely differentiable real-valued functions with compact support in Ω). Then, by the ordinary chain rule for the smooth function f_m , we have

(2.2)
$$\int_{\Omega} (f_m \circ T) \frac{\partial g}{\partial x_i} d\mu = -\int_{\Omega} \frac{\partial}{\partial x_i} (f_m \circ T) g d\mu = \int_{\Omega} \sum_{k=1}^n \left(\frac{\partial f_m}{\partial x_k} \circ T \right) \frac{\partial T_k}{\partial x_i} g d\mu$$

for each i = 1, 2, ..., n.

. .

$$\begin{split} \int_{\Omega} |f_m \circ T - f \circ T| \left| \frac{\partial g}{\partial x_i} \right| d\mu &\leq 2 \| (f_m - f) \circ T \|_{\varphi} \left\| \frac{\partial g}{\partial x_i} \right\|_{\psi} \\ &\leq 2 \| f_T \|_{\infty} \| f_m - f \|_{\varphi} \left\| \frac{\partial g}{\partial x_i} \right\|_{\psi} \to 0. \end{split}$$

Therefore

330

$$\int_{\Omega} (f_m \circ T) \frac{\partial g}{\partial x_i} d\mu \quad \rightarrow \quad \int_{\Omega} (f \circ T) \frac{\partial g}{\partial x_i} d\mu$$

as $m \to \infty$ for $i = 1, 2, \ldots, n$.

By similar arguments, using $\partial f_m / \partial x_k \to \partial f / \partial x_k$ in $L^{\varphi}(\Omega)$ and $\partial T_k / \partial x_i$ in $L^{\infty}(\mu)$, we deduce that

$$\sum_{k=1}^{n} \left(\frac{\partial f_m}{\partial x_k} \circ T \right) \frac{\partial T_k}{\partial x_i} \quad \rightarrow \quad \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_k} \circ T \right) \frac{\partial T_k}{\partial x_i}$$

in $L^{\varphi}(\Omega)$, for each i = 1, 2, ..., n, and so by *Hölder's inequality* again we obtain as $m \to \infty$,

$$\int_{\Omega} \sum_{k=1}^{n} \left(\frac{\partial f_m}{\partial x_k} \circ T \right) \frac{\partial T_k}{\partial x_i} g d\mu \quad \rightarrow \quad \int_{\Omega} \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_k} \circ T \right) \frac{\partial T_k}{\partial x_i} g d\mu$$

Hence, by taking limits on both the sides of (2.2) as $m \to \infty$, we obtain

$$\int_{\Omega} (f \circ T) \frac{\partial g}{\partial x_i} d\mu = -\int_{\Omega} \sum_{k=1}^n \left(\frac{\partial f}{\partial x_k} \circ T \right) \frac{\partial T_k}{\partial x_i} g d\mu.$$

Therefore

$$-\int_{\Omega}\frac{\partial}{\partial x_i}(f\circ T)gd\mu=-\int_{\Omega}\sum_{k=1}^n\left(\frac{\partial f}{\partial x_k}\circ T\right)\frac{\partial T_k}{\partial x_i}gd\mu.$$

for all i = 1, 2, ..., n.

As g was chosen arbitrarily, Equation (2.1) follows for i = 1, 2, ..., n.

THEOREM 2.2. Let $\Omega \subset \mathbb{R}^n$ be an open set and $T : \Omega \to \Omega$ a measurable non-singular transformation with $f_T = d(\mu \circ T^{-1})/d\mu$, $(\partial T_k/\partial x_i)$ in $L^{\infty}(\mu)$ and $\|\partial T_k/\partial x_i\|_{\infty} \leq M$, M > 0, for i, k = 1, 2, ..., n, where $T = (T_1, T_2, ..., T_n)$ and $\partial T_k/\partial x_i$ denotes the first order partial derivative in the classical sense. Then for a Young function φ satisfying the Δ_2 -condition, the mapping C_T defined by $C_T(f) = f \circ T$ is a composition operator on the Orlicz–Sobolev space $W^{1,\varphi}(\Omega)$. **PROOF.** By the Lemma 2.1, we have $f \circ T \in W^{1,\varphi}(\Omega)$ and

$$\|f \circ T\|_{1,\varphi} = \|f \circ T\|_{\varphi} + \sum_{i=1}^{n} \left\| \frac{\partial}{\partial x_{i}} (f \circ T) \right\|_{\varphi}$$

