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A WEAK HADAMARD SMOOTH RENORMING OF Li(£2, /x) 

JONATHAN M. BORWEIN AND SIMON FITZPATRICK 

ABSTRACT. We show that L\(fi) has a weak Hadamard differential)le renorm (i.e. 
differentiable away from the origin uniformly on all weakly compact sets) if and only if 
/i is sigma finite. As a consequence several powerful recent differentiability theorems 
apply to subspaces of L\. 

1. Introduction. Let X be a real Banach space, and let X* be the continuous linear 
functionals on X, equipped with the usual norm |\y\| := sup{(x,y) : ||*|| < 1}. We recall 
that a function/: X —-> IR is weak Hadamard differentiable at a point x if the Gateaux 
derivative exists at x and is uniform on all weakly compact sets. Equivalently, 

(1.1) hm = Vf(x)(h) 
n-*oo tn 

whenever hn-^h weakly, and tn —> 0. (See [BP] and [Ph].) Clearly any point of Fréchet 
differentiability is a point of weak Hadamard differentiability. The converse holds in the 
following setting: 

THEOREM 1.1 ([BF]). Let X be a Banach space and letf'.X —> R be convex and 
continuous. Suppose X contains no copy of £\(N). Thenf is Fréchet differentiable at x 
if and only iff is weak Hadamard differentiable at x. In particular any equivalent weak 
Hadamard norm on X is actually a Fréchet norm and X is necessarily Asplund. 

In [BF] it was shown that if X contains a copy of £i(N) then there is a convex con­
tinuous function with a point of weak Hadamard differentiability which is not a point of 
Fréchet differentiability (see also [Bo2], [Or]). In [Bo2] it was also shown that C([0,1]) 
has no weak Hadamard renorm. Indeed: 

THEOREM 1.2 ([Bo2]). Let X be a C(Q), with Q. a compact Hausdorff space. IfX 
has a weak Hadamard renorm, then X is an Asplund space. 

It is the purpose of this note to show that L\ (p) = L\ (Q, Z, p) has a weak Hadamard 
differentiable renorm {i.e. Gateaux differentiable away from the origin uniformly on all 
weakly compact sets) if and only if \x is sigma finite. As a consequence several powerful 
recent "bornological" differentiability theorems ([BP], [Pr], [PPN]) apply in the weak 
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Hadamard sense to subspaces of L\. Previously these theorems have really only found 
application in the Gateaux and Fréchet senses. We observe that as a consequence of 
Theorems 1.1 and 1.2 there are many separable (or WCG) spaces that do not admit such 
renorms: e.g., C([0,1]) and any separable X not containing £i(N) whose dual is non 
separable. 

2. Norms on Li(/i). We write 6 and B(X) or B for the origin and closed unit ball 
of the Banach space X respectively. As is standard, we write fx for any (sub)gradient of 
the norm at x. We begin by giving a sufficient condition for Mackey convergence of a 
sequence in the dual of a sigma-finite Li(p): 

LEMMA 2.1. Suppose that (yn ) converges to 6 in mean (or only in measure) in L\ (/x) 
and suppose that supneN ||yn||oo < °o. Then (yn) converges to 9 in the Mackey topology, 
T(Loo(/i),Li(/x)). 

PROOF. Let e > 0 be given and fix a weakly compact set W in L\{p). Select M > 
supM;GW ||w|| i V supneN ||yn||oo- By the Dunford-Pettis criterion for weak compactness in 
Li(/i) [Di2] there is e > 8 > 0 such that 

(2.1) sup / \w(t)\ dfi(t) < £ whenever fi(B) < S < e. 
WGWJB 

Pick TV in N so that fi({t : \yn(t)\ > 8} < S for n > N. Define Bn := {t : \yn(t)\ > 8} in I 
and set An := Q, \ Bn. Then for w € W and n> N 

\[yn(t)w(t)dfi\ < I f yn(t)w(t)dfi\ + I f yn(t)w(t)dfi\ 
\JÇ1 I \JAn I \JBn | 

<8JA \w(t)\dn + MJ \w(t)\dfi 

<8 f \w(t)\dfi + M [ \w(t)\dfi. 

Thus forn>N 

1/ yn(t)w(t) diL\<MU + f \w(t)\ dyt\ < 2Me 

on using (2.1). As e is arbitrary (yn) converges to 6 in the Mackey topology. (Note that 
there is no loss of generality in considering null sequences.) • 

Given a Hausdorff topology T, we say that a norm on X is locally T rotund (LTR) if 
whenever (xn) and x lie in the unit ball B(X) 

(2.2) lim 
n—>oo 

1 =$> T- l im xn 
n—+oo 

Observe that any LTR norm is strictly convex. In particular, we say that a dual norm 
is locally Mackey rotund (LMR) if this holds in the Mackey topology r(X*,X). Corre­
spondingly, a dual norm is locally weak* rotund if this holds in <J(X*,X) and is locally 
uniformly rotund if this holds in the strong topology /3(X*,X). This last case recaptures 
the standard definition, [Da], [Dil]. 
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LEMMA 2.2. Let \\ \\ on X be such that the dual norm, || ||*, is a locally Mackey 
rotund dual norm. Then || || is weak Hadamard differentiate on X (away from 0). 

