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Abstract

We consider a branching random walk. Biggins and Kyprianou (2004) proved that, in
the boundary case, the associated derivative martingale converges almost surely to a
finite nonnegative limit, whose law serves as a fixed point of a smoothing transformation
(Mandelbrot’s cascade). In this paper, we give a necessary and sufficient condition for
the nontriviality of the limit in this boundary case.
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1. Introduction

We consider a discrete-time branching random walk (BRW) on the real line, which can
be described in the following way. An initial ancestor, called the root and denoted by ∅, is
created at the origin. It gives birth to some children which form the first generation and whose
positions are given by a point process L on R. For any integer n ≥ 1, each individual in
the nth generation gives birth independently of all others to its own children in the (n + 1)th
generation, and the displacements of its children from this individual’s position are given by
an independent copy of L. The system continues if there is no extinction. We thus obtain a
genealogical tree, denoted by T. For each vertex (individual) u ∈ T, we denote its generation
by |u| and its position by V (u). In particular, V (∅) = 0 and (V (u); |u| = 1) = L.

Note that the point process L plays an important role in the BRW as the offspring distribution
in a Galton–Watson process. We introduce the Laplace–Stieltjes transform of L as follows:

�(t) := E

[∫
R

e−txL(dx)

]
= E

[ ∑
|u|=1

e−tV (u)

]
for all t ∈ R.

Let �(t) := log �(t). In this paper we always assume that �(0) > 0 so E[∑|u|=1 1] > 1.
This yields that, with strictly positive probability, the system survives. Let q be the probability
of extinction. Clearly, q < 1.

Let (Fn; n ≥ 0) be the natural filtration of this BRW, i.e. let Fn := σ {(u, V (u)); |u| ≤ n}.
We introduce the additive martingale, for any t ∈ R,

Wn(t) :=
∑
|u|=n

e−tV (u)−n�(t).
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It is a nonnegative martingale with respect to (Fn; n ≥ 0), which converges almost surely (a.s.)
to a finite nonnegative limit. Biggins [3] established a necessary and sufficient condition for
the mean convergence of Wn(t). A simpler proof based on a change of measures was given
later by [14].

More generally, Biggins and Kyprianou [6] studied the martingales produced by the so-
called mean-harmonic functions. Given suitable conditions on the offspring distribution L of
the BRW, like the X log X condition of the Kesten–Stigum theorem, Biggins and Kyprianou
provided a general treatment to obtain the mean convergence of these martingales. In this
paper, following their ideas, we work on one special example and provide a Kesten–Stigum-
like theorem.

Throughout this paper, we consider the boundary case (in the sense of [7]), where �(1) =
� ′(1) = 0, i.e.

E

[ ∑
|u|=1

e−V (u)

]
= 1, E

[ ∑
|u|=1

V (u)e−V (u)

]
= 0. (1.1)

In addition, we assume that

σ 2 := E

[ ∑
|u|=1

V (u)2e−V (u)

]
∈ (0,∞). (1.2)

We are interested in the derivative martingale, which is defined as follows:

Dn :=
∑
|u|=n

V (u)e−V (u) for all n ≥ 0.

It is a signed martingale with respect to (Fn), of mean 0. By [6, Theorem 5.1], under (1.1) and
(1.2), Dn converges a.s. to a finite nonnegative limit, denoted by D∞. Moreover, D∞ satisfies
the following equation (Mandelbrot’s cascade):

D∞
d=

∑
|u|=1

e−V (u)D(u)∞ ,

where D
(u)∞ are copies of D∞ independent of each other and F1, and ‘

d=’ denotes equality in
law. Note that D∞ serves as a fixed point of some smoothing transformation. From this point of
view, the questions concerning the existence, uniqueness and asymptotic behavior of such fixed
points have been much studied in the literature (see [5], [7], [12], [13]). We are interested in
the existence of a nontrivial fixed point, and we are going to determine when P(D∞ > 0) > 0.

It is known that P(D∞ = 0) is equal to either the extinction probability q or 1 (see, e.g. [1]).
We say that the limit D∞ is nontrivial if P(D∞ > 0) > 0, which means that P(D∞ = 0) = q.
Otherwise, it is trivially 0. In this paper, we provide a sufficient and necessary condition for
the nontriviality of D∞. The main result is stated as follows.

For any y ∈ R, let y+ := max{y, 0} and let log+ y := log(max{y, 1}). We introduce the
following random variables:

Y :=
∑
|u|=1

e−V (u), Z :=
∑
|u|=1

V (u)+e−V (u).

https://doi.org/10.1239/aap/1444308880 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308880


Derivative martingale in a branching random walk 743

Theorem 1.1. The limit of the derivative martingale Dn is nontrivial, namely P(D∞ > 0) > 0,
if and only if the following condition holds:

E[Z log+ Z + Y (log+ Y )2] <∞. (1.3)

Remark 1.1. In [6], the authors studied the optimal condition for the nontriviality of D∞.
However, there is a small gap between the necessary condition and the sufficient condition for
P(D∞ > 0) > 0 in their Theorem 5.2. Our result fills this gap and provides the analogue of
the result of [18] in the case of branching Brownian motion.

Remark 1.2. Aïdékon proved that (1.3) is sufficient for P(D∞ > 0) > 0; see [1, Proposition
A.3].

This paper is organized as follows. In Section 2 we introduce a change of measure based
on a truncated martingale which is closely related to the derivative martingale. At the end
of Section 2 we also prove a proposition concerning certain behaviors of a centered random
walk conditioned to stay positive. Then, by using this proposition, we provide the proof of
Theorem 1.1 in Section 3.

Throughout the paper, (ci)i≥0 denote positive constants. We write E[f ;A] for E[f 1A] and
set

∑
∅ := 0.

