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THE DESCENDING CHAIN CONDITION ON SOLUTION SETS
FOR SYSTEMS OF EQUATIONS IN GROUPS
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The Ehrenfeucht Conjecture [5] states that if M is a finitely generated free monoid
with nonempty subset S, then there is a finite subset T< S (a “test set”) such that given
two endomorphisms f and g on M, f and g agree on S if and only if they agree on T In
[4], the authors prove that the above conjecture is equivalent to the following
conjecture: a system of equations in a finite number of unknowns in M is equivalent to
a finite subsystem. Since a finitely generated free monoid embeds naturally into the-free
group with the same number of generators, it is natural to ask whether a free group of
finite rank has the above property on systems of equations. A restatement of the
question motivates the following.

Definition. A group G will be said to satisfy the descending chain conditions on
solution sets for equations in k variables (denoted DCC(k)) if for all sequences of group
words on a fixed set of k variables, say w, =w,(X,...,X), Wa=w3(Xq,...,X;),... there
-exists only finitely many [ such that the solution set of the system w,=1, w,=1,...,
w;=1 is strictly larger than the solution set of the system w,=1,...,w,;,;=1.

Our question now becomes: does a non-Abelian free group satisfy DCC(k) for all
positive integers k? An affirmative answer to this question would yield an affirmative
answer to the Ehrenfeucht Conjecture while a negative answer to this question would
suggest a negative answer to the Ehrenfeucht Conjecture. See [10] for an interesting
relation between systems of equations in the free monoid and systems of equations in
the free group.

Clearly if H is a subgroup of G and G satisfies DCC(k), then H satisfies DCC(k).

In this paper we look at the DCC(k) property in various groups and obtain some
results for the free group which partially answer the above question.

Theorem 1. Let V be a variety of groups and let F, denote the k-generated (relatively)
Sree group in V. The following are equivalent.

(1) The ascending chain condition on normal subgroups holds in [,.
(2) All groups in V satisfy DCC(k).

Proof. We first show that (1) implies (2).
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Let A, denote the k-generated free group and suppose that we have a group GeV
and a sequence of elements of A,, say w, =w,(x,...,X;), W, =w,(X,...,X;),... such that
we do not have the descending chain condition on this system. Suppose in particular
that we have (a;;,4;,,...,a,) € G which is a solution to w;=1 for j=1,2,...,]; but is not
a solution to w; =1, i=1,2,... . The map «; from A, to G sending x; to a;; factors
naturally through F, with B:A,—F, and y;=F,—>G. Now B(wi(xy,...,x)), j=12,...,I;
are all in the kernel of y; whereas B(w,,(xy,...,x,)) is not. It follows that the normal
subgroup of F, generated by {B(w(x,,...,x))}, j=1,2,...,1; does not contain
B(wy,+1(x1,...,x)); hence, we have an infinite ascending chain of normal subgroups
of F,.

We now prove that (2) implies (1). Let § denote the natural map from the k-generated
free group A, to F, sending generators to generators. Suppose that N, SN, < ... is an
infinite ascending chain of normal subgroups of F,. For each positive integer ! choose
w,eF, such that f(w)e N, \N, Let G=[]2,F,/N,. By construction the system of
equations {w,=1}{2 is not equivalent to a finite subsystem. This completes the proof of
the theorem.

It should be noted that in the above theorem, if F, does not satisfy the ascending
chain condition on normal subgroups, then we can find a countable group in the variety
which does not satisfy DCC(k).

Corollary 2. A nilpotent group satisfies DCC(k) for all positive integers k.

Proof. A finitely generated nilpotent group satisfies the ascending chain condition on
subgroups [2, p. 1].

For the (relatively) free groups in a variety we have a “test set condition” equivalent
to the descending chain condition on solution sets.

Theorem 3. Let F, denote the k-generated free group in a variety. Suppose that each
nonempty subset of F, has a finite test subset. Then DCC(k) holds in F,. Conversely, if
DCC(2k) holds in T, then the above test set condition also holds.

