
1

Introduction

We shall study a particular class of propositional tautologies that seem to
be good candidates for being hard for strong and possibly for all propo-
sitional proof systems. The formulas are called τ-formulas or alternatively
proof complexity generators. They were defined by me [49] and indepen-
dently by Alekhnovich et al. [5]. I shall describe my motivation for introducing
these formulas later in the Introduction. The motivation of [5] was apparently
different.

In the intervening 20+ years, a theory was developed around these formulas.
Unfortunately, the authors of [5] abandoned the idea and – with the notable
exception of [98] which was, however, written already in 2002/03 – did not
contribute to it further. I regret this as the different perspective they seemed to
have would undoubtedly enrich the theory. Be that as it may, the bulk of the
theory was developed over the years in 14 papers of mine [49], [50], [51], [52],
[54], [56], [57], [58], [61], [62], [66], [67], [68], [69] (some devoted to the topic
entirely, some only in part) and in [60, Chpts. 29 to 31]. My student J. Pich con-
tributed with his thesis [87], and more recently other people started to chip in.

These lecture notes present the theory around τ-formulas in a unified man-
ner. I hope this will enable other researchers to learn its basic ideas and to
contribute ideas of their own. Or that it will stimulate them to come up with an
entirely different approach. Of course, it is a conjectural enterprise: we cannot
be sure that the formulas are indeed hard and, even if they are, whether we
will ever be able to prove their hardness. But if we don’t even try, we will not
get anywhere anyway. In any case, there is no other proposal (other than the
reflection principles mentioned in the Preface) on the table supported by some
nontrivial theory.

My motivation for introducing the formulas was a logic question about
the dual weak pigeonhole principle (dWPHP) for p-time functions in a

1

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009611664.003
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 04 Aug 2025 at 04:42:11, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009611664.003
https://www.cambridge.org/core

2 Introduction

weak bounded arithmetic theory S1
2 . Let me start with presenting briefly its

background.
Bounded arithmetics are weak subtheories of Peano arithmetic, which relate

to classes of functions with a restricted computational complexity analo-
gously to the classical relation between subtheory IΣ1 of PA (with induction
restricted to recursively enumerable sets) and the class of primitive recursive
functions. Feasible algorithms find it hard to count the number of elements of
a finite set, and formalizing counting arguments in bounded arithmetic is sim-
ilarly difficult. A. Woods [106] discovered that in such formalizations explicit
counting may be often replaced by the PHP for bounded formulas, denoted
Δ0PHP. This statement says that no Δ0-formula defines the graph of a function
mapping [0,a] injectively into [0,a − 1]. It is still unknown whether Δ0PHP
is provable in bounded arithmetic (Macintyre’s problem). Subsequently Paris,
Wilkie and Woods [84] noted that a weaker version of PHP, the weak PHP
denoted WPHP, can be often used instead and, crucially, that this principle is
provable in bounded arithmetic (they used theory IΔ0+Ω1, extending the origi-
nal theory of [82] by theΩ1 axiom). The principle says that no bounded formula
defines the graph of a function mapping [0,2a − 1] injectively into [0,a − 1].
Around that time, Buss [10] defined his version of bounded arithmetic, theory
S2 (a conservative extension of IΔ0 +Ω1) and its most important subtheory S1

2 ,
and proved that p-time functions are exactly those functions with NP graphs
(represented by Σb1 -formulas) that are provably total in S1

2 .
Let us denote by dWPHP(f) the statement that the function f cannot map

any interval [0,a − 1] onto [0,2a − 1],

∃y < 2a∀x < a f (x) � y, (1.1)

and, following [49], denote the theory obtained by adding to S1
2 all instances of

dWPHP(f) for all p-time functions f by BT:

BT := S1
2 + dWPHP(Δb1). (1.2)

Functions f in the dWPHP scheme are allowed to have parameters but, in fact,
it suffices to consider f without extra parameters, that is, depending only on x
(see more about this in Section 2.1).

The development directly leading to my problem below was a theorem by
A. Wilkie (the proof is in [45, 7.3.7]) that functions Σb1 -definable in BT are
computable in randomized p-time. I realized that one ought to be able to use
BT for formalizing randomized algorithms and to relate this theory to random-
ized p-time analogously to how S1

2 relates to deterministic p-time. (I was rather
excited by this idea and named the theory BT for basic theory.) This also led
me to formulate the following problem.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009611664.003
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 04 Aug 2025 at 04:42:11, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009611664.003
https://www.cambridge.org/core

1.2 Content 3

Problem 1.0.1 (Conservativity problem [49, Problem 7.7]) Is BT Σb1 -
conservative over S1

2?