2. Lyons’ change of measure via truncated martingales

2.1. Truncated martingales

We begin with the well-known many-to-one lemma. For any a ∈ R, let Pa be the probability
measure such that Pa((V (u), u ∈ T) ∈ ·) = P((V (u) + a, u ∈ T) ∈ ·). The corresponding
expectation is denoted by Ea . We write P, E instead of P0, E0 for brevity. For any particle
u ∈ T, we denote by ui its ancestor at the ith generation for 0 ≤ i < |u|. In addition, we write
u|u| := u. We thus denote its ancestral line by [[∅, u]] := {u0, u1, . . . , u|u|}.
Lemma 2.1. (Many to one.) There exists a sequence of independent and identically distributed
(i.i.d.) centered random variables (Sk+1 − Sk), k ≥ 0 such that for any n ≥ 1 and any
measurable function g : Rn→ R+, we have

Ea

[ ∑
|u|=n

g(V (u1), . . . , V (un))

]
= Ea[eSn−ag(S1, . . . , Sn)]

with Pa[S0 = a] = 1.

In view of (1.2), S1 − S0 has the finite variance σ 2 = E[S2
1 ] = E[∑|u|=1 V (u)2e−V (u)].

Let U−(dy) be the renewal measure associated with the weak ascending ladder height
process of (−Sn, n ≥ 0). Sometimes, we say that U−(dy) is the renewal measure associated
with the weak descending ladder height process of (Sn, n ≥ 0). Following the arguments in
[4, Section 2], we obtain, for any measurable function f : R→ R+,

E

[τ−1∑
j=0

f (−Sj )

]
=

∫ ∞
0

f (y)U−(dy), (2.1)

where τ is the first time that (Sn) enters (0,∞), namely τ := inf{k > 0, Sk ∈ (0,∞)} which
is proper here. We define R(x) := U−([0, x)) for all x > 0 and define R(0) := 1. Note that
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R(x) equals the renewal function U−([0, x]) at points of continuity. We collect the following
properties of this function R(x) which are consequences of the renewal theorem (see [2], [4],
[16]).

Lemma 2.2. (i) There exists a positive constant c0 > 0 such that

lim
x→∞

R(x)

x
= c0.

(ii) There exist two constants 0 < c1 < c2 <∞ such that

c1(1+ x) ≤ R(x) ≤ c2(1+ x) for all x ≥ 0. (2.2)

(iii) For any x ≥ 0, we have E[R(S1 + x) 1{S1+x>0}] = R(x).

Let β ≥ 0. Starting from V (∅) = a, we add a barrier at −β to the BRW. Now we define
the following truncated random variables:

D(β)
n :=

∑
|x|=n

R(V (x)+ β)e−V (x) 1{min1≤k≤n V (xk)>−β} for all n ≥ 1,

and D
(β)
0 := R(a + β)e−a 1{a≥−β}.

Lemma 2.3. For any a ≥ 0 and β ≥ 0, under Pa , the process (D
(β)
n , n ≥ 0) is a nonnegative

martingale with respect to (Fn, n ≥ 0).

This lemma follows immediately from Lemma 2.2(iii) and the branching property. We feel
free to omit its proof and call (D

(β)
n ) the truncated martingale. It also tells us that under Pa ,

(D
(β)
n , n ≥ 0) converges a.s. to a finite nonnegative limit, which we denote by D

(β)∞ .
The connection between the limits of the derivative martingale and truncated martingales is

recorded in the follow Lemma; see [1] and [6] for the proof.

Lemma 2.4. (i) If D∞ is trivial, i.e. P(D∞ = 0) = 1, then, for any β ≥ 0, D
(β)∞ is trivially 0

under P.

(ii) Under P, if there exists some β ≥ 0 such that D
(β)∞ is trivially 0, then so is D∞.

Thanks to Lemma 2.4, we need only to investigate the truncated martingale (D
(0)
n ; n ≥ 0)

and determine when its limit is nontrivial.

2.2. Lyons’ change of probabilities and spinal decomposition

Let β = 0. With this nonnegative martingale (D
(0)
n , n ≥ 0), we define for any a ≥ 0 a new

probability measure Qa such that, for any n ≥ 1,

dQa

dPa

∣∣∣∣
Fn

= D
(0)
n

R(a)e−a
,

where Qa is defined on F∞ := ∨n≥0Fn. Let us give an intuitive description of the BRW
under Qa , which is known as the spinal decomposition. We start from one single particle ω0,
located at the position V (ω0) = a. At time 1, it dies and produces a point process distributed as
(V (u); |u| = 1) under Qa . Among the children of ω0, ω1 is chosen to be u with probability pro-
portional to R(V (u))e−V (u) 1{V (u)>0}. At each time n+1, each particle v in the nth generation
dies and produces independently a point process distributed as (V (u); |u| = 1) under PV (v)
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except ωn, which dies and generates independently a point process distributed as (V (u); |u| =
1) under QV (ωn). And then ωn+1 is chosen to be u among the children of ωn, proportion-
ally to R(V (u))e−V (u) 1{min1≤k≤n+1 V (uk)>0}. We still use T to denote the genealogical tree.
Then (ωn; n ≥ 0) is an infinite ray in T, which is called the spine. For the rigorous proof,
see [1, Appendix A]. Indeed, this type of measure change and the establishment of a spinal
decomposition have been developed in various cases of the branching framework; see, e.g. [8],
[10], [11], and [14]

We state the following fact about the distribution of the spine process (V (ωn), n ≥ 0) under
Qa .

Fact 2.1. Let a ≥ 0. For any n ≥ 0 and any measurable function g : Rn+1 → R+, we have

EQa
[g(V (ω0), . . . , V (ωn))] = 1

R(a)
Ea

[
g(S0, . . . , Sn)R(Sn); min

1≤k≤n
Si > 0

]
, (2.3)

where (Sn) is the same as in Lemma 2.1.

For convenience, let (ζn; n ≥ 0) be a stochastic process under Pa such that

Pa((ζn; n ≥ 0) ∈ ·) = Qa((V (ωn); n ≥ 0) ∈ ·). (2.4)

Obviously, under Pa , (ζn; n ≥ 0) is a Markov chain with transition probabilities P such that,
for any x ≥ 0, P(x, dy) = (R(y)/R(x))1{y>0}Px(S1 ∈ dy). This process ζn is usually called
a random walk conditioned to stay positive. It has arisen and been studied in, for example, [2],
[4], [16], and [17]. In what follows, we state some results about ζn, which will be useful later
in Section 3.

