ON THE BOUNDARY SPECTRUM IN BANACH ALGEBRAS

S. Mouton

We investigate some properties of the set $S_{\partial}(a)=\{\lambda \in \mathbb{C}: \lambda-a \in \partial S\}$ (which we call the boundary spectrum of a) where ∂S denotes the topological boundary of the set S of all non-invertible elements of a Banach algebra A, and where a is an element of A.

1. Introduction and Preliminaries

Let A be a complex Banach algebra with unit 1 . We shall denote the spectrum of an element a in A by $\sigma(a)$ and the spectral radius of a in A by $r(a)$ (or by $\sigma(a, A)$ and $r(a, A)$ respectively, if the particular Banach algebra needs to be emphasized). The distance from an element $\alpha \in \mathbb{C}$ to a subset E of \mathbb{C} will be denoted by $d(\alpha, E)$, and $\delta(a)$ (or $\delta(a, A)$, if necessary) will indicate the distance $d(0, \sigma(a))$ from 0 to the spectrum of a. If $\lambda \in \mathbb{C}$, then we shall write λ for the element $\lambda 1$ in A. We recall that if $\alpha \notin \sigma(a)$, then $d(\alpha, \sigma(a))=1 /\left(r\left((\alpha-a)^{-1}\right)\right)([1$, Theorem 3.3.5] $)$.

If E is a subset of a metric space \mathcal{X}, then $\partial_{\mathcal{X}} E$ denotes the topological boundary of E and int $\mathcal{X}_{\mathcal{X}} E$ the topological interior of E relative to \mathcal{X}. For an $r>0$ and an element x in \mathcal{X}, the notation $B_{\mathcal{X}}(x, \varepsilon)$ will be used to denote the open ball relative to \mathcal{X} with centre x and radius ε. (If the choice of a metric space \mathcal{X} is clear, the subscript \mathcal{X} will be dropped.)

In this paper we consider the set $S_{\partial}(a)=\{\lambda \in \mathbb{C}: \lambda-a \in \partial S\}$ (or $S_{\partial}(a, A)$, if the particular Banach algebra needs to be emphasized) where S (or S_{A}, if necessary) denotes the set of all non-invertible elements of A. Some properties of this set are investigated: in particular the relationship between $S_{\partial}(a, A)$ and $S_{\partial}(a, B)$ where B is a closed subalgebra of a Banach algebra A such that B contains the unit of A, and the relationship between $S_{\partial}(a, A)$ and $S_{\partial}(T a, B)$ where B is another Banach algebra and $T: A \rightarrow B$ a homomorphism. Finally, some results involving the boundary spectrum $S_{\partial}(a)$ of a positive element a in an ordered Banach algebra are obtained.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 SA2.00+0.00.

2. Boundary spectrum

Let A be a complex Banach algebra with unit 1 and let S be the set of all noninvertible elements of A. Then S is a closed subset of A. Define, for $a \in A$, the set $S_{\theta}(a)$ in the complex plane as follows:

$$
S_{8}(a)=\{\lambda \in \mathbb{C}: \lambda-a \in \partial S\}
$$

We shall call this set the boundary spectrum of a in A. Also define, for $a \in A$,

$$
r_{1}(a)=\sup \{|\lambda|: \lambda \in \partial \sigma(a)\}
$$

and

$$
r_{2}(a)=\sup \left\{|\lambda|: \lambda \in S_{\partial}(a)\right\} .
$$

Proposition 2.1. Let A be a Banach algebra and $a \in A$. Then $\partial \sigma(a)$ $\subseteq S_{\partial}(a) \subseteq \sigma(a)$; and therefore $r_{1}(a)=r_{2}(a)=r(a)$, and if $\alpha \notin \sigma(a)$, then $d(\alpha, \partial \sigma(a))$ $=d\left(\alpha, S_{\partial}(a)\right)=d(\alpha, \sigma(a))$.

