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ON THE ENDOMORPHISMS OF A POLYNOMIAL RING 

JOHN DAVID 

This paper arises in the a t t e m p t to solve the following problem related to 
the Zariski Problem. Let A be a polynomial ring in three variables over a field, 
k. Suppose there is a subring B of A such tha t k C B and there is variable t 
over B such tha t B[t] = A. Then is it t rue t ha t B is a polynomial ring over k? 

The Zariski Problem was raised in 1949 a t the Paris Colloquium on algebra, 
and is unsolved to this day (see [2] and [4]). The question a t hand is still 
unsolved (see [1] and [3] for much completed work on this question). 

For a review of the ideal-adic topology of a ring, and some properties of 
completion, see [5, p . 49; 6, p. 129]. 

M A I N T H E O R E M . Let R be a subring of a polynomial ring A, in three variables 
x', y', z' over afield k ÇI R. Let the k-transcendence degree of the quotient field of R 
equal two and R be algebraically closed in A. 

(1) Suppose that there exists a ring homomorphism a : A —> A such that 
o"U = id f i and kernel a = tA 9e (0). 

(2) Suppose also that z' (? R and there exists an infinite subset S of N such that 
p (z S implies there exists a ring homomorphism rp : A —> A such that rp(t) = 
(z' — c)v where c £ k equals the constant term of v(zf) and such that TV\R = id^. 

Then R[t] equals A. 

Remark. All rings are commutat ive with identi ty and all maps are ring 
homomorphisms. In addition, all notation in the s ta tement of the theorem 
remains constant . 

Remark. The proof of this theorem is in two parts . The first shows A ÇI 
i?[[£]]* where 7?[[/]]* is the ring of all elements of k[[x, y, z]] t ha t can be writ ten 
as Yl7=oCit\ ct £ R, for a certain basis x, y, z of A. This par t uses assumption 
(1), not (2). The second par t shows tha t any element of A which does not lie 
in R[t], cannot lie in i^[[fl]*. This par t uses both assumptions. 

LEMMA 1. If p is prime in A = k[x, y, z], x, y, z any basis of A, and p\q G A 

in k[[x, y, z]], then p\q in A (Assume p Ç (x, y, z)A). 

Proof. By [5, 17.9], pk[[x, y, z]] C\ A{x<VtZ) = pA{XtV,z). Thus there exists 
q' G A, s G A\pA such tha t pq' = qs, as pA CI (x, y, z)A. As p is prime and 
p \ s in A, p\q in A. 
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10 JOHN DAVID 

LEMMA 2. There exists a basis x, y, z of A such that t Ç (x, y, z)A {By a basis, 
we mean k[x} y, z] = A). 

Proof. As 0 = a(t(xf, y', z')) = t(a(x'), <r(y'), a(z')), t(a, b, c) = 0 where 
a, b, c £ k are the respective constant terms of o-(x'), or(y'), and <J{Z') in the 
basis x', y', z'. Now write t as follows: 

*(*', / , z') = t{{x' -a) + a, ( / -b) +b, (z' - c) + c) 

In terms of this new basis x' — a,y' — b, z' — c, therefore, the constant term 
of t is t(a, b, c) = 0. 

Remark. In view of Lemma 2, there exists a basis x, y, z for A such that 
rp(0 = zp and £ Ç (x, y, z)A. From here on, this will be the only basis we will 
deal with, and its notation will be preserved. 

Definition. Let T be any subring of A. Then r[[J]]* is the set of all elements 
of k[[x, y, z]] that can be expressed as EfLo^M* where at Ç T. This limit is 
taken in the (x, y, z)-adic topology. 

LEMMA 3. Let T be any subring of A. Then T[[t]]* is a subring of k[[x, y, z]]} 

with the "natural" addition and multiplication. Furthermore, for any countable 
sequence {ai}f=o of elements of T, 2S=o^z^ 6 ?"[[/]]*. 

Proof. As t G (x, y, z), {Sn = ]C"=o#t^}JU forms a Cauchy sequence in the 
(x, y, z)-adic topology of A. That is, 

for all K > 0, there exists 7V0 > 0 such that N, M > N0 implies 
SN - SM £ (x, y, z)K. 

Thus YX-oaJ* G k[[x, y, z\\. 
Now let ah bt £ T. That r[[£]]* is additively closed follows from J2att

l + 
Jib ft1 = XXai + ol)t

i. That T[[/]]* is multiplicatively closed is seen as follows: 
By 17.3 of [5], 

a = ( E «/) ( Z °r) = Mm ( Ê «/) ( è 6/) • 
We claim 

É ( E «AV = «• 
Let i£ > 0. Then there exists N0 such that N > N0 implies 

« - ( g «/) ( g * / ) G (*,;y,s)M. 