2.3. Random walk conditioned to stay positive

Recall that (Sn) is a centered random walk on R with finite variance σ 2. Let τ− be the
first time that (Sn) hits (−∞, 0], namely, τ− := inf{k ≥ 1 : Sk ≤ 0}. Let (Tk, Hk; k ≥ 0)

be the strict ascending ladder epochs and heights of (Sn; n ≥ 0), i.e. T0 = 0, H0 := S0, and
for any k ≥ 1, Tk := inf{j > Tk−1 : Sj > Hk−1}, Hk := STk

. We denote by U(dx) the
corresponding renewal measure (see, e.g. [9, Chapter XII]). Then, similarly to (2.1), for any
measurable function f : R→ R+,

E

[τ−−1∑
n=0

f (Sn)

]
=

∫ ∞
0

f (x)U(dx). (2.5)

From (2.3) and (2.5), we deduce

E

[∑
n≥0

f (ζn)

]
= EQ0

[∑
n≥0

f (V (ωn))

]

=
∑
n≥0

E[f (Sn)R(Sn) 1{min1≤k≤n Sk>0}]

= E

[τ−−1∑
n=0

f (Sn)R(Sn)

]

=
∫ ∞

0
f (x)R(x)U(dx). (2.6)
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Recall also that U−(dx) is the renewal measure associated with the weak descending ladder
height process of (Sn). By the renewal theorem (see [9, p. 360]), there exist two constants c3,
c4 > 0 such that for all x, y ≥ 0,

c3(1+ x) ≤ U([0, x]) ≤ c4(1+ x), 0 ≤ U([x, x + y]) ≤ c4(1+ y), (2.7)

c3(1+ x) ≤ U−([0, x]) ≤ c4(1+ x), 0 ≤ U−([x, x + y]) ≤ c4(1+ y). (2.8)

Given a nonincreasing and positive function F , we present the following proposition, which
provides a necessary and sufficient condition for the infinity of the series

∑
n F (ζn).

Proposition 2.1. Let F : [0,∞)→ [0,∞) be nonincreasing. Then∫ ∞
0

F(y)y dy = ∞ ⇐⇒
∑
n≥0

F(ζn) = ∞, P-a.s. (2.9)

Note that (ζn) can be viewed as a discrete-time counterpart of the Bessel process, for which
a similar result holds (see, e.g. [15, Example 2.5, Chapter XI]). We will prove (2.9) in a similar
way as for the Bessel process.

Proof. Observe that 0 ≤ F(x) ≤ F(0) < ∞ for any x ≥ 0. So there is no difference
between the two events {∑n≥0 F(ζn) = ∞} and {∑n≥1 F(ζn) = ∞}.

We first prove ‘⇐�’ in (2.9). From (2.2) and (2.7), it follows that∫ ∞
0

F(y)y dy = ∞ ⇐⇒
∫ ∞

0
F(y)R(y)U(dy) = ∞.

Actually, by (2.6),

E

[∑
n≥0

F(ζn)

]
=

∫ ∞
0

F(y)R(y)U(dy).

Clearly, P(
∑

n≥0F(ζn) = ∞) = 1 yields
∫∞

0 F(y)R(y)U(dy) = ∞. The ‘⇐�’ in (2.9) is,
hence, proved.

To prove ‘�⇒’ in (2.9), we need only to show that if P(
∑

n≥0F(ζn) = ∞) < 1, then∫∞
0 F(y)y dy < ∞. From now on, we suppose that P(

∑
n≥0F(ζn) = ∞) < 1, which is

equivalent to

P

(∑
n≥1

F(ζn) <∞
)

> 0. (2.10)

We draw support from Tanaka’s construction for the random walk conditioned to stay positive
(see [16], [4]). Recall that τ = inf{k ≥ 1 : Sk ∈ (0,∞)}. Hence, we obtain an excursion
(Sj ; 0 ≤ j ≤ τ), which is denoted by ξ = (ξ(j), 0 ≤ j ≤ τ). Let {ξk = (ξk(j), 0 ≤ j ≤
τk); k ≥ 1} be a sequence of independent copies of ξ . For any k ≥ 1, let

νk(j) := ξk(τk)− ξk(τk − j) for all 0 ≤ j ≤ τk. (2.11)

This brings out another sequence of i.i.d. excursions {νk = (νk(j), ; 0 ≤ j ≤ τk); k ≥ 1},
based on which we reconstruct the random walk conditioned to stay positive (ζn) in the following
way. Define, for any k ≥ 1,

T +k := τ1 + · · · + τk, H+k := ν1(τ1)+ · · · + νk(τk) = ξ1(τ1)+ · · · + ξk(τk),

and let T +0 = H+0 = 0. Then the process

ζn = H+k + νk+1(n− T +k ) for T +k < n ≤ T +k+1

with ζ0 = 0, is what we need.
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We actually establish a process distributed as (ζn). For brevity, we still denote it by (ζn)

without changing any conclusion in this proof. For any k ≥ 1, let

χk(F ) :=
T +k∑

n=T +k−1+1

F(ζn) =
τk∑

j=1

F(H+k−1 + νk(j)),

so
∑

n≥1 F(ζn) =∑
k≥1 χk(F ).

On the other hand, by (2.11),

χk(F ) =
τk∑

j=1

F(H+k−1 + ξk(τk)− ξk(τk − j)) =
τk−1∑
j=0

F(H+k − ξk(j)).

Hence, (2.10) becomes

P

(∑
k≥1

χk(F ) <∞
)
= P

(∑
k≥1

τk−1∑
j=0

F(H+k − ξk(j)) <∞
)

> 0.

By [9, Theorem 1, Chapter XVIII.5], as (Sn) is of finite variance, we have b+ := E[H+1 ] <∞.
It follows from the strong law of large numbers that P-a.s.,

lim
k→∞

H+k
k
= b+.