Proof: To prove that $\partial \sigma(a) \subseteq S_{\partial}(a)$, let $\lambda \in \partial \sigma(a)$ and $\varepsilon>0$. Then there exist a $\lambda_{1} \in B(\lambda, \varepsilon) \cap \sigma(a)$ and a $\lambda_{2} \in B(\lambda, \varepsilon) \cap(\mathbb{C} \backslash \sigma(a))$. If $b_{1}=\lambda_{1}-a$ and $b_{2}=\lambda_{2}-a$, then $b_{1} \in S, b_{2} \notin S$ and $b_{1}, b_{2} \in B(\lambda-a, \varepsilon)$. Therefore $\lambda-a \in \partial S$, so that $\lambda \in S_{\partial}(a)$. This proves that $\partial \sigma(a) \subseteq S_{\partial}(a)$, and since S is closed, $\partial S \subseteq S$, so that $S_{\partial}(a) \subseteq \sigma(a)$.

It follows from Proposition 2.1 that, for every $a \in A$, the set $S_{\partial}(a)$ is non-empty. Since ∂S is closed, $S_{\theta}(a)$ is closed, and since $S_{\theta}(a)$ is contained in the spectrum of a, it is bounded as well; in fact, $S_{\partial}(a) \subseteq\{\lambda \in \mathbb{C}:|\lambda| \leqslant r(a)\}$. Therefore $S_{\partial}(a)$ is a compact set.

In general, $\partial \sigma(a) \neq S_{\theta}(a)$. We proceed to illustrate this with an example.
Example 2.2. ([1, Remark 1, p.56]) Let $l^{2}(\mathbb{Z})$ be the Hilbert space of all bilateral square-summable sequences and $\left\{e_{n}: n \in \mathbb{Z}\right\}$ the orthonormal basis where, for each integer n, the vector e_{n} is $\left(\ldots, \xi_{-1},\left(\xi_{0}\right), \xi_{1}, \ldots\right)$, where $\xi_{n}=1$ and $\xi_{i}=0$ for all integers i different from n. (In this case, the term in round brackets indicates the one corresponding to index zero.) Let $T, R: l^{2}(\mathbb{Z}) \rightarrow l^{2}(\mathbb{Z})$ be the weighted shifts

$$
T e_{n}= \begin{cases}0 & \text { if } n=-1 \\ e_{n+1} & \text { if } n \neq-1\end{cases}
$$

and

$$
R e_{n}= \begin{cases}e_{0} & \text { if } n=-1 \\ 0 & \text { if } n \neq-1\end{cases}
$$

Then $0 \in \sigma(T)$ and $\sigma(T+\lambda R)$ is contained in the unit circle for all $\lambda \neq 0$.

Moreover, if $0<|\lambda|<1$, then λ is an eigenvalue of T. Indeed, if $\xi_{j}=0$ for all $j \in \mathbb{N} \cup\{0\}$ and $\xi_{-j}=\lambda^{j-1}$ for all $j \in \mathbb{N}$, then the (non-zero) element $\left(\ldots, \xi_{-1},\left(\xi_{0}\right), \xi_{1}, \ldots\right)$ of $l^{2}(\mathbb{Z})$ is in the kernel of $T-\lambda I$.
(The above facts about the operators T and R also follow from ([3, Problem 84]).) Example 2.3. Let $l^{2}(\mathbb{Z})$ be the Hilbert space of all bilateral square-summable sequences, A the Banach algebra $\mathcal{L}\left(l^{2}(\mathbb{Z})\right)$ of all bounded linear operators on $l^{2}(\mathbb{Z})$ and T the element of A defined in Example 2.2. Then $\partial \sigma(T)$ is properly contained in $S_{\partial}(T)$.

Proof: Let (λ_{n}) be a sequence different from zero converging to zero, R the operator defined in Example 2.2 and $T_{n}=T+\lambda_{n} R(n \in \mathbb{N})$. Then $\left\|T_{n}-T\right\| \rightarrow 0$. Moreover, by Example 2.2, each T_{n} is invertible and T is not invertible. Hence $T \in \partial S$. Therefore $-T \in \partial S$, and so $0 \in S_{\partial}(T)$. However, Example 2.2 together with the remark thereafter imply that 0 is an interior point of $\sigma(T)$, and so $0 \notin \partial \sigma(T)$.

We recall the following well-known property of boundary points of the set of invertible (or non-invertible) elements:

Theorem 2.4. ([10, Theorem 2.5, p. 397]) Let A be a Banach algebra and $a \in A$. If $a \in \partial S$, then a is a topological divisor of zero.

From the above theorem we immediately obtain the following property of the boundary spectrum of a :

Corollary 2.5. Let A be a Banach algebra and $a \in A$. If $\lambda \in S_{\theta}(a)$, then $\lambda-a$ is a topological divisor of zero.