$$= \|f \circ T\|_{\varphi} + \sum_{i=1}^{n} \left\| \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_{k}} \circ T \right) \frac{\partial T_{k}}{\partial x_{i}} \right\|_{\varphi}$$

$$\leq \|f_{T}\|_{\infty} \|f\|_{\varphi} + \sum_{i=1}^{n} \sum_{k=1}^{n} \|f_{T}\|_{\infty} \left\| \frac{\partial f}{\partial x_{k}} \right\|_{\varphi} \left\| \frac{\partial T_{k}}{\partial x_{i}} \right\|_{\infty}$$

$$\leq \|f_{T}\|_{\infty} \|f\|_{\varphi} + \|f_{T}\|_{\infty} Mn \sum_{k=1}^{n} \left\| \frac{\partial f}{\partial x_{k}} \right\|_{\varphi} \leq \|f_{T}\|_{\infty} (1 + nM) \|f\|_{1,\varphi}.$$

The result follows.

3. Compact weighted composition operator on $W^{1,\varphi}(\Omega)$

Suppose *u* is a real-valued measurable function on \mathbb{R}^n and $T : \Omega \to \Omega$ is a measurable non-singular transformation and $(\Omega, \mathcal{A}, \mu)$ is the σ -finite measure space, where Ω an open subset of \mathbb{R}^n . On the same lines as in Lemma 2.1, we have the following.

LEMMA 3.1. If all the conditions stated in Theorem 2.2 are satisfied and, in addition, $u \in L^{\infty}(\mu)$ is such that the first order classical partial derivatives $\partial u/\partial x_i$ satisfy $\|\partial u/\partial x_i\|_{\infty} \leq M_1, M_1 > 0$, for i = 1, 2, ..., n, then the mapping uC_T defined by

$$(uC_T)f = u \cdot (f \circ T)$$

is a weighted composition operator on the Orlicz–Sobolev space $W^{1,\varphi}(\Omega)$.

PROOF. By the same arguments as in Lemma 2.1, we find

$$\frac{\partial}{\partial x_i}(u \cdot (f \circ T)) = \frac{\partial u}{\partial x_i}(f \circ T) + u \sum_{k=1}^n \left(\frac{\partial f}{\partial x_k} \circ T\right) \frac{\partial T_k}{\partial x_i} \quad \text{for } i = 1, 2, \dots, n.$$

Moreover

$$\|u \cdot (f \circ T)\|_{\varphi} \leq \|u\|_{\infty} \|f_{T}\|_{\infty} \|f\|_{\varphi},$$

$$\left\|\frac{\partial u}{\partial x_{i}}(f \circ T)\right\|_{\varphi} \leq M_{1}\|f_{T}\|_{\infty} \|f\|_{\varphi} \quad \text{and}$$

$$\left\|u \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_{k}} \circ T\right) \frac{\partial T_{k}}{\partial x_{i}}\right\|_{\varphi} \leq \|u\|_{\infty} M\|f_{T}\|_{\infty} \sum_{k=1}^{n} \left\|\frac{\partial f}{\partial x_{k}}\right\|_{\varphi}$$

Hence it follows that

$$\|(uC_T)f\|_{1,\varphi}$$

$$= \|u \cdot (f \circ T)\|_{1,\varphi} = \|u \cdot (f \circ T)\|_{\varphi} + \sum_{i=1}^n \left\|\frac{\partial}{\partial x_i}(u \cdot (f \circ T))\right\|_{\varphi}$$

$$\leq \|u\|_{\infty}\|f_T\|_{\infty}\|f\|_{\varphi} + \sum_{i=1}^n \left\|\frac{\partial u}{\partial x_i}(f \circ T)\right\|_{\varphi} + \sum_{i=1}^n \left\|u\sum_{k=1}^n \left(\frac{\partial f}{\partial x_k} \circ T\right)\frac{\partial T_k}{\partial x_i}\right\|_{\varphi}$$

$$\leq \|u\|_{\infty}\|f_T\|_{\infty}\|f\|_{1,\varphi} + M_1\|f_T\|_{\varphi}\|f\|_{1,\varphi} + nM\|u\|_{\infty}\|f_T\|_{\infty}\|f\|_{1,\varphi}.$$

Thus $||(uC_T)f||_{1,\varphi} \leq K ||f||_{1,\varphi}$ for some K > 0.