Let δ > (1 − b+)+. This tells us that P-a.s. for all large k, H+k ≤ (b+ + δ)k. As F is
nonincreasing, we have

P

(∑
k≥1

τk−1∑
j=0

F(k(b+ + δ)− ξk(j)) <∞
)
≥ P

(∑
k≥1

τk−1∑
j=0

F(H+k − ξk(j)) <∞
)

> 0.

Let A := b+ + δ and for any k ≥ 1 let

χ̃k :=
τk−1∑
j=0

F(Ak − ξk(j)).

So P(
∑

k≥1 χ̃k < ∞) > 0. Recall that {ξk, k ≥ 1} is a sequence of independent copies
of (Sj ; 0 ≤ j ≤ τ). This yields the independence of the sequence {χ̃k, k ≥ 1}. From
Kolmogorov’s 0-1 law, it follows that

P

[∑
k≥1

τk−1∑
j=0

F(Ak − ξk(j)) <∞
]
= P

[∑
k≥1

χ̃k <∞
]
= 1. (2.12)

Moreover, let EM := {∑k≥1χ̃k < M} for any M > 0. Either there exists some M0 < ∞
such that P[EM0 ] = 1, or P(EM) < 1 for all M ∈ (0,∞). On the one hand, if P(EM0) = 1
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for some M0 <∞, then

M0 ≥ E

[∑
k≥1

χ̃k

]

= E

[∑
k≥1

τk−1∑
j=0

F(Ak − ξk(j))

]

=
∑
k≥1

E

[τ−1∑
j=0

F(Ak − Sj )

]

=
∑
k≥1

∫ ∞
0

F(Ak + y)U−(dy),

where the last equality follows from (2.5). We see that
∑

k≥1

∫∞
0 F(Ak + y)U−(dy) <∞. It

follows from the renewal theorem that there exists B > 0 such that U−([jB, jB+B]) > δ > 0
for any j ≥ 0. As F is nonincreasing,

δ

B

∫ ∞
A+B

F(x) dx ≤
∑
j≥1

F(A+ Bj)δ ≤
∫ ∞

0
F(A+ y)U−(dy) <∞,

which implies that
∫∞

0 F(x) dx <∞. Moreover,

∑
k≥1

∑
j≥1

F(Ak + Bj)δ ≤
∑
k≥1

∫ ∞
0

F(Ak + y)U−(dy) <∞.

Hence, we observe that
∫∞
A

dz
∫∞
B

F(y + z) dy ≤ ∑
k≥1

∑
j≥1F(Ak + Bj)AB < ∞. This

implies that

∫ ∞
0

F(x)x dx =
∫ ∞

0
dz

∫ ∞
0

F(z+ y) dy

≤ F(0)AB + A

∫ ∞
B

F(x) dx + B

∫ ∞
A

F(x) dx +
∫ ∞

A

dz

∫ ∞
B

F(y + z) dy

<∞,

which is what we need.

On the other hand, if P(EM) < 1 for all M ∈ (0,∞), we have limM↑∞ P(EM) = 1 due to
(2.12). For any k ≥ 1 and any 
 ≥ 1, define

�
(k)

 :=

τk−1∑
j=0

1{A(
−1)≤−ξk(j)<A
} .
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As
∑


≥1 1{A(
−1)≤−ξk(j)<A
} = 1, we obtain, for any k ≥ 1,

χ̃k =
τk−1∑
j=0

F(Ak − ξk(j))
∑

≥1

1{A(
−1)≤−ξk(j)<A
}

=
∑

≥1

τk−1∑
j=0

F(Ak − ξk(j)) 1{A(
−1)≤−ξk(j)<A
}

≥
∑

≥1

F(Ak + A
)�
(k)

 ,

where the last inequality holds because F is nonincreasing. It follows that∑
k≥1

χ̃k ≥
∑
k≥1

∑

≥1

F(Ak + A
)�
(k)



=
∞∑

n=2

F(An)

n−1∑
k=1

�
(k)
n−k

=
∞∑

m=1

F(Am+ A)mYm, (2.13)

where Ym :=∑m
k=1 �

(k)
m+1−k/m for all m ≥ 1. We claim that there exists a M > 0 sufficiently

large such that, for any m ≥ 1,

c6 ≥ E[Ym 1EM
] ≥ c5 > 0, (2.14)

where c5, c6 are positive constants. We postpone the proof of (2.14) and return to (2.13). It
follows that

M ≥ E

[
1EM

∑
k≥1

χ̃k

]

≥ E

[
1EM

∞∑
m=1

F(Am+ A)mYm

]

≥
∑
m≥1

F(Am+ A)mE[Ym 1EM
].

By (2.14), we obtain ∑
m≥1

F(Am+ A)m ≤ M

c5
<∞.

This implies that
∫∞

0 F(y)y dy <∞, which completes the proof of Proposition (2.1).
It remains to prove (2.14).
We begin with the first and second moments of Ym. Since {ξk, k ≥ 1} are i.i.d. copies of

(Sj , 0 ≤ j ≤ τ), {(�(k)

 ;
 ≥ 1), k ≥ 1} are i.i.d. This yields

E[Ym] = 1

m

m∑
k=1

E[�(k)
m+1−k]

= 1

m

m∑
k=1

E[�(1)
m+1−k]
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= 1

m
E

[ m∑
k=1

�
(1)
k

]

= 1

m
E

[τ−1∑
j=0

1{−Sj <Am}
]

= R(Am)

m
,

where the last equality comes from (2.1). By (2.2), for any m ≥ 1,

c1A ≤ E[Ym] ≤ c2(A+ 1) =: c6. (2.15)

Obviously, we have E[Ym 1EM
] ≤ c6 for any m ≥ 1. The fact that �

(k)· , k ≥ 1, are i.i.d. yields
also

var(Ym) = 1

m2

m∑
k=1

var(�(1)
k ) ≤ 1

m2

m∑
k=1

E[(�(1)
k )2]. (2.16)

Note that �
(1)
1 is distributed as

∑τ−1
j=0 1{−Sj <A} with τ = inf{k > 0; Sk > 0}. We have

E[(�(1)
1 )2] = E

[(τ−1∑
j=0

1{−Sj <A}
)2]
≤ 2E

[τ−1∑
j=0

1{−Sj <A}
τ−1∑
k=j

1{−Sk<A}
]
.