Let TVi = max (K, N0). Then for N > Nx + 1 

iV / \ /iVi+l \ /Ni + l \ N I \ 

« - L I E afirh* = « - ( E ««nl E 6/ - E ( E «AK 
i=0 \;+r=t / \ i=0 / \ i=0 / i=N i+2 \j+r=i ' 

where j > Ni + 1 or r > Ni + 1. The difference of the first two terms lies in 
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POLYNOMIAL RINGS 11 

(x, y, z)KA because N\ + 1 > N0. The last term is divisible by tK asK < Ni + 
1. As / (E (x, y, z)A, it is in (x, 3/, z ) ^ . 

Remark. A is considered as a subring of k[[xt y, z]] in the natural way, i.e., 
all finite sums of forms from A, with respect to the basis x, y, z. 

LEMMA 4. a can be extended to a* : A[[/]]* —» A. That is, <r*\A = a. 

Proof. Consider any two elements ^ A ^ = a and Yl0^1 — P °f ^4[M]*> where 
a ,̂ bi £ ^4. Define o-*(a) = a(aQ). If a = fi then a0 — &o = tj^(at — ft*)/*"1. 
By Lemma 1, there exists g € 4̂ such that a0 — 60 = t • g. Apply <j to this 
difference, remembering o-(/) = 0. Thus a*(a) = <r*(&) and hence 0-* is well-
defined. That <r* is a ring homomorphism is seen from 

a + 0 = a0 + &o + X] (a< + &«)** a n d 

a > fi = a0bo + X ( S ^ A p • 

That a* agrees with a on A is seen by writing any element a of A as a + 
Er=i0 • t\ 

LEMMA 5. / i s transcendental over R. 

Proof. Let rnJ
n + . . + rxt + r0 = 0 be an equation of minimal degree for 

t over i?. Apply a and deduce that 0 = a(r0) = r0. 

LEMMA 6. Image (<r) = 2?. 

Proof. As Image (a-) C A is an affine ring over a field, containing at least 
two &-transcendentally independent elements from R, the Krull dimension of 
Image (a) is two or three. As a is not an isomorphism, the Krull dimension of 
Image (a) is two. Thus q.f. (Image a) has transk degree equal to two, thus is 
algebraic over q.f. (R). Thus Image (a) is algebraic over R, and thus equals R 
(see [6, p. 193]). 

THEOREM l . i ç R[[t]]*. 

Proof. By Lemma 5, tr* q.f. (R[t]) = 3. As tr* q.f. (A) = 3, q.f. A is alge
braic over q.f. R[t], Thus A is algebraic over R[t]. Thus A is algebraic over 
R[[t]]*. Let ht G A, and let 

(e) anX
n + aw_iXw_1 + • • • + #o = 0 be a non-zero equation of 

minimal degree for ht over i?[[/]]*. Thus at £ -#[[£]]*. 

We will show this equation has a root J^hit\ ht G i?, in i?[[fl]*. As i?[[/]]* is 
a domain, ht £ ^[M]*. Let a ; = Yjirat\ rn ê i£. If the following equations 
all hold, for a sequence oi hf ^ R, i = 0, 1, . . . , then J^hJ1 is a root of (e). 
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12 JOHN DAVID 

This is sufficient for ]CM* to be a root, as will be seen below. 

(*°): rnt0hon + /V-i.oW1 + • • • + 'i.o*o + r0,o = 0. 

C1): rn.o Ifjho^hi + rntlh0
n + ... + r l i0*i + fi.ifto + fo.i = 0. 

Let 

w2 = rn>0 Q *i2*o"-2 + rn_li0 (* g *) WW~* + . . . + r2.o*i2 

+ rnt2h0
n + . . . + rlf2h0 + r0,2. 

(/2): rn<0h2hon-1 Ifj + rn_lt0h2h0
n-2 ( " "j" *) + . . . + ri.0A2 + w2 = 0. 

In general, let w^ be the canonical ^-coefficient of tK in the expression 

( K-l \ n / # - 1 \ n - l 

I Y, hit1) + . . . + a 0 . 
('*): rn<«hKh^ (*J + rn_lt0hKhon-2 (^ ~ M + . . . + r l i 0 ^ + ^ = 0. 

Remark. The following equalities are all valid in &[[x, 3% z]] by Lemma 3. 