Lemma 2.6. Let A be a Banach algebra, $a \in \partial S$ and d an invertible element. Then $a d \in \partial S$ and $d a \in \partial S$.

Proof: If $a \in \partial S$ and d is invertible, then for each $\varepsilon>0$ there exist elements $c_{1} \in S \cap B(a,(\varepsilon /\|d\|))$ and $c_{2} \in(A \backslash S) \cap B(a,(\varepsilon /\|d\|))$. It follows that $c_{1} d \in S \cap B(a d, \varepsilon)$ and $c_{2} d \in(A \backslash S) \cap B(a d, \varepsilon)$. Hence $a d \in \partial S$, and similarly $d a \in \partial S$.

It follows from Lemma 2.6 that $a \in \partial S$ if and only if $\lambda a \in \partial S$, for all $\lambda \neq 0$.
Proposition 2.7. Let a be an invertible element of a Banach algebra A. Then $S_{\partial}\left(a^{-1}\right)=\left(S_{\partial}(a)\right)^{-1}$.

Proof: For any $\lambda \neq 0$ and any invertible element $a \in A$ we have $\lambda-a^{-1}$ $=\lambda(a-(1 / \lambda)) a^{-1}$. So if $\lambda \in S_{\theta}\left(a^{-1}\right)$, then $\lambda(a-(1 / \lambda)) a^{-1} \in \partial S$. It follows from Lemma 2.6 that $a-(1 / \lambda) \in \partial S$, so that $1 / \lambda \in S_{\partial}(a)$. We have proved that $S_{\partial}\left(a^{-1}\right) \subseteq\left(S_{\partial}(a)\right)^{-1}$ for all invertible elements a, and therefore also $\left(S_{\partial}(a)\right)^{-1} \subseteq S_{\partial}\left(a^{-1}\right)$ for all invertible a.

Further mapping properties of S_{∂} will be investigated in a future paper.
Let B be a closed subalgebra of a Banach algebra A such that B contains the unit element 1 of A. It is well known that if $a \in B$, then $\partial \sigma(a, B) \subseteq \partial \sigma(a, A)$ ([1, Theorem
3.2.13]). We shall show that $S_{\theta}(a, B) \subseteq S_{\theta}(a, A)$ holds as well. In order to do this, we need the following results, some of which are interesting in their own right.

Theorem 2.8. ([1, Theorem 3.2.13 (i)]) Let B be a closed subalgebra of a Banach algebra A such that B contains the unit element 1 of A. Then $B \backslash S_{B}$ is the union of all components of $B \cap\left(A \backslash S_{A}\right)$ containing points of $B \backslash S_{B}$.

Lemma 2.9. Let B be a closed subalgebra of a Banach algebra A such that B contains the unit element 1 of A. If E is a subset of A, then $\partial_{B} E \subseteq \partial_{A} E$.

TheOrem 2.10. Let B be a closed subalgebra of a Banach algebra A such that B contains the unit element 1 of A. Then S_{B} is the union of S_{A} and all the components of $B \cap\left(A \backslash S_{A}\right)$ containing points of S_{B}.

Proof: Clearly $S_{A} \subseteq S_{B}$. If $x \in S_{B}$ and $x \notin S_{A}$, then $x \in B \cap\left(A \backslash S_{A}\right)$, so that x is contained in a component of $B \cap\left(A \backslash S_{A}\right)$ which contains points of S_{B}. Hence S_{B} is contained in the union of S_{A} and all the components of $B \cap\left(A \backslash S_{A}\right)$ containing points of S_{B}.

Conversely, let Ω be a component of $B \cap\left(A \backslash S_{A}\right)$ which contains points of S_{B}. If $\Omega \nsubseteq S_{B}$, then Ω is a component of $B \cap\left(A \backslash S_{A}\right)$ which contains a point of $B \backslash S_{B}$. Theorem 2.8 implies that $\Omega \subseteq B \backslash S_{B}$, which contradicts the fact that Ω contains points of S_{B}. Hence $\Omega \subseteq S_{B}$.

The following result was proved in [2], using the fact that boundary points of the set of invertible elements of a Banach algebra are topological divisors of zero (see Theorem 2.4) and therefore permanently singular. We provide an alternative proof.