By the Markov property, we obtain

E[(�(1)
1 )2] ≤ 2E

[τ−1∑
j=0

1{−Sj <A} R(A,−Sj )

]
,

where

R(x, y) := E

[τy−1∑
i=0

1{Si>y−x}
]

with τy := inf{k > 0; Sk > y} for x, y ≥ 0. From (2.1), it follows that

E[(�(1)
1 )2] ≤ 2

∫ A

0
R(A, y)U−(dy). (2.17)

Consider now the strict ascending ladder epochs and heights (Tk, Hk) of (Sn). We obtain

R(x, y) = E

[ ∞∑
k=0

1{y≥Hk>y−x}
Tk+1−1∑
n=Tk

1{Sn>y−x}
]
.

By applying the Markov property at the times Tk, and (2.1), we have for x, y ≥ 0,

R(x, y) = E

[∑
k≥0

R(Hk + x − y) 1{y≥Hk>y−x}
]
=

∫ y

(y−x)+
R(x − y + z)U(dz), (2.18)

Substituting (2.18) into (2.17) and then using (2.2), (2.8) and using (2.7) implies that

E[(�(1)
1 )2] ≤ c7(1+ A)3 ≤ c8A

3;
see also [4, Lemma 2].
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Moreover, for any 
 ≥ 2, �
(1)

 has the same law as

∑τ−1
j=0 1{
A−A≤−Sj <
A}. Similarly, we

obtain

E[(�(1)

 )2] = E

[(τ−1∑
j=0

1{
A−A≤−Sj <
A}
)2]

≤ 2E

[τ−1∑
j=0

1{
A−A≤−Sj <
A}
τ−1∑
k=j

1{
A−A≤−Sk<
A}
]
.

Once again, by the Markov property and then by (2.1), we have

E[(�(1)

 )2] ≤ 2E

[τ−1∑
j=0

1{
A−A≤−Sj <
A}(R(
A,−Sj )− R(
A− A,−Sj ))

]

= 2
∫ 
A


A−A

(R(
A, y)− R(
A− A, y))U−(dy).

Substituting (2.18) into this equation yields for 
 ≥ 2,

E[(�(1)

 )2]

≤ 2
∫ 
A


A−A

(∫ y

0
R(
A− y + z)U(dz)−

∫ y

y−
A+A

R(
A− A− y + z)U(dz)

)
U−(dy)

= 2
∫ 
A


A−A

(∫ y−
A+A

0
R(
A− y + z)U(dz)

+
∫ y

y−
A+A

U−([
A− A− y + z, 
A− y + z))U(dz)

)
U−(dy),

where the last equality holds because R(x) = U−([0, x)). Observe that R(
A−y+z) ≤ R(A)

for 0 ≤ z ≤ y − 
A+A and 
A−A ≤ y ≤ 
A. Recall that A ≥ 1. By (2.2), (2.7), and (2.8),

E[(�(1)

 )2] ≤ c9

∫ A

0

(∫ u

0
(A− u+ z+ 1)U(dz)+

∫ u+(
−1)A

u

(1+ A)U(dz)

)
U−(du)

≤ c10(A+ 1)

∫ A

0
(u+ 1+ 
A)U−(du)

≤ c11
A
3

with c11 ≥ c8. Returning to (2.16), for any m ≥ 1,

var(Ym) ≤
∑m


=1 c11
A
3

m2 ≤ c12A
3.

Combining this with (2.15) implies that E[Y 2
m] = var(Ym)+ E[Ym]2 ≤ c2

2(1 + A)2 + c12A
3.

We then use the Paley–Zygund inequality to obtain

P

(
Ym >

1

2
E[Ym]

)
≥ E[Ym]2

4E[Y 2
m]
≥ c2

1A
2

4(c2
2(1+ A)2 + c12A3)

:= c13 > 0.
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So, for any 0 ≤ u ≤ c1A/2 ≤ E[Ym]/2, we have

P(Ym ≤ u) ≤ P

(
Ym ≤ E[Ym]

2

)
≤ 1− c13.

There exists M1 > 0 such that P(EM1) ≥ 1 − c13/2, since limM↑∞ P[EM ] = 1. For such
M1 > 0,

E[Ym 1EM1
] = E

[∫ Ym

0
1EM1

du

]
=

∫ ∞
0

P[Ym > u;EM1 ] du.

Note that P(Ym > u,EM1) ≥ (P(EM1) − P[Ym ≤ u])+, which is greater than c13/2 when
0 ≤ u ≤ c1A/2. As a consequence,

E[Ym 1EM1
] =

∫ ∞
0

P(Ym > u;EM1) du ≥
∫ c1A/2

0

c13

2
du = c1c13A

4
=: c5 > 0.

This completes the proof of (2.14), and hence completes the proof of ‘�⇒’ in (2.9). Proposi-
tion 2.1 is now proved.

3. Proof of the main theorem

Recall that we are in the following regime:

E

[ ∑
|u|=1

e−V (u)

]
= 1, E

[ ∑
|u|=1

V (u)e−V (u)

]
= 0,

σ 2 = E

[ ∑
|u|=1

V (u)2e−V (u)

]
<∞.

(3.1)

Recall also that equivalence in Theorem 1.1 is as follows:

E[Y (log+ Y )2] + E[Z log+ Z] <∞ ⇐⇒ P(D∞ > 0) > 0 (3.2)

with Y =∑
|u|=1 e−V (u) and Z =∑

|u|=1 V (u)+e−V (u).
This section is devoted to proving that the condition on the left-hand side of (3.2) (i.e. (1.3))

is a necessary and sufficient condition for mean convergence of the truncated martingale{
D

(0)
n =

∑
|u|=n

R(V (u))e−V (u) 1{V (uk)>0 for all 1≤k≤n};n ≥ 0

}
.