To find ho, we apply 0-* to the equation anht
n + . . . + a0 = 0 to get 

rnMht)n + rn_lt0a(ht)
n-i + ...+ r0.o = 0. 

By Lemma 6, a(ht) £ R. Define ho = <r(ht). Thus h0 satisfies (/°). 
To find hi, we note the following: 

an((ht - ho) + ho)n + . . • + ai((ft« - h0) + hQ) + aQ = 0. 

As ho is a solution of (e), with coefficients o-*(az), it follows that 

3 = fl» • Ê (*« - Ao) V _ < ( " ) + ( £ r.^'JAo" + • • • + «i(A« - A„) 

+ ( £ r 1 . / ) A 0 + £ ro,/ = 0. 

As o-(Af — ho) = 0, /|fet — h0 in A 
We define h\ — <r((ht — ho)/t). We now can write g/£ as a sum of elements 

from A[[t]]*: 

n // (h* ~ h°) h n-i(n\ 1 * n , , (A< - ftp) 

+ ri,\ho + r0,i + (/^ — ho)q\ + tq2, 
where qu q2 £ 4 [[/]]*. 
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POLYNOMIAL RINGS 13 

Thus <r*(q/t) = 0, a*(ht - ho) = 0 and <r*(t) = 0 implies 

rn,ohih0
n-1 ( I + rntih0

n + . . . + rlt0hi + r1Ah0 + r0,i = 0. 

So hi satisfies (t1). By Lemma 6, hi £ i?. 
As 

.(L^h _ 4l) . o, , ht - hp . 
hi in A. 

Therefore t2\ht — thx — h0 in A. 
Suppose we have found h0, hi, . . . , hK-.i Ç i? such that they satisfy 

(/'"), i = 1, 2, . . . X - 1, K è 2, and such that /*|ftt - tK~lhK^i - tK-2hK-2 -
. . . — thi — h0 in A. We will now find fr^. Let 

VK-i = tK~%K_i + ^ - 2 ^ x _ 2 + . . . + ho. 

We can assume a((ht — VK-I)/^) = 0 for i < K. 
We have 

an((ht - VK-i) + VK„i)n + an.i((ht - 7*_i) + F ^ ) * - 1 + . . . + Oo = 0, 

as /^ is a root of (e). Thus 

?' = «»( £ (*i - ^ r - i ) ' ^ - i - ^ "))+ anVK-in + . . . 

+ ai(ht — VK-i) + (LIVK-I + a0 = 0, 
where 

OnVK-f + • . . + diVK-i + do = WKtK + WK+itK+l + . . . 

w{ £ JR; wt is the canonical ^-coefficient of t\ We define 

A* = *{{ht - VK-i)/tK). 

By Lemma 6, hK £ i?. Then g ' / ^ c a n be written as a sum of elements from 
AUt]}*: 

(^Mi'M")+•••+'») 
+ % + tqi + Z, ^ Jt Jli. 

where glf g/ 6 J4[[*]]*. Applying <r* to g'/**, as <r((fc( - Vx-O/t*) = 0, 
i < K we see 

Thus ft* satisfies (<K). As <r((fc( - FK_i)/«x - M = 0,t\(h, - F K _ 0 / ^ - fc* 
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14 JOHN DAVID 

in A. Thus tK+i\ht - tKht - VK-i in A. Also *((*, - tKhK - VK-I)/?) = 0, 
i < K + 1. This completes the inductive construction of the ht Ç R. The 
expression 

P = aniZhitT + OK-ICC*,* ' ) " - 1 + • • • + ao, 

(by [5], 17.3) is equal to limnan where 

( m \ / m \ n m 

E W ( E *«<') + •••+ E n>./. 
i=0 / \ *=0 / <=0 

Now let i£ > 0. For m > K — 1, ^ | a m , because our constructed A* are solu
tions to ( r ) . Thus aw Ç (x, ;y, z)* and hence lim am = 0. Thus 0 = 0 in 
k[[x, y, z]] and thus in i?[[/]]*. This completes the proof of Theorem 1. 

We now proceed to the second part of the proof of the main theorem. 

LEMMA 7. If r : A —> A such that T\R = idR and r(t) = a d R, then for all 
a e A\R[t], r{a) (? R[a]. 

Proof. We first calculate the kernel of r. This is either of height one or zero, 
as transt deg R = 2 and R C image (r). If kernel (r) = (p) 3̂  (0) where p 
is prime, then by Theorem 1, / = YlT^^iP1 ê ^[[£]]*, c* G R, and where there 
exists a basis x0, yo, zo of A such that p (E (x0, yo, ZoM, by Lemma 2. Thus 
t — Co — p - cf where c' (E fe[[#o, yo, z0]]. By Lemma 1, there exists c" £ 4̂ such 
that t — Co = p - c". Hence r(/) — T(C0) = 0, or T ( 0 = c0 € i?, a contradic
tion. Thus kernel (r) = (0). 