Theorem 2.11. ([2, Corollary 18, p. 14]) Let B be a closed subalgebra of a Banach algebra A such that B contains the unit element 1 of A. Then $\partial_{B} S_{B} \subseteq \partial_{A} S_{A}$.

Proof: To prove that $\partial_{B} S_{B} \subseteq \partial_{B} S_{A}$, suppose that $x \notin \partial_{B} S_{A}$. If $x \notin B$, then $x \notin \partial_{B} S_{B}$, so suppose that $x \in B$. Then there exists an $\varepsilon>0$ such that either (i) $B_{B}(x, \varepsilon) \subseteq S_{A}$ or (ii) $B_{B}(x, \varepsilon) \subseteq B \backslash S_{A}$. Since $S_{A} \subseteq S_{B}$, case (i) implies that $B_{B}(x, \varepsilon)$ $\subseteq S_{B}$, so that $x \notin \partial_{B} S_{B}$, so suppose that $B_{B}(x, \varepsilon)$ is contained in a component Ω of $B \cap\left(A \backslash S_{A}\right)$. If Ω contains points of S_{B}, then by Theorem $2.10, \Omega$ is contained in S_{B}, so that $x \notin \partial_{B} S_{B}$. If Ω contains no points of S_{B}, then $\Omega \subseteq B \backslash S_{B}$, so that once again, $x \notin \partial_{B} S_{B}$.

We have proved that $\partial_{B} S_{B} \subseteq \partial_{B} S_{A}$. Together with Lemma 2.9 the result follows. []
Corollary 2.12. Let B be a closed subalgebra of a Banach algebra A such that B contains the unit element 1 of A. If $a \in B$, then $S_{8}(a, B) \subseteq S_{\theta}(a, A)$.

Proof: If $\lambda \in S_{\partial}(a, B)$, then $\lambda-a \in \partial_{B} S_{B}$. It follows from Theorem 2.11 that $\lambda-a \in \partial_{A} S_{A}$, so that $\lambda \in S_{\partial}(a, A)$.

Now we consider the situation where A and B are Banach algebras (with B not necessarily a subalgebra of A) and $T: A \rightarrow B$ a homomorphism, and investigate the
relationship between $S_{\partial}(a, A)$ and $S_{\delta}(T a, B)$, where $a \in A$. We first establish some properties involving $T S_{A}$ and S_{B}, and $T\left(\partial_{A} S_{A}\right)$ and $\partial_{B} S_{B}$. The proof of the next lemma is trivial:

Lemma 2.13. Let A and B be Banach algebras and $T: A \rightarrow B$ a homomorphism. Then the following hold:

1. $T^{-1} S_{B} \subseteq S_{A}$.
2. If T is surjective, then $S_{B} \subseteq T S_{A}$.
3. If T is bijective, then $T^{-1} S_{B}=S_{A}$ and $T S_{A}=S_{B}$.

Theorem 2.14. Let A and B be Banach algebras and $T: A \rightarrow B$ a continuous isomorphism. Then $T\left(\partial_{A} S_{A}\right)=\partial_{B} S_{B}$.

Proof: If $x \in \partial_{A} S_{A}$, then there exist sequences $\left(x_{n}\right)$ in S_{A} and $\left(y_{n}\right)$ in $A \backslash S_{A}$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow x$. It follows from Lemma 2.13 (3) that $T y_{n} \in B \backslash S_{B}$ and $T x_{n} \in S_{B}$. Since T is continuous, $T x_{n} \rightarrow T x$ and $T y_{n} \rightarrow T x$. Hence $T x \in \partial_{B} S_{B}$.

Conversely, if $y \in \partial_{B} S_{B}$, say $y=T x$ with $x \in A$, then there exist sequences $\left(z_{n}\right)$ in S_{B} and $\left(w_{n}\right)$ in $B \backslash S_{B}$ such that $z_{n} \rightarrow y$ and $w_{n} \rightarrow y$. It follows from Lemma 2.13 (3) that $z_{n}=T x_{n}$ with $x_{n} \in S_{A}$ and that $w_{n} \in B \backslash T S_{A}$, so that $w_{n}=T u_{n}$ with $u_{n} \in A \backslash S_{A}$. Since T is bijective, linear and bounded, T^{-1} exists and is linear and bounded (by the Bounded Inverse Theorem), which implies that $x_{n} \rightarrow x$ and $u_{n} \rightarrow x$. Since (x_{n}) is in S_{A} and (u_{n}) is in $A \backslash S_{A}$, it follows that $x \in \partial_{A} S_{A}$.