Proof. Let A, denote the k-generated free group generated by x,,...,x, and let
a,,...,a, be a set of generators of F,. Let f denote the natural map from A, to F,. Let
wi,W,,... be a sequence of elements of A,. The subset of S of F, will be the image of
{w;}2{ under B. By hypothesis, the set S has a finite test subset T={f(w,),..., f(w,)}.
We claim that a solution to the equations wy=1,...,w,=1 is a solution to w;=1 for all
i. If not, suppose that (b,,...,b,) is a solution to the first t equations but not a solution
to w;=1 for some i. Define 6:F,—F, by a;—b; and let y:F,—F, be the map sending all
elements to 1. Now y|;=48|r, but y(B(w,)#6(B(w;)), a contradiction. This completes the
first part of the proof.

Suppose that F, satisfies DCC(2k). Let ScF, and let Uc A, denote the preimage of S
under B. Given w;e U, let wiy,,...,y,)=w;(zy,...,2) be a group equation, j=1,2,... .
By hypothesis, this system of equations has a finite equivalent subsystem, say the first [
equations. We claim that T={f(w,),...,B(w,)} is a test set for S. Suppose that f and g
are endomorphisms of [, which agree on T. If f sends a; to b; and g sends q; to c;, then
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Bw)(by,....b)=Bw)cy,...,ch), i=1,2,...,1. Thus B(w;)(by,...,b)=PBwW)(cy,-..,¢) for
all w;e U; hence, f and g agree on S.

In contrast to nilpotent groups there exist solvable groups of solvable length 3 which
do not satisfy DCC(2) In [3] there is an example of a 2-generated, solvable (length 3)
non-Hopfian group. Such a group cannot satisfy the ascending chain condition on
normal subgroups and so neither can the 2-generated free group in the variety
generated by the group. This provides us with the example.

We now strengthen Corollary 2 for certain Abelian groups.

Theorem 4. The following conditions are equivalent for an Abelian group G.

(1) For each positive integer k there is a positive integer y(k) such that a strictly
descending chain of solution sets of equations in k variables has length at most y(k).

(2) G is isomorphic to a direct product of a torsion-free Abelian group and direct
product of finite cyclic groups each of order less than N for some fixed integer N.

Proof. In fact, as we will see, the existence of y(1) is enough to ensure (2). By
considering the equations x"=1,x®"1=1,...,x=1, we can see that if y(1) exists, then
G is a group of bounded order. We use [9, Theorem 6 and Theorem 8] to complete the
proof. '

If G has the property described in (2), we look at the torsion-free and torsion part
separately. A torsion-free Abelian group can be embedded into a rational vector space
and a descending chain of solution sets has length at most k. On the other hand, the
torsion subgroup of G can be embedded into a direct product of copies of a finite
Abelian group. Since a solution set of the direct product is the direct product of a
solution set in the finite group, we have the desired result.

We now give several results for free groups.

Theorem 5. A free group satisfies DCC(2). The maximal length of a strictly descending
chain of solution sets of equations in 2 variables is 3.

Proof. Let A, be the free group generated by x and y and let 4 be any free group. If
w(x,y) is a non-trivial word in A, and (a,b) is a solution in A, then the image of A,
under the map sending x to a and y to b has rank at most 1 [8, Proposition 2.12]. We
are now in an infinite cyclic group, and here a descending chain of solution sets has
length at most 2. This completes the proof of the theorem.

In a non-Abelian free group, the system of equations 1=1, xyx !y 1=1,
xy~'=1, x=1 has a strictly descending chain of solutions sets and this shows that the
length 3 can actually occur.