Let a £ A. Suppose r(a) = rna
n + . . . + r0, r* £ i?. Then 

r(a - (r„*n + . . . + r0)) = 0. 

Since kernel (r) = (0), a = rnt
n + . . . + r0, it follows that a G #[*]. 

LEMMA 8. If T \ A—* A such that T\R = id/g and r (0 G (x, y, z)A, then 
r(x), r(y) and T(Z) G (x, y, z)A. 

Proof. We will do the proof for r(x) only. By Theorem 1 and Lemma 1, 
x = Co + c"J, Co £ R and c" G -4. As / G (x, y, z)A, c0 £ (x, y, z)A. Apply 
r : r(x) = Co + T ( C " ) T ( 0 - Since both c0 and r(/) belong to (x, y, z)A, we are 
done. 

LEMMA 9. Let r : A —> 4̂ 6e ŝ c& / t o r|/g = id^ awrf r ( 0 £ (x, y, z)A. If 
Zcit\ ct £ R, converges to an element a of A, in the (x, y, z)-adic topology, then 
^2cir(t)i converges to r(a), in the same topology. 

Proof. For all K > 0 there exists n0 such that n > no implies 

n 

oc - S c/ = g £ (x ,y , z )M. 
t=0 
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POLYNOMIAL RINGS 15 

Apply r : 

n 

r(a) - E drip)1 = r(g). 

By Lemma 8, r(g) = g(r(x), r ( y ) , T{Z)) Ç (X, y, z)f<4. 

LEMMA 10. Let a £ A. Then there exists q > 0, K ^ 0, and / ^ 0 swc& ^a£ 
p > q implies deg r p (a) < K - p + I (Assume rP(a) 9^ 0 for all p). 

Proof. Here deg f$ £ A is the degree of its non-zero form of highest degree. 
If a Ç i^W, then for g = max {deg c*} f==i, 

deg Tp(a) — K - p + I iov p > q,l — deg c^, where 

« = cKtK + c ^ - i ^ " 1 + . . . + c0j ct e R, cK 9± 0 

Suppose a (? R[t\. As A is algebraic over R[t], we have: 

(ce) anan + an_ian-1 + . . . + a0 = 0, a, 6 i?[/], not all a , ^ 0. 

For each a*, there exists g*, i£*, and /* such tha t if a* ^ 0, then 

deg Tv(at) = i£*£ + / * , £ > g*. 

Let g = max {qt}, and let p > q. Apply rp to (ee). Two of the summands must 
have the same degree; t ha t is, there exists Vp ^ wp such tha t aVp T^ 0 ^ aWp 

and 

deg r p (a F p a F *) = deg Tp(aWjpF*). 

Thus 

deg T ^ O ^ ) + deg Tp(a)v* = deg rp(aWp) + deg r p ( a ) ^ . 

We derive 

As the differences Kt — Kj} lt — ljt and i — j are finite in number, let 

K = max | r ^ - = " - ^ ] + + l } 

and 

/ = max 

where [w]+ indicates greatest positive integer in w, or zero, whichever is 
greater. 

Then deg rp(a) < K • p + /, for all p > q. 

feTW, 
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16 JOHN DAVID 

T H E O R E M 2. If a £ A\R[t], then a cannot be expressed in the following form, 
as an element of k[[x, y, z]]: 

oo 

The limit is taken in the (x, y, z)-adic topology. 

Proof. Suppose a = J2ci^ 6 ^[W]*» ct € R- By Lemma 10, there exists 
K è 0, / ^ 0, and a > 0 such t ha t 

d e g r p ( a ) û K • p + I, p > q. 

By Lemma 9, {X^=oCiTp(0*} converges to rp{a), in the (x, 3/, z)-adic topology. 
By Lemma 7, r p (a ) 7e 0 (? i?[zp]. Pick w large enough so t ha t n > K. Select 
p > q so t ha t deg ct < p, i ^ n, and / < /?, and 7> is defined. 

As 

deg TP(OL) S K-p + I < n>p + p, 

by Lemma 10, in the difference, 

r » - (Co + ctz1'* + . . . + cnz
n'p + cn+1z

np+p + . . . + cmzm'p), 

m > n + 1, no form in 

12 = r » - (co + ciz* + . . . + cnz
n'p) 

can cancel with any form of 

Cn+1Z
n'p+p + . . . + CmZm'p. 