In the following result ker T will denote the kernel of T.
Theorem 2.15. Let A and B be Banach algebras, $T: A \rightarrow B$ a continuous isomorphism and $a \in A$. Then

$$
S_{\partial}(a, A)=S_{\theta}(T a, B)=\bigcup_{b \in \operatorname{ker} T} S_{\partial}(a+b, A)
$$

Proof: If $\lambda \in S_{\partial}(a, A)$, then $\lambda-a \in \partial_{A} S_{A}$, so that Theorem 2.14 implies that $\lambda-T a=T(\lambda-a) \in \partial_{B} S_{B}$, and so $\lambda \in S_{\partial}(T a, B)$.

If $\lambda \in S_{\theta}(a+b, A)$ for some $b \in \operatorname{ker} T$, then $\lambda-T a=T(\lambda-a-b) \in \partial_{B} S_{B}$, by Theorem 2.14, so that $\lambda \in S_{\partial}(T a, B)$.

We have proved that

$$
S_{\partial}(a, A) \subseteq S_{\partial}(T a, B) \text { and } \bigcup_{b \in \operatorname{ker} T} S_{\partial}(a+b, A) \subseteq S_{\partial}(T a, B)
$$

If $\lambda \in S_{\theta}(T a, B)$, then $T(\lambda-a)=\lambda-T a \in \partial_{B} S_{B}$, so that Theorem 2.14 implies that $T(\lambda-a) \in T\left(\partial_{A} S_{A}\right)$. The injectivity of T implies that $\lambda-a \in \partial_{A} S_{A}$, so that $\lambda \in S_{\theta}(a, A)$. Since $0 \in \operatorname{ker} T$, we obtain the following inclusions:

$$
S_{\partial}(T a, B) \subseteq S_{\partial}(a, A) \subseteq \bigcup_{b \in \operatorname{ker} T} S_{\partial}(a+b, A)
$$

Hence the results follow.

3. Applications in ordered Banach algebras

In this section we investigate certain results in ordered Banach algebras involving the boundary spectrum. From ($[9$, Section 3]) we recall that an algebra cone C of a complex Banach algebra A with unit 1 is a subset of A containing 1 which is closed under the following operations: addition, positive scalar multiplication, and multiplication. If A has an algebra cone C, then A, or more specifically (A, C), is called an ordered Banach algebra (OBA). If, in addition, $C \cap-C=\{0\}$, then C is called proper.

An algebra cone C of A induces an ordering " \leqslant " on A in the following way:

$$
a \leqslant b \text { if and only if } b-a \in C
$$

(where $a, b \in A$). This ordering is reflexive and transitive. Furthermore, C is proper if and only if the ordering has the additional property of being antisymmetric. Considering the ordering that C induces we find that $C=\{a \in A: a \geqslant 0\}$ and therefore we call the elements of C positive.

An algebra cone C of A is called closed if it is a closed subset of A. Furthermore, C is said to be normal if there exists a constant $\alpha>0$ such that it follows from $0 \leqslant a \leqslant b$ in A that $\|a\| \leqslant \alpha\|b\|$. It is well known that if C is normal, then C is proper. If C has the property that if $a \in C$ and a is invertible, then $a^{-1} \in C$, then C is said to be inverse-closed. If B is a Banach algebra such that $1 \in B \subseteq A$, then $C \cap B$ is an algebra cone of B, and hence $(B, C \cap B)$ is an OBA.

In $[9,8]$, and later in $[4,5,6,7]$, some spectral theory of positive elements in ordered Banach algebras was developed. In particular, we recall the following results:

Thedrem 3.1. ([9, Theorem 4.1(1)]) Let (A, C) be an OBA with C normal. If $a, b \in A$ such that $0 \leqslant a \leqslant b$, then $r(a) \leqslant r(b)$.

We refer to the above property by saying that the spectral radius in (A, C) is monotone.

Thedrem 3.2. ([9, Theorem 5.2]) Let (A, C) be an $O B A$ with C closed and such that the spectral radius in (A, C) is monotone. If $a \in C$, then $r(a) \in \sigma(a)$.