We now give some additional conditions on Ω , u, T and φ to obtain sufficient conditions for uC_T to be compact.

THEOREM 3.2. With all the conditions stated in Lemma 3.1, let $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ be an open set having the cone property ([1, Definition 4.3 Page 66]) with $\mu(\Omega) < \infty$. Let $u, \partial u/\partial x_i$ be continuous, uT' = 0 and $(\partial u/\partial x_i)T' = 0$, i = 1, 2, ..., n, where T'denotes the n^{th} order Jacobian matrix of the first order classical partial derivatives $\partial T_k/\partial x_i$. If the Young function φ also satisfies $\int_1^{\infty} (\varphi^{-1}(t)/t^{1+1/n}) dt < \infty$, where $\varphi^{-1}(t) = \inf\{s > 0 : \varphi(s) > t\}$ is the right continuous inverse of φ , then the weighted composition operator $uC_T : f \mapsto u \cdot (f \circ T)$ is compact on the Orlicz–Sobolev space $W^{1,\varphi}(\Omega)$.

PROOF. Let $\langle f_m \rangle$ be a sequence in $W^{1,\varphi}(\Omega)$ with $||f_m||_{1,\varphi} \leq 1$. We prove that there exists an element $g \in W^{1,\varphi}(\Omega)$ and a subsequence $\langle f_{m_k} \rangle$ with $(uC_T)(f_{m_k}) \to g$ in $W^{1,\varphi}(\Omega)$ as $k \to \infty$. Equivalently, it suffices to show that $uC_T(f_{m_k}) \to g$ in $L^{\varphi}(\Omega)$ and $\partial (uC_T f_{m_k})/\partial x_i$ is bounded in $L^{\varphi}(\Omega)$. Let

$$E = \bigcup_{i=0}^{n} \left\{ x \in \Omega : \frac{\partial u(x)}{\partial x_i} \neq 0 \right\}, \quad \frac{\partial u(x)}{\partial x_0} \equiv u.$$

Then, since u and $\partial u/\partial x_i$ are continuous, E becomes an open subset of Ω . Let $E = \bigcup_{i=1}^{\infty} \Omega_i$ where the Ω_i s are closed cubes with disjoint interiors in Ω [8, Theorem 1.11, Page 8]. Thus for all x in Ω_i we have $T(x) = C_i$ for some $C_i \in \mathbb{R}^n$.

Now, from [1, Theorem 8.35, Page 252] it follows that $W^{1,\varphi}(\Omega)$ can be embedded in $C(\Omega) \cap L^{\infty}(\Omega)$. Therefore we can consider the sequence $\langle f_m \rangle$ in $W^{1,\varphi}(\Omega)$ as a bounded sequence of continuous functions on Ω . For $x \in \Omega_1$, we have

$$\langle (f_m \circ T)(x) \rangle = \langle f_m(T(x)) \rangle = \langle f_m(C_1) \rangle$$

is a bounded sequence of real numbers and so there exists a subsequence $\langle f_{1,m} \rangle$ of $\langle f_m \rangle$ and $A_1 \in \mathbf{R}$ such that

$$f_{1,m}(C_1) \rightarrow A_1$$

Similarly, for x in Ω_2 , we can find a subsequence $\langle f_{2,m} \rangle$ of $\langle f_{1,m} \rangle$ and $A_2 \in \mathbf{R}$ such that

$$f_{2,m}(C_2) \rightarrow A_2.$$

Continuing in this way, by induction we obtain for each positive integer *i*, a real number A_i and a subsequence $\langle f_{i,m} \rangle$ of $\langle f_{i-1,m} \rangle$ with

$$f_{i,m}(C_i) \rightarrow A_i \text{ as } m \rightarrow \infty.$$

For each positive integer k, take $f_{m_k} = f_{k,k}$. Thus by the above construction we obtain that for each i

$$f_{m_k}(C_i) \rightarrow A_i \text{ as } k \rightarrow \infty$$

Therefore for $\epsilon > 0$ we have, for sufficiently large m_k ,

$$|f_{m_k}(C_i)-A_i|<\frac{\epsilon}{2^i}$$

Let

$$g(x) = \begin{cases} A_i u(x) & \text{if } x \in \Omega_i \\ 0 & \text{if } x \notin E = \bigcup_{i=1}^{\infty} \Omega_i. \end{cases}$$

This means that if u and $\partial u / \partial x_i$ (i = 1, 2, ..., n) do not vanish then we put

$$g(x) = A_i u(x),$$

while g(x) = 0 if $u(x) = 0 = \frac{\partial u}{\partial x_i}$ for i = 1, 2, ..., n. Thus we have $g \in L^{\varphi}(\Omega)$.