We shall discuss this in some detail in Chapter 2.
At that time E. Jeřábek was starting his PhD studies with me. Know-

ing his exceptional mathematical talent, I decided not to waste his time on
some peripheral topic, and I proposed that he develop this conjectured relation
between BT and randomized p-time. His PhD thesis and a subsequent series of
papers [34], [35], [36], [37] are the most interesting things to have happened in
bounded arithmetic over the last at least 20 years.

In order not to compete with his work, I decided to focus on the conservativ-
ity problem above and on the related propositional logic side of things, and this
led me to proof complexity generators. They will be introduced in Chapter 3.

1.1 Prerequisites

The topic covered in these notes is a fairly advanced part of proof complex-
ity, using concepts, methods and results from a large part of the field, as well
as some more basic mathematical logic and computational complexity theory.
This is not a textbook on either of these fields. We assume that the reader has
a solid background in proof complexity, including basics of bounded arith-
metic. It is unfeasible to review the necessary material here but the reader can
find essentially all of it in [65] (and some bounded arithmetic facts in [45];
see also [18]). Chapter 2 can serve as an entrance test: it discusses a couple
of key bounded arithmetic theories, some witnessing theorems, propositional
translations, and some properties of strong proof systems.

Earlier abbreviated expositions of theory are in [60, Chpts. 29 and 30] and
in [65, Sec. 19.4] but these are not prerequisites.

1.2 Content

The reader we had in mind while writing the text was a researcher (junior or
senior) in proof complexity, or in closely related areas of computational com-
plexity theory and mathematical logic, who wants to learn the theory around
proof complexity generators in depth. We thus develop the theory systemat-
ically step-by-step (including the specific notation and terminology), and the
text is meant to be read sequentially, starting at the beginning. In particular,
later chapters use a lot of material covered in earlier chapters. Sampling and
reading random parts may thus prove difficult.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009611664.003
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 04 Aug 2025 at 04:42:11, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009611664.003
https://www.cambridge.org/core

4 Introduction

Chapter 2 examines the dWPHP problem, asking whether S1
2 (PV) equals

BT, which is a (presumably) simpler version of the conservativity problem
1.0.1. This leads in Chapter 3 to the definition of central notions of the
theory: proof complexity generators and τ-formulas, the hardness and the
pseudosurjectivity, and two conjectures motivating much of the subsequent
development.

Chapter 4 treats the issue of the output/input ratio and its relation to the
Kolmogorov complexity and to the general compression/decompression issue.
Three examples of proof complexity generators are presented in Section 4.3
and in Chapters 5 and 6, together with various results about them.

Chapter 7 studies the pivotal case of extended Frege systems. Chapter 8
establishes the consistency (with particular bounded arithmetic theories) of
some statements related to the dWPHP problem and to the conjectures dis-
cussed in the earlier chapters, using proof-theoretic analysis (witnessing theo-
rems) as well as some model theory. Chapter 9 overviews several topics outside
proof complexity to which the theory of proof complexity generators (or ideas
developed in the theory) relates in some nontrivial way. Chapter 10 discusses
possible avenues for further research.

Not all of the concepts, results and problems discussed in the book appeared
in the papers mentioned at the beginning of this introduction; most chapters
contain new ideas and results.

The book ends with a list of special symbols and a general index. We do
not have a name index, but instead each item in the References lists the page
numbers where it is cited.

1.3 Notation, Terminology and Conventions

Some common notations have fixed meanings:

• i < n: i is an integer and runs over 0,1, . . . ,n − 1
• i ∈ n: the same as i < n
• [n]: the set {1, . . . ,n}

Special Symbols lists all symbols, and recalls their definitions,
in – roughly – their order of appearance.

We abbreviate propositional proof systems to just proof systems. Two
expressions that are usually used informally (or defined each time ad hoc) will
get specific technical definitions:

• generator: see Definition 3.1.2,
• strong proof system: see Definition 2.4.3.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009611664.003
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 04 Aug 2025 at 04:42:11, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009611664.003
https://www.cambridge.org/core

1.3 Notation, Terminology and Conventions 5

We denote a tuple (of bits, variables, etc.) by a letter without the overline,
its coordinates with indices, and elements of a tuple of tuples are distinguished
by superscripts. For example, we may write b ∈ {0,1}m and bi for the ith bit of
b, and (b1, . . . ,bt) for a t-tuple of strings from {0,1}m . It eases on the notation
and does not seem to lead to any confusion.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009611664.003
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 04 Aug 2025 at 04:42:11, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009611664.003
https://www.cambridge.org/core