PROOF. Since || ||* is LMR it is strictly convex, and so || || is smooth (Gateaux). Let 
(hn) converge weakly to h inX, and let (tn) converge to 0 from above. We apply (1.1) to 
the norm. By the Mean Value theorem 

(2.3) lim II* "'All HI*» _m = Hm Vihn) _fAhn}] 
«—>oo tn n—>oo 

for some (xn) converging to x in norm. However, fXn(x) +fx(x) —* 2 since the gradient is 
norm-weak* continuous. Thus ||^y^||* —-> 1 as each support functional has unit norm. 
Since the dual norm is LMR we deduce that/^ —* fx in the Mackey topology and that 
the error term in (2.3), fXn(hn) —fx(hn), tends to zero as is required. • 

The converse to Lemma 2.2 is certainly false since the dual of a Fréchet norm need 
not be (LUR) and in an Asplund setting (LUR) and (LMR) coincide [Bo2]. 

PROPOSITION 2.3. Every L\(fi) with fi finite admits an equivalent locally Mackey 
rotund dual norm on LQO(A0-

PROOF. For m in LOO(M)>
 s e t llmll : = y IIHloo + \\m\\\- Since L2(M) embeds in L\(fi) 

it follows that || || is weak* lower semicontinuous and so defines an equivalent dual 
norm. We verify that it is LMR. So suppose that {mn) and m lie in {m : ||ra|| < 1}, and 
lmv^oo H^j^ll = 1. Then lim^oo ||m„|| = ||m|| = 1. As usual, define 

A/ ii ih IWI 2 + llm||2 

A(mw,m, II) := -
mn+m 

2 
Then A(mn,m, || ||) > A(mn,m, || H2) so as Liin) is LUR we deduce that \\mn —m\\2 -^ 0 
and so mn — m —> 9 in L\(fi). As (mn) is uniformly bounded, Lemma 2.1 now applies. • 

THEOREM 2.4. L\ (/i) has a weak Hadamard differentiable renorm if and only if [i is 
sigma finite. 

PROOF. If the measure is not sigma finite then it is well known that L\ (fi) admits no 
smooth renorm, [Da, p. 161], and is not a Gateaux differentiability space. Indeed, by the 
Borwein-Preiss Theorem [BP, Ph], it suffices to show that the original norm is nowhere 
Gateaux differentiable. But, since the support of any member of L\ (/x) is sigma finite, it 
is always possible to construct two subgradients in Loo(^) at every point of the standard 
unit sphere. (Here as throughout the literature we implicitly assume that measures have 
no infinite atoms!) 

Suppose L\ (/x) is sigma finite. Then there is an isometric linear mapping of L\ {ji) 
onto Lj(/i*) for some finite measure /z* [La, p. 138]. Thus there is no loss of generality 
in assuming that \i is a finite measure. Let ||m|| := ^HHIc» + IIHlf- N ° w || || defines an 
equivalent dual norm on LOO(M)- By Proposition 2.3, || || is locally Mackey rotund. By 
Lemma 2.2 || || is weak Hadamard differentiable on L\ (/i). • 

We recall that a vector e in a Banach lattice is a weak order unit or Freudenthal unit 
when e Ax = 0 implies x = 0. The representation theory of abstract L spaces (AL spaces) 
[Da, p. 138] produces: 
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COROLLARY 2.5. An abstract L space admits a weak Hadamard differentiable 
renorm if and only if it admits a Gateaux differentiable renorm as holds if and only 
if it possesses a weak order unit. 

REMARKS 2.6. (a) When fi is finite, the constructed norm on L\{p) is given by the 
infimal convolution ||x|| := infz yj\\z\\] + ||.x — z\\\. It is easy to check that the infimum is 
attained. It also follows that when /x is a probability measure, || || and || ||2 coincide on 

(b) In terms of the duality map J^ y, which is the subgradient of ^ || ||2, we may ex­
plicitly compute that x* G 7|| ||(JC) if and only if x — x* G 7|| \\x{x). This in turn means 
that 

x* — x AsW {—s) where s uniquely solves s = \\{x — s)+\\\ + ||(— x — s)+\\\. 

AISO 5 = Halloo. 
(c) If X is weakly compactly generated [ Di 1, Di2] (as are separable or reflexive spaces) 

there is a continuous linear mapping T of a reflexive space R densely into X [DFJP]. 
Then ||JC*|| := ^/||**||* + ||^***||# (where || \\R is LUR) defines a locally weak* rotund 
dual norm on X*. Not every strictly convex dual norm is locally weak* rotund—even on 
*2(N). 

(d) With some computation, Lemma 2.1 may also be used to show that every smooth 
point of the standard unit sphere in Li(/i) is weak Hadamard smooth. 