As Tp(a) — Y^i^cxzi'v lies in higher and higher powers of (x, y, z)A for higher 
values of m, 12 = 0. T h u s TP(OL) G R[zv]. This contradicts Lemma 7, as rp{t) = 
zp (? R; z G A\R and i? is algebraically closed in A. This completes the proof of 
Theorem 2, and thus the proof of the Main Theorem. 

ADDENDUM 

We note the following interesting corollary to the main theorem. 

COROLLARY. Let B = k[a, b, c] C k[x, y, z\. Let dim B = 2, that is, the k-

transcendence degree of the quotient field of B equals 2, and let t be the generator of 
the kernel of the homomorphism k[x, y, z] —> B where x —> a, y —> b, and z —» c. 
Suppose t is transcendental over B and suppose every homomorphism B[t] —> 
k[x, y, z] can be extended to a homomorphism k[x, y, z] —> k[x, y, z]; that is, B[t] 
satisfies the uextension property". Then B[t] = k[x, y, z\. In simpler terms, we 
have B[t] = k[x, y, z] if and only if B[t] has the extension property. Let A = 
k[x, y, z], as usual. 

Proof. Suppose B[t] has the extension proper ty . By this there exists g0- A —» 
A, such tha t go(0 = Oandgoiz? = idB- Also for all p £ N there exists gp: A —> A 
such t ha t gp(t) = (z — c)p, gp\B — idB , where, wi thout loss of generality, 
z (? B and c = constant term of go(z). 
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POLYNOMIAL RINGS 17 

By the main theorem, if t is shown to be prime and thus the generator of 
the kernel of go, and if B is shown to be algebraically closed in A, then we are 
done. Bu t t is obviously prime, as it is the principal equation of B. 

T o show B is algebraically closed in A, we first show q £ image go implies 
there exists j Ç N such tha t goj(q) = q- Here, goj indicates go composed j 
times with itself. Now, B C image go, dim B = 2, and g0 not an isomorphism 
all imply tha t image go is algebraic over B. Let q £ image g0. There exists 
at £ B such tha t 

a,ng
n + • • • + do = 0, not all at = 0 (minimal equation for q over B.) 

Apply go* to this equation, i £ N: 

a-feo'Gz) )" + • • . +ao = 0. 

As the equation of q has only finitely many roots, there exists i 9^ j G N \J {0} 
such t ha t go\q) = goi+i(q), j ^ 0. If i = 0, we are done. If i > 0, then note 
t ha t 

go*: image g0 -> g0* (image g0) 

is an isomorphism, as 5 is contained in each, and thus the dimension on both 
sides is 2. Also both rings are affine. So gol{q) = go*(go;(#)) implies q = go3(q)-

We now can show image g0 is algebraically closed in A. For, if a G ^4\image 
go and 

ana
n + . . . + a0 = 0, where at G image go, not all at = 0, 

is the minimal equation of a over image g0, then applying g0
s to this equation, 

where 

* = n j a n and g o M a J = an, ja» ê iV, 

gives: 

a»(go*(a))n + - • • + ao = 0. 

As go*(a) £ image g0, s > 0, one can reduce the equation of a, a contradiction. 
We have image g0 ~ A/Kev Go = A/tA. As t is the principal equation of B, 

A/tA~B.So 

B ^ image g0, via 0. 

By the extension property holding true for B[t], this isomorphism can be 
extended to a map \p : A —> A, such tha t \p(t) = t. yp must be an injection, as 
dim image go[t] = 3. To see this, note t (? image g0, an algebraically closed ring 
in .4, asgo ; '(/) ^ t for all j £ iV. 

Now we get t ha t B must also be algebraically closed in A. Let ana
n + . . . + 

rt0 = 0 be the minimal equation oi a £ A over 2$, not all at = 0. Apply ^ to 
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18 JOHN DAVID 

this equation: 

xP(an)*(aY + • • • + *(a0) = 0. 

As not all #(a*) = 0 and yp{at) = 0(at) (E image g0, ^(«) is algebraic over 
image g0. Thus \p(a) Ç image go- So ^^(^(a)) = a £ B since I/' is an injection, 
and thus \)/~l (\p•(«)) can only be a, and ^ ( ^ ) = image go. This completes the 
proof. 

Remark. It is not always true that a subring of a polynomial ring in three 
variables over a field that has the extension property and is of dimension three 
is indeed the polynomial ring. It is easily shown if B = k[x2, xs, y] then B[z] 
has the extension property in k[x, y, z], yet is not equal to it. 
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