Theorem 6. A non-Abelian free group satisfies DCC(k) if and only if the k-generated
free group, A,, satisfies the ascending chain condition on normal subgroups N such that
A/N is residually free.
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Proof. Suppose A, has normal subgroups N; EN,EN;% ... such that A,/N, is
residually free for all L. Choose wy(x,,...,x, )eN;—N,;,_, and y;:A;/N;_;—-A (A non-
Abelian free such that y(w;N;_,;)#1 (since any non-Abelian free group is embedded in
any other, we may take a common codomain for all the y,). Suppose y(x;N;_)=ga;
1<j<k. Then, wyfa,,...,a)#1, but wy(a,...,a)="""=w;_(a,...,aq,)=1. Thus a
non-Abelian free group does not satisfy DCC(k).

Suppose a non-Abelian free group A does not satisfy DCC(k) and let w,,w,,... be a
sequence of polynomials with a strictly descending chain of solutions sets. Let @,=
{p:A—-A; ¢p(w)=1i=1,...,1}. Let

N,= () Ker¢.

P,

Then, wy,ws,...,w,e N, w, ;¢ N, so the N, form a strictly increasing chain of normal
subgroups. Moreover, A,/N, is a subdirect product of the ¢(A,)SA, ¢e®d, and as
subgroups of free groups are free this shows A,/N, is residually free. Thus the proof is
complete.

A group G is said to be fully residually free [1] if for each finite subset S of G-{1},
there is a normal subgroup N of G such that NnS=0 and G/N is free. The group
{a,b,c,d:a*b*c*d*=1) is an example of a fully residually free group that is not free
[1, p. 414]. The direct product of two free groups is an example of a residually free group
that is not fully residually free [1, p. 404].

Theorem 7. A fully residually free group that is not free cannot be embedded into a
finite direct product of free groups.

Proof. Suppose that to the contrary, G is a fully residually free group with normal
subgroups N,,...,N, such that G/N; is free and ﬂ§=1N,-=<1>. We may suppose,
without loss of generality, that N={);Z{ N;#<1) and N;#<1). As N,n N={1), each
element in N; commutes with each element in N. By [1, Theorem 1], N is Abelian;
hence it is contained in the centre of G [1, Lemma 1]. By a second use of [1, Theorem
1], we see that this cannot happen in a non-Abelian fully residually free group. This
contradiction completes the proof of the theorem.

Corollary 8. The 4-generated free group, A,, does not satisfy the descending chain
condition on normal subgroups N such that A,/N is residually free.

Proof. Let a be the natural map from A, to G=<a,b,c,d:a’b*>c*d*=1) and let B be
the embedding of G into a direct product of free groups. If we let y;, denote the
projection from the direct product onto the direct product of the first i factors, then the
kernels of the maps ;0 foa form, by Theorem 7, an infinite descending chain of normal
subgroups of the desired kind.

We conclude this paper by constructing, for each positive integer I/, an independent
system in a non-Abelian free group, of / equations in 3 variables. By independent we
mean that for each equation there is a non-solution in the free group which is a solution
to the remaining /— 1 equations.
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Let [a,,a5,...,a]=[[...[[a;,a,],a;]...]] denote the generalized commutator. Let
U, =0,(x,y,2)=2""x"y" 2", n=12,.... Define w,=w(x,y,2)=[v;,03,...,0], w;=
wi(x,y,2)=[v,,02,...,0j_4, Vjsy,...,0] for 2L j<l, and wy=w((x,y,z)=[v,,0;,...,0,4]).
Let b and ¢ be among a set of generators of a non-Abelian free group A. Then
(b,b,c) is a solution to w;=1if i+ j but it is not a solution to w;=1.

The above example shows that even if a non-Abelian free group satisfies DCC(3) there
can be no uniform bound on the length of a strictly descending chain of solution sets, as
there is for systems of equations in 2 variables (Theorem 5).

Remark. Since this paper was submitted, the authors have succeeded in proving
Ehrenfeucht’s Conjecture. The proof makes use of Theorem 1 and some basic properties
of metabelian groups. The proof will appear in Theoretical Computer Science. Further
results on systems of equations in free and nilpotent groups will appear in a
forthcoming paper.
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