Using the boundary spectrum we obtain the following (slightly stronger) analogues of Theorem 3.2 and ([6, Theorem 3.3]):

Proposition 3.3. Let (A, C) be an $O B A$ with C closed and such that the spectral radius in (A, C) is monotone. If $a \in C$, then $r(a) \in S_{\partial}(a)$.

Proof: If $a \in C$, then by Theorem $3.2 r(a) \in \sigma(a)$. Hence $r(a) \in \partial \sigma(a)$ and so $r(a) \in S_{\partial}(a)$.

Proposition 3.4. Let (A, C) be an OBA with C closed and inverse-closed, and such that the spectral radius in (A, C) is monotone. If a is an invertible element of C, then $\delta(a) \in S_{8}(a)$.

Proof: If $a \in C$ and a is invertible, then $a^{-1} \in C$, since C is inverse-closed. Proposition 3.3 implies that $r\left(a^{-1}\right) \in S_{\partial}\left(a^{-1}\right)$. Hence $r\left(a^{-1}\right)=1 / \lambda_{0}$ for some $\lambda_{0} \in S_{\partial}(a)$, by Proposition 2.7. Since $r\left(a^{-1}\right)=1 /(\delta(a))$, the result follows.

In the following result B is a subalgebra of A but not necessarily closed in A.
Theorem 3.5. Let (A, C) be an $O B A$ and B a Banach algebra with $1 \in B \subseteq A$.

1. Suppose that the spectral radius in (A, C) is monotone. If $0 \leqslant a \leqslant b$ with $a, b \in B$ and either $\partial \sigma(a, B)=\partial \sigma(a, A)$ or $S_{\partial}(a, B)=S_{\theta}(a, A)$, then $r(a, B) \leqslant r(b, B)$.
2. Suppose that the spectral radius in $(B, C \cap B)$ is monotone. If $0 \leqslant a \leqslant b$ with $a, b \in B$ and either $\partial \sigma(b, B)=\partial \sigma(b, A)$ or $S_{\theta}(b, B)=S_{\partial}(b, A)$, then $r(a, A) \leqslant r(b, A)$.

Proof:

1. Since B is a subalgebra of A, we have that $\sigma(b, A) \subseteq \sigma(b, B)$, so that $r(b, A) \leqslant r(b, B)$. The monotonicity of the spectral radius in $(A, C) \mathrm{im}-$ plies that $r(a, A) \leqslant r(b, A)$. Finally, the assumption that either $\partial \sigma(a, B)$ $=\partial \sigma(a, A)$ or $S_{\partial}(a, B)=S_{\theta}(a, A)$ yields $r(a, B)=r(a, A)$, by Proposition 2.1. Combining the results, it follows that $r(a, B) \leqslant r(b, B)$.
2. Similarly as in (1), the fact that B is a subalgebra of A, the monotonicity of the spectral radius in $(B, C \cap B)$ and the additional assumption imply, respectively, that $r(a, A) \leqslant r(a, B), r(a, B) \leqslant r(b, B)$ and $r(b, B)=r(b, A)$, which yield the result.
We note that Theorem 3.5 (2) is a stronger version of ([9, Proposition 4.5]).
For our next result we need the following lemma and theorem:
LEMMA 3.6. ([7, Lemma 4.1]) Let A be a Banach algebra, $x, y \in A$ and $\alpha \in \mathbb{C}$. If $\alpha-x$ is invertible and $r\left((\alpha-x)^{-1}(x-y)\right)<1$, then $\alpha-y$ is invertible.

Theorem 3.7. ([7, Proof of Theorem 4.2]) Let (A, C) be an OBA with C closed and normal, and let $x \in C$. If $y \in C$ such that $x \leqslant y$ and either $x y \leqslant y x$ or $y x \leqslant x y$, and α is a positive real number such that $\alpha>r(x)$, then

$$
r\left((\alpha-x)^{-1}(y-x)\right) \leqslant r\left((\alpha-x)^{-1}\right) r(y-x)
$$