We now show that $u \cdot (f_{m_k} \circ T) \to g$ in $L^{\varphi}(\Omega)$ as $k \to \infty$. For sufficiently large m_k , consider

$$\begin{split} \int_{\Omega} \varphi \bigg(\frac{|u \cdot (f_{m_k} \circ T) - g|}{\epsilon \|u\|_{\infty} [\varphi^{-1}(\frac{1}{\mu(E)})]^{-1}} \bigg) d\mu &= \int_{E} \varphi \bigg(\frac{|u(x)f_{m_k}(T(x)) - g(x)|}{\epsilon \|u\|_{\infty} [\varphi^{-1}(\frac{1}{\mu(E)})]^{-1}} \bigg) d\mu \\ &= \sum_{i=1}^{\infty} \int_{\Omega_i} \varphi \bigg(\frac{|u(x)| |f_{m_k}(C_i) - A_i|}{\epsilon \|u\|_{\infty} [\varphi^{-1}(\frac{1}{\mu(E)})]^{-1}} \bigg) d\mu \\ &\leq \sum_{i=1}^{\infty} \int_{\Omega_i} \varphi \bigg(\frac{1}{2^i} \bigg(\varphi^{-1}\bigg(\frac{1}{\mu(E)} \bigg) \bigg) d\mu \\ &\leq \sum_{i=1}^{\infty} \frac{1}{2^i} \int_{\Omega_i} \varphi \bigg(\varphi^{-1}\bigg(\frac{1}{\mu(E)} \bigg) \bigg) d\mu \\ &\leq 1. \end{split}$$

334

Therefore, by the definition of infimum, we have

$$\|u\cdot(f_{m_k}\circ T)-g\|_{\varphi}\leq \epsilon \|u\|_{\infty}\left[\varphi^{-1}\left(\frac{1}{\mu(E)}\right)\right]^{-1}$$

Hence $(uC_T)(f_{m_k}) \to g$ in $L^{\varphi}(\Omega)$ as $k \to \infty$.

Now $||f_{m_k}||_{1,\varphi} \leq 1$, therefore, by using Lemma 3.1, we have

$$\left\|\frac{\partial}{\partial x_i}\left(u\cdot(f_{m_k}\circ T)\right)\right\|_{\varphi}\leq \left\|\frac{\partial}{\partial x_i}\left(u\cdot(f_{m_k}\circ T)\right)\right\|_{1,\varphi}\leq K\|f_{m_k}\|_{1,\varphi}\leq K.$$

The result follows.

References

- [1] Robert A. Adams, Sobolev Spaces (Academic Press, New York, 1975).
- [2] S. C. Arora and M. Mukherjee, 'Compact composition operators on Sobolev spaces'. Indian J. Math. 37 (1995), 207–219.
- [3] Y. Cui, H. Hudzik, Romesh Kumar and L. Maligranda, 'Composition operators in Orlicz spaces', J. Aust. Math. Soc. 76 (2004), 189–206.
- [4] Herbert Kamowitz and Dennis Wortman. 'Compact weighted composition operators on Sobolev related spaces', *Rocky Mountain J. Math.* 17 (1987), 767–782.
- [5] B. S. Komal and Shally Gupta. 'Composition operators on Orlicz spaces'. Indian J. Pure Appl. Math. 32 (2001), 1117–1122.
- [6] A. Kufner, O. John and S. Fucik, *Function Spaces* (Noordhoff International Publishing, Leyden, 1977).
- [7] Romesh Kumar. 'Composition operators on Orlicz spaces'. Integral Equations Operator Theory 29 (1997), 17–22.
- [8] Richard L. Wheeden and Antoni Zygmund. *Measure and Integral* (Marcel Dekker Inc., New York, 1977).

Department of Mathematics University of Delhi Delhi-110007 India e-mail: scarora@maths.du.ac.in Department of Mathematics PGDAV College University of Delhi Delhi-110065 India e-mail: gopaldatt@maths.du.ac.in

Department of Mathematics SGTB Khalsa College University of Delhi Delhi-110007 India e-mail: vermas@maths.du.ac.in