(e) It is worth noting that Lemma 2.1 needs more than weak* convergence as hypoth­
esis on (yn). Indeed, in Li(0,1) with Lebesgue measure, we let 

yn = xn = sin(2ft7Dc). 

Then the Riemann-Lebesgue lemma shows that (yn) —+ #weak* in ^00(0,1) and so, a 
fortiori, (xn) —* 0 weakly inLi(0,1). However (yn,xn) = ($ sin2(2nirx)dx) = 1/2 and 
does not tend to zero. Thus (yn) is not Mackey null. • 

3. Applications. Let B denote any symmetric, spanning, homology of bounded 
convex subsets of X. We also suppose that B is closed under positive multiples and that 
if B\, #2 lie in B then B\ U#2 lies in a member of B. This insures that the topology, B°, 
of uniform convergence on members of B is a well defined locally convex topology on 
X*. In reality we are most interested in the following cases: 

GATEAUX (G). B is all finite dimensional bounded convex sets and B° is the weak* 
topology. 

HADAMARD (H). B is all norm compact convex sets and B° is the bounded weak* 
topology (which coincides with the weak* topology since X is complete). 

WEAK HADAMARD (W). B is all weakly compact convex sets and B° is the Mackey 
topology (which coincides with the norm topology when X is reflexive). 

FRÉCHET (F). B is all bounded convex sets and B° is the strong {i.e. norm) topology. 
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A function/: X —• [—00,00] is said to be B-differentiable at x if it is Gateaux dif-
ferentiable uniformly on elements of B. Then B-subdifferentiability is defined similarly. 
(See [BP],[Ph] for details.) 

We define X to be a B-Asplund space if every continuous convex function defined on 
an open set U is generically B-differentiable throughout U (that is the differentiability 
points contain a dense G^). We define X to be B-differentiability space if every continu­
ous convex function defined on an open set U is densely B-differentiable throughout U. 
We define X to be a Minkowski B-differentiability space if every continuous sublinear 
function defined on X is densely B-differentiable throughout X. Finally, we say that a 
member x* of a set C in X* is weak* B°-exposed by x in X if JC*(JC) = sup{c(x) : c G C} 
and whenever (cw) G C has cn(x) —> x*(x) it follows that c„ —» x* in the topology B°. 

It is shown in [Bo2] that in an Asplund space every Mackey convergent sequence in 
the dual is norm convergent. In particular, in an Asplund space weak* Mackey exposed 
points and weak* strongly exposed points coincide. We also observe that Gateaux and 
Hadamard differentiability coincide for Lipschitz functions. Thus any Gateaux smooth 
norm is Hadamard differentiable. Hadamard subdifferentiability of a non-Lipschitz func­
tion is, by contrast, stronger than Gateaux subdifferentiability. 

Examination of the results of Chapter 6 in Phelps [Ph] will convince the reader that 
with minor adjustments in the proofs the following holds: 

THEOREM 3.1. The following are equivalent: 
(i) X is a B-differentiability space; 

(ii) X is a Minkowski B-differentiability space; 
(iii) X x Ris a B-differentiability space ; 
(iv) every weak* compact convex subset ofX* is the weak* closed convex hull of its 

weak* B°-exposed points. 

We now formulate our main application. Additional details of definitions can be found 
in [Bol] [BFK], [BP], [DGZ], [Pr], [PPN]. 

THEOREM 3.2. Suppose that X admits an equivalent weak Hadamard renorm. Then 
(i) X is a weak Hadamard Asplund space; 

(ii) every real valued locally Lipschitz function is densely weak Hadamard differen­
tiable. Moreover, the Clarke derivative off at x is the weak* closed convex hull 
of weak* limits of weak Hadamard gradients: 

df(x) = w* co{w* UmV wf(Xn)'- *n —• * } ; 

(iii) every real valued lower semicontinuous function is densely weak Hadamard sub-
differentiable throughout its graph; 

(iv) every maximal monotone mapping (every minimal weak* cusco) from X to X* is 
generically single-valued and norm-Mackey upper semicontinuous. 

In particular, all the above hold in any subspace ofLi(fi) when fi is sigma finite. 

PROOF, (i) and (iv) follow from the main result in [PPN], (ii) from the corresponding 
result in [Pr], and (iii) from the result in [BP] or [DGZ]. • 
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Unlike Asplund or weak Asplund spaces, weak Hadamard Asplund spaces are not 
preserved by quotients. This is related to the fact that while in a reflexive space the weak 
Hadamard homology coincides with the Fréchet homology, in a Schur space [Di, p. 212] 
it coincides with the Gateaux homology. 

EXAMPLE 3.3. Theorem 1.2 shows thait C[0,1 ] has no weak Hadamard renorm. Now, 
it is well known that every separable space is a quotient of £\(M) [LT]. But £i(N) is 
separable and so has a Hadamard differentiable renorm. Since £i(N) is Schur, (or by 
Theorem 2.4) this norm is necessarily weak Hadamard differentiable. Thus £\(H) is a 
weak Hadamard Asplund space whose quotient C[0,1] is not even a weak Hadamard 
differentiability space. • 
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