In view of Lemma 2.4, the nontriviality of D∞ follows, which proves Theorem 1.1.
In what follows, we state a result concerning the mean convergence of the truncated martin-

gale {D(0)
n ; n ≥ 0}, which is a special case of [6, Theorem 2.1].

Define

X := D
(0)
1

D
(0)
0

1{D(0)
0 >0} + 1{D(0)

0 =0} . (3.3)

Then for any a ≥ 0, under Pa ,

X =
∑
|u|=1 R(V (u))e−V (u) 1{V (u)>0}

R(a)e−a
.
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Theorem 3.1. (See Biggins and Kyprianou [6].) Let (ζn) be a random walk conditioned to
stay positive, whose law was given in (2.4).

(i) If ∑
n≥1

Eζn [X(R(ζn)e
−ζnX ∧ 1)] <∞, P-a.s.

then E[D(0)∞ ] = R(0).

(ii) If for all y > 0,

∞∑
n=1

Eζn [X;R(ζn)e
−ζnX ≥ y] = ∞, P-a.s.

then E[D(0)∞ ] = 0.

Our proof relies on this theorem. First, in Section 3.1 we provide a short proof for the
sufficient part to accomplish our arguments even though it has already been proved in [1]. In
Section 3.2 we prove that (1.8) is also the necessary condition by using Proposition 2.1.

3.1. Equation (1.3) is a sufficient condition

This section is devoting to proving that

E[Y (log+ Y )2] + E[Z log+ Z] <∞ �⇒ E[D(0)∞ ] = R(0) = 1. (3.4)

Proof of (3.4). According to Theorem 3.1(i), it suffices to show that

E[Y (log+ Y )2]+E[Z log+ Z] <∞ �⇒
∑
n≥0

Eζn [X(R(ζn)e
−ζnX∧1)] <∞, P-a.s.

(3.5)

For any particle x ∈ T \ {∅}, we denote its parent by←−u and define its relative displacement
by

�V (u) := V (u)− V (
←−
u ).

Then for any a ∈ R, under Pa , (�V (u); |u| = 1) is distributed as L. Let Ỹ :=∑
|u|=1 e−�V (u)

and Z̃ :=∑
|u|=1(�V (u))+e−�V (u), so Pa[(Ỹ , Z̃) ∈ · ] = P((Y, Z) ∈ · ).

Note that under Pζn ,

X =
∑
|u|=1 R(V (u))e−V (u) 1{V (u)>0}

R(ζn)e−ζn

=
∑
|u|=1 R(ζn +�V (u))e−�V (u) 1{�V (u)>−ζn}

R(ζn)
, (3.6)
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where (�V (u); |u| = 1) is independent of ζn. By (2.2), it follows that

X ≤
∑
|u|=1 c2(ζn + 1)e−�V (u) 1{�V (u)>−ζn}

R(ζn)
+

∑
|u|=1 c2�V (u)e−�V (u) 1{�V (u)>−ζn}

R(ζn)

≤ c2

c1

∑
|u|=1

e−�V (u) + c2

∑
|u|=1 �V (u)+e−�V (u)

R(ζn)

≤ c14

(
Ỹ + Z̃

R(ζn)

)

≤ 2c14 max

{
Ỹ ,

Z̃

R(ζn)

}
,

where (Ỹ , Z̃) is independent of ζn. This implies that∑
n≥1

Eζn [X(R(ζn)e
−ζnX ∧ 1)]

≤ c15

(∑
n≥0

E

[
Ỹ (R(ζn)e

−ζn Ỹ ∧ 1)

∣∣∣∣ ζn

]
+

∑
n≥0

1

R(ζn)
E[Z̃(e−ζnZ̃ ∧ 1) | ζn]

)

=: c15(�1 +�2).

Hence, we need only to prove that

E[Y (log+ Y )2] + E[Z log+ Z] <∞ �⇒ E[�1] + E[�2] <∞, (3.7)

which leads to (3.5). On the one hand, from (2.2) it follows that R(x) ≤ c21ex/2 for all x ≥ 0,
so we have

E[�1] ≤ c17E

[∑
n≥0

E[Ỹ (e−ζn/2Ỹ ∧ 1) | ζn]
]

= c17

∑
n≥0

E[(Ỹ )2e−ζn 1{Ỹ≤eζn/2} +Ỹ 1{Ỹ>eζn/2}]

= c17E

{
(Ỹ )2E

[∑
n≥0

e−ζn 1{ζn≥2 log Ỹ }
∣∣∣∣ Ỹ

]
+ ỸE

[∑
n≥0

1{ζn<2 log Ỹ }
∣∣∣∣ Ỹ

]}
,

where Ỹ and (ζn) are independent. By (2.6),

E[�1] ≤ c17E

[
(Ỹ )2

∫ ∞
2 log+ Ỹ

e−xR(x)U(dx)+ Ỹ

∫ 2 log+ Ỹ

0
R(x)U(dx)

]
,

which by (2.2) and (2.7) implies that

E[�1] ≤ c17E

[
(Ỹ )2

∫ ∞
2 log+ Ỹ

e−x(x + 1)U(dx)+ Ỹ

∫ 2 log+ Ỹ

0
(x + 1)U(dx)

]
≤ c18E[Ỹ (1+ log+ Ỹ )2]
= c18E[Y (1+ log+ Y )2].
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On the other hand, in the same way, we obtain

E[�2] ≤ c19E[Z(1+ log+ Z)].
Consequently,

E[�1] + E[�2] ≤ c20(E[Y + Z] + E[Y (log+ Y )2] + E[Z log+ Z]).
Note that (3.1) ensures that E[Y + Z] < ∞. Equation (3.7) is thus proved and we complete
the proof of (3.4).

