A NOTE ON BANACH SPACES CONTAINING ℓ_1

ву ROBERT H. LOHMAN

ABSTRACT. If Y is a subspace of a Banach space X, either Y contains an isomorphic copy of l_1 or each weak Cauchy sequence in X/Y has a subsequence that is the image under the quotient mapping of a weak Cauchy sequence in X. If X is weakly sequentially complete and Y is reflexive, X/Y is weakly sequentially complete. Related structural results are given.

It has recently been shown that if a Banach space X contains a bounded sequence (x_n) having no weak Cauchy subsequence, then (x_n) has a subsequence that is basic and equivalent to the unit vector basis of ℓ_1 . A proof of this theorem for real scalars can be found in [5], while a proof for the complex case is given in [2]. The purpose of this note is to show how this result can be applied in the study of the structure of Banach spaces. The letters X, Y, Z will denote Banach spaces over the real or complex scalars. The term "subspace" will mean "closed, infinite-dimensional, linear subspace." Recall that X is weakly sequentially complete if every weak Cauchy sequence in X converges weakly to an element of X. X has the Schur property if weak and norm convergence of sequences coincide in X. If X has the Schur property, then a weak Cauchy sequence in X is norm convergent.

If (x_n) is a sequence in X, $[x_n]$ denotes its closed linear span in X. For terminology and properties related to Schauder bases, the reader is referred to [6]. If (x_n) and (y_n) are bases for X and Y, respectively, they are said to be equivalent provided $\sum_{n=1}^{\infty} a_n x_n$ converges if and only if $\sum_{n=1}^{\infty} a_n y_n$ converges. This is equivalent to the existence of an isomorphism T of X onto Y satisfying $Tx_n = y_n$ for all n.

THEOREM 1. Let Y be a subspace of X and let $Q: X \to X/Y$ denote the quotient mapping. Then either Y contains an isomorphic copy of ℓ_1 or each weak Cauchy sequence in X/Y has a subsequence that is the image under Q of a weak Cauchy sequence in X.

Proof. Assume that (u_n) is a weak Cauchy sequence in X/Y such that no

Received by the editors September 10, 1975.

AMS 1970 Subject Classification. 46B15, 46A35. Key Words and Phrases. Banach space, weakly sequentially complete, Schur property.

R. H. LOHMAN

[September

subsequence of (u_n) is the image under Q of a weak Cauchy sequence in X. Choose a bounded sequence (x_n) in X such that $Q(x_n) = u_n$ for all n. Then (x_n) has no weak Cauchy subsequence. By passing to a subsequence, we may assume (x_n) is a basic sequence that is equivalent to the unit vector basis of ℓ_1 . Let $v'_n = u_{2n-1} \text{ for all } n$. Since $v'_n \to 0$ weakly, there is an increasing sequence (p_n) and a sequence $v_n \in co\{v'_k: p_n \le k \le p_{n+1}-1\}, n = 1, 2, \dots$, such that $||v_n|| \to 0$ (cf. [3, p. 422]). Let (w_n) denote the corresponding sequence of convex combinations far out in $(x_{2n} - x_{2n-1})$. Note that $(x_{2n} - x_{2n-1})$ is also equivalent to the unit vector basis (e_n) of ℓ_1 , say under an isomorphism T carrying $x_{2n} - x_{2n-1}$ into e_n . Then T carries (w_n) into a block basis (z_n) of (e_n) , where each z_n is a convex combination of e_k , for $p_n \le k \le p_{n+1} - 1$. Therefore, $||z_n|| = 1$ for all *n*, and it follows by Lemma 1 of [4] that (z_n) , and hence (w_n) , is equivalent to (e_n) . Moreover, $Q(w_n) = v_n$ for all *n*. If (w_n^*) denotes the sequence of coefficient functionals in $[w_n]^*$, we have $M = \sup_n ||w_n^*|| < \infty$. Since $d(w_n, Y) \rightarrow 0$, there exists an increasing sequence (n_k) of positive integers and a sequence $(y_k) \subset Y$ such that $||w_{n_k} - y_k|| < M^{-1}2^{-k-1}$ for all k. Then $\sum_{k=1}^{\infty} \|w_{n_k}^*\| \|w_{n_k} - y_k\| \le 1$ which, by [1], implies that (w_{n_k}) and (y_k) are equivalent basic sequences. Thus (y_k) is equivalent to the unit vector basis of ℓ_1 , completing the proof.

COROLLARY 2. If X is a weakly sequentially complete Banach space and Y is a reflexive subspace of X, then X/Y is weakly sequentially complete.

The criterion for a Banach space to contain ℓ_1 can be used to give the following general property of linear operators.

THEOREM 3. Let $T: X \to Y$ be a continuous linear operator. Then either T maps bounded sequences into sequences having a weak Cauchy subsequence or there exists a subspace Z of X that is isomorphic to ℓ_1 for which $T|_Z$ is an isomorphism.

Proof. If (x_n) is a bounded sequence in X such that (Tx_n) has no weak Cauchy subsequence, there exists a basic subsequence (Tx_{n_k}) equivalent to the unit vector basis of ℓ_1 . Thus there is a constant M > 0 such that for all m and scalars a_1, \ldots, a_m , we have

$$M\sum_{k=1}^{m} |a_{k}| \leq \left\|\sum_{k=1}^{m} a_{k} T x_{n_{k}}\right\| \leq \|T\| \sup_{n} \|x_{n}\| \sum_{k=1}^{m} |a_{k}|.$$

If $Z = [x_{n_k}]$, it follows that Z is isomorphic to ℓ_1 and that $T|_Z$ is an isomorphism.

COROLLARY 4. Let Y be a Banach space with the Schur property and let $T: X \rightarrow Y$ be a continuous linear operator. Then either T is compact or there exists a subspace Z of X that is isomorphic to ℓ_1 for which $T|_Z$ is an isomorphism.

1976]

REFERENCES

1. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces. Studia Math., 17 (1958), 151-164.

2. L. Dor, On sequences spanning a complex ℓ_1 space, Proc. Amer. Math. Soc., 47 (1975), 515-516.

3. N. Dunford and J. Schwartz, Linear Operators Part I. Interscience: New York, 1958.

4. A. Pelczynski, Projections in certain Banach spaces, Studia Math., 19 (1960), 209-228.

5. H. P. Rosenthal, A characterization of Banach spaces containing ℓ_1 , Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 2411–2413.

6. I. Singer, Bases in Banach Spaces I. Springer-Verlag, Berlin, 1970.

DEPARTMENT OF MATHEMATICS Kent State University Kent, OH 44242 U.S.A.