Now let (A, C) be an OBA. Define, for each $x \in C$, an analogue $A^{\prime}(x)$ of the set $A(x)$ (defined in ([7, Section 4])) as follows:

$$
\begin{aligned}
& A^{\prime}(x)=\{y \in A: x \leqslant y, \quad x y \leqslant y x \text { or } y x \leqslant x y \quad \text { and } \\
& \left.\quad d\left(r(y), S_{\partial}(x)\right) \geqslant d\left(\alpha, S_{\theta}(x)\right) \text { for all } \alpha \in S_{\partial}(y)\right\}
\end{aligned}
$$

Then $x \in A^{\prime}(x), A^{\prime}(x) \subseteq C$ and $A^{\prime}(0)=C$. Finally, the following theorem is a complementary result to ([7, Theorem 4.2]):

Theorem 3.8. Let (A, C) be an $O B A$ with C closed and normal, and let $x \in C$. Then $S_{\theta}(y) \subseteq S_{\theta}(x)+r(x-y)$ for all $y \in A^{\prime}(x)$.

Proof: Let $y \in A^{\prime}(x)$. Then $0 \leqslant x \leqslant y$, so that $r(x) \leqslant r(y)$, by Theorem 3.1. If $r(x)=r(y)$, then $d\left(r(y), S_{\theta}(x)\right)=0$, by Proposition 3.3, so that, by the assumption, $d\left(\alpha, S_{\partial}(x)\right)=0$ for all $\alpha \in S_{B}(y)$. This implies that $d\left(\alpha, S_{\partial}(x)\right) \leqslant r(x-y)$ for all $\alpha \in S_{\theta}(y)$, so that $S_{\theta}(y) \subseteq S_{\theta}(x)+r(x-y)$.

So suppose that $r(x)<r(y)$, and suppose there exists an $\alpha \in S_{\partial}(y)$ such that $d\left(\alpha, S_{\partial}(x)\right)>r(x-y)$. Proposition 3.3 implies that $r(y) \in S_{\theta}(y)$ and hence, by the assumption, we may take $\alpha \in \mathbb{R}^{+}$with $\alpha>r(x)$. Since $\alpha \notin \sigma(x)$, it follows from Proposition 2.1 that $d\left(\alpha, S_{\theta}(x)\right)=d(\alpha, \sigma(x))$, so that $d\left(\alpha, S_{\partial}(x)\right)=1 /\left(r\left((\alpha-x)^{-1}\right)\right)$. Therefore $r\left((\alpha-x)^{-1}\right) r(x-y)<1$ with $\alpha \in \mathbb{R}^{+}$and $\alpha>r(x)$.

It follows from Theorem 3.7 that $r\left((\alpha-x)^{-1}(y-x)\right)<1$, so that $\alpha \notin \sigma(y)$, by Lemma 3.6. Hence $\alpha \notin S_{\partial}(y)$ - a contradiction. Therefore $d\left(\alpha, S_{\partial}(x)\right) \leqslant r(x-y)$ for all $\alpha \in S_{\partial}(y)$, so that $S_{\partial}(y) \subseteq S_{\partial}(x)+r(x-y)$.

References

[1] B. Aupetit, A primer on spectral theory (Springer-Verlag, New York, 1991).
[2] F.F. Bonsall and J. Duncan, Complete normed algebras (Springer-Verlag, New York, 1973).
[3] P.R. Halmos, A Hilbert space problem book (Springer-Verlag, New York, 1982).
[4] H. du T. Mouton and S. Mouton, 'Domination properties in ordered Banach algebras', Studia Math. 149 (2002), 63-73.
[5] S. Mouton, 'Convergence properties of positive elements in Banach algebras', Math. Proc. R. Ir. Acad. 102A (2002), 149-162.
[6] S. Mouton, 'A spectral problem in ordered Banach algebras', Bull. Austral. Math. Soc. 67 (2003), 131-144.
[7] S. Mouton, 'On spectral continuity of positive elements', Studia Math. 174 (2006), 75-84.
[8] S. Mouton (née Rode) and H. Raubenheimer, 'More spectral theory in ordered Banach algebras', Positivity 1 (1997), 305-317.
[9] H. Raubenheimer and S. Rode, 'Cones in Banach algebras', Indag. Math. (N.S.) 7 (1996), 489-502.
[10] A.E. Taylor and D.C. Lay, Introduction to functional analysis (Krieger, Florida, 1986).

Department of Mathematical Sciences
University of Stellenbosch
Private Bag X1
Matieland 7602
South Africa
e-mail: smo@sun.ac.za

[^0]: Received 4th April, 2006