3.2. Equation (1.3) is a necessary condition

This section is devoted to proving that

max{E[Z log+ Z], E[Y (log+ Y )2]} = ∞ �⇒ E[D(0)∞ ] = 0. (3.8)

Proof of (3.8). According to Theorem 3.1(ii), we need only to show that

∞∑
n=1

Eζn [X;R(ζn)e
−ζnX ≥ y] = ∞, P-a.s. for all y > 0. (3.9)

We break the assumption on the left-hand side of (3.8) up into three cases. In each case, we
find out a different lower bound for X to establish (3.9). Hence, it follows that D

(0)∞ is trivial
as E[D(0)∞ ] = 0. The three cases are stated as follows:

E[Y (log+ Y )2] = ∞, E[Y (log+ Y )] <∞, (3.10a)

E[Y (log+ Y )] = ∞, (3.10b)

E[Z(log+ Z)] = ∞. (3.10c)

Proof of (3.9) under (3.10a). Recall that for any particle x ∈ T \ {∅}, �V (u) = V (u) −
V (
←−
u ), and that under Pa , (�V (u); |u| = 1) is distributed as L. For any s ∈ R, we define a

pair of random variables

Y+(s) :=
∑
|u|=1

e−�V (u) 1{�V (u)>−s}, Y−(s) :=
∑
|u|=1

e−�V (u) 1{�V (u)≤−s} .

Clearly, Ỹ = Y+(s)+ Y−(s).
It follows from (3.6) and (2.2) that under Pζn ,

X ≥
∑
|u|=1 c1(1+ ζn +�V (u))e−�V (u) 1{�V (u)>−ζn/2}

c2(1+ ζn)

≥
∑
|u|=1 c1(1/2+ ζn/2)e−�V (u) 1{�V (u)>−ζn/2}

c2(1+ ζn)

≥ c21Y+
(

ζn

2

)
,

where {(Y+(s), Y−(s)); s ∈ R} is independent of ζn and c21 := c1/2c2 > 0. Thus, it follows
that, for any y > 0,

∞∑
n=1

E

[
Y+

(
ζn

2

)
;R

(
ζn

2

)
e−ζnY+

(
ζn

2

)
≥ y

∣∣∣∣ ζn

]
= ∞, P-a.s.,
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(3.9) holds. It is known that ζn→∞ as n goes to∞ (see, e.g. [4]). It suffices that

∞∑
n=1

F

(
ζn

2
, ζn

)
= ∞, P-a.s., (3.11)

where F(s, z) := E[Y+(s), log Y+(s) ≥ z], s, z ∈ R.

Let F1(z) := E[Y, log Y ≥ z], which is positive and nonincreasing. From Lemma 2.1 and
(3.1), it follows that E[Y ] = 1. Therefore, for any s, z ∈ R,

0 ≤ F(s, z) ≤ F1(z) ≤ E[Y ] = 1.

On the one hand, from (3.10a), we obtain∫ ∞
0

F1(y)y dy =
∫ ∞

0
E[Y 1{log Y≥y}]y dy

= E

[
Y

∫ (log+ Y )

0
y dy;Y ≥ 1

]

= E[Y (log+ Y )2]
2

= ∞.

According to Proposition 2.1,

∞∑
n=1

F1(ζn) = ∞, P-a.s. (3.12)

On the other hand, we can prove that
∑∞

n=1[F1(ζn)− F(ζn/2, ζn)] <∞, P-a.s. In fact, as
Y = Y+(s)+ Y−(s) under P, for any s, y ∈ R,

F1(y)− F(s, y) = E[Y 1{log Y≥y} −Y+(s) 1{log Y+(s)≥y}]
= E[Y 1{log Y≥y>log Y+(s)} +Y 1{log Y+(s)≥y} −Y+(s) 1{log Y+(s)≥y}]
= E[Y 1{log Y≥y>log Y+(s)} +Y−(s) 1{log Y+(s)≥y}].

Note that Y ≤ 2 max{Y+(s), Y−(s)} under P. It follows that

F1(y)− F(s, y) ≤ E[2Y−(s) 1{log Y≥y>log Y+(s),Y+(s)≤Y−(s)}
+ Y 1{log Y≥y>log Y+(s),Y+(s)>Y−(s)}] + E[Y−(s) 1{log Y−(s)≥y}]

≤ 3E[Y−(s)] + E[Y 1{log Y≥y>log Y+(s),Y+(s)>Y−(s)}]
≤ 3E[Y−(s)] + E[Y 1{log Y≥y>log(Y/2)}]
=: d1(s)+ d2(y).

As a consequence,

∞∑
n=1

[
F1(ζn)− f

(
ζn

2
, ζn

)]
≤

∑
n≥0

d1

(
ζn

2

)
+

∑
n≥0

d2(ζn).
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Taking the expectation on both sides yields

E

[ ∞∑
n=1

(
F1(ζn)− f

(
ζn

2
, ζn

))]
≤ E

[∑
n≥0

d1

(
ζn

2

)]
+ E

[∑
n≥0

d2(ζn)

]

=
∫ ∞

0
d1

(
x

2

)
R(x)U(dx)+

∫ ∞
0

d2(x)R(x)U(dx),

(3.13)

where the last equality comes from (2.6).
For the first integration, from Lemma 2.1, we obtain

d1(s) = 3E[Y−(s)] = 3E

[ ∑
|x|=1

e−V (x) 1{V (x)≤−s}
]
= 3P(−S1 ≥ s).

By (2.2), (2.7), and (3.1), we have∫ ∞
0

d1

(
x

2

)
R(x)U(dx) = 3

∫ ∞
0

P(−2S1 ≥ x)R(x)U(dx)

= 3E

[∫ −2S1

0
R(x)U(dx);−2S1 ≥ 0

]
≤ c22E[(1+ (−2S1)+)2]
<∞.

For the second integration on the right-hand side of (3.13), as d2(y)=E[Y1{log Y≥y>log(Y/2)}],
we use (2.2), (2.7), and (3.10a) to obtain∫ ∞

0
d2(x)R(x)U(dx) =

∫ ∞
0

E[Y 1{log Y≥x>log(Y/2)}]R(x)U(dx)

= E

[
Y

∫ log+ Y

(log Y−log 2)+
R(x)U(dx)

]
≤ c23E[Y (1+ log+ Y )]
<∞.

Returning to (3.13), we conclude that

E

[ ∞∑
n=1

(
F1(ζn)− f

(
ζn

2
, ζn

))]
≤ E

[∑
n≥0

d1

(
ζn

2

)]
+ E

[∑
n≥0

d2(ζn)

]
<∞.

Therefore,
∞∑

n=1

[
Fa(ζn)− f

(
ζn

2
, ζn

)]
<∞, P-a.s.,

which, combined with (3.12), implies (3.11). Thus, (3.9) is proved under (3.10a).

Proof of (3.9) under (3.10b). Now we suppose that E[Y log+ Y ] = ∞. By (2.2), we observe
that under Pζn ,

X =
∑
|u|=1 R(�V (u)+ ζn)e−�V (u) 1{�V (u)>−ζn}

R(ζn)
≥ c1

Y+(ζn)

R(ζn)
,

where {Y+(s); s ∈ R} and ζn are independent.
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To establish (3.9), we need only to show that, for any y ≥ 1,

∑
n≥1

E

[
Y+(ζn)

R(ζn)
;Y+(ζn) ≥ yeζn

∣∣∣∣ ζn

]
=

∑
n≥1

F(ζn, log y + ζn)

R(ζn)
= ∞, P-a.s.

For any y ≥ 1 fixed, let

F2(x) := F1(log y + x)

R(x)
for all x ≥ 0,

which is nonincreasing as R(x) = U−([0, x)) is nondecreasing and F1 is nonincreasing. We
have

∑
n≥1

F2(ζn) =
∑
n≥1

F(ζn, log y + ζn)

R(ζn)
+

∑
n≥1

F1(log y + ζn)− F(ζn, log y + ζn)

R(ζn)
. (3.14)

By (2.2),
F1(log y + x)

c2(1+ x)
≤ F2(x) ≤ 1

c1
.

From (3.10b), it follows that∫ ∞
0

F2(x)x dx ≥
∫ ∞

0
F1(log y + x)

x

c2(1+ x)
dx

≥
∫ ∞

1
c24E[Y 1{log Y≥log y+x}] dx

≥ c24E[Y (log Y − log y − 1)+]
= ∞.

By Proposition 2.1,

∑
n≥0

F2(ζn) =
∑
n≥0

F1(log y + ζn)

R(ζn)
= ∞, P-a.s. (3.15)

In view of (3.14) and (3.15), it suffices to show that

∑
n≥0

F1(log y + ζn)− F(ζn, log y + ζn)

R(ζn)
<∞, P-a.s. (3.16)

Recall that F1(z)− F(s, z) ≤ d1(s)+ d2(z). By (2.6),

E

[∑
n≥0

F1(log y + ζn)− F(ζn, log y + ζn)

R(ζn)

]
≤ E

[ ∑
n≥0

d1(ζn)+ d2(log y + ζn)

R(ζn)

]

=
∫ ∞

0
[d1(x)+ d2(log y + x)]U(dx). (3.17)
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On the one hand, recalling that d1(x) = 3P(−S1 ≥ x), from (2.7), we obtain∫ ∞
0

d1(x)U(dx) =
∫ ∞

0
3P(−S1 ≥ x)U(dx)

= 3E

[∫ (−S1)+

0
U(dx)

]
≤ 3c4E[1+ (−S1)+]
<∞. (3.18)

On the other hand, recalling that d2(x) = E[Y ; log Y ≥ x > log Y − log 2], by (2.7) again,
we obtain ∫ ∞

0
d2(log y + x)U(dx) =

∫ ∞
0

E[Y 1{log Y≥log y+x>log Y−log 2}]U(dx)

= E

[
Y

∫ (log Y−log y)+

(log Y−log y−log 2)+
U(dx)

]
≤ c4(1+ log 2)E[Y ]
<∞. (3.19)

Combined with (3.18) and (3.19), (3.17) becomes

E

[∑
n≥1

F1(log y + ζn)− F(ζn, log y + ζn)

R(ζn)

]
<∞.

Thus, we obtain (3.16), which completes the proof of (3.9) given (3.10b).

Proof of (3.9) under (3.10c). In this part we assume that E[Z log+ Z] = ∞ with Z =∑
|u|=1 V (u)+e−V (u) ≥ 0. We observe that under Pζn ,

X ≥
∑
|u|=1 R(�V (u)+ ζn)e−�V (u) 1{�V (u)>0}

R(ζn)
≥ c1

R(ζn)
Z̃,

where Z̃ =∑
|x|=1(�V (x))+e−�V (x) is independent of ζn. As a consequence, for any y > 0,∑

n≥1

Eζn [X;R(ζn)e
−ζnX ≥ y] ≥

∑
n≥1

c1

R(ζn)
E[Z̃; c1Z̃ ≥ yeζn | ζn].

Recall that Z̃ is distributed as Z under P. Therefore, it is sufficient to prove that, for any y > 0,

∑
n≥1

1

R(ζn)
E[Z̃; Z̃ ≥ yeζn | ζn] =

∑
n≥1

F3(ζn) = ∞, P-a.s.

where

F3(z) := E[Z; log Z ≥ z+ log y]
R(z)

for all z ≥ 0.

Since R is nondecreasing, the function F3 is nonincreasing. By Lemma 2.1 and (2.2),

0 ≤ F3(z) ≤ E[Z]
R(z)

≤ E[(S1)+]
c1

<∞.
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Moreover, by (2.7) and (3.10c),∫ ∞
0

F3(x)x dx ≥
∫ ∞

1
c25E[Z; log Z − log y ≥ x] dx

≥ c25E[Z(log Z − log y − 1)+]
= ∞.

Due to Proposition 2.1, for any y > 0, we obtain

∑
n≥1

1

R(ζn)
E[Z̃; Z̃ ≥ yeζn | ζn] =

∑
n≥1

F3(ζn) = ∞, P-a.s.,

which completes the proof of (3.9) under (3.10c).
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