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PROJECTIVE AND MULTIGRADED REPRESENTATIONS
OF MONOMIAL AND MULTISIGNED GROUPS
I. GRADED REPRESENTATIONS OF A
TWISTED PRODUCT

PETER HOFFMAN

ABSTRACT Motivated by the problem of giving a functonal (or at least uniform)
description of the projective representations for wreath products G S, 1n terms of those

a
for G, we study a certain binary operation Y on the class of “cyclic covering groups
with parities” Along with setting up the basic machinery associated to representations

a
graded by (Z/ 2){, the marn result 1s a description of the irreducibles for AYB in terms
of a (tensorlike) product of those for A and for B Finally we describe a programme
for producing a PSH-algebra theory 1n this context, analogous to that of Zelevinsky
for the case ¢ = 0, and that of the author with Michael Bean (structure) and with John
Humphreys (applications) for the case £ = 1

Let H be a finite group, n a positive integer, and H S, the monomial group, that is,
the wreath product of H with the symmetric group S,. For any even integer 2m which is
divisible by the exponent of the Schur multiplier M(H), all classes in M(H 2 S,) may be
“realized” by 2m-fold cyclic covers of H ¢ S, (defined below). That is, the map

H*(HSp;Z/2m) — H*(H 1S3 Q/Z) = HX(H S, C*) = M(H S,),

induced by the inclusion Z/2m — Q/Z, is surjective. [Equivalently M(H 2 S,) has
exponent dividing 2m; 1n fact, when n > 4, its exponent is the least common multiple
of the exponent of M(H) and the integer 2.] Abstractly, M(HS,) is independent of n
for n > 4, and each of its elements can be made to correspond to a sequence of covers
{Y, — H1S, : n > 0}. See Section 10.

Our ultimate objective 1s to give the projective representations of H S, as a functor,
in some sense, of the projective representations of H. The projective representations
of H S, indexed by a given cocycle in M(HS,) may be identified with those linear
representations of a corresponding cover of H S, for which “the” generator of the kernel
of the covering projection acts as multiplication by a fixed 2m-th root of unity.

For the linear representations, a functorial rendering can be given as follows. The
Young subgroup embeddings

(HZSI)X(HZSJ)_’HZSHJ
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give a multiplication
R(HS,) X R(H1S;)) — R(HS.4,),

where R(G) is the free abelian group on the irreducible representations of G. Then there
is
(1) an isomorphism of graded rings

éR(H USn) = Zlxpy : o € Itrep(H),n > 1]
n=0
where x,, is the class of the irreducible representation of H S, obtained by taking the
n-fold tensor power of the a-th irreducible representation of H; and
(2) alternating sum formulae for operators on this ring whose iterationon 1 € R(HSy)
yield all the irreducibles in R(H S,,) for all n, as well as explicit formulae for them in
terms of monomials in the x4, branching rules, Littlewood-Richardson rule, etc. This is
relatively simple, since the above graded ring is a tensor power of “| Irrep H|” copies of
the ring when H = 1, the latter being a much studied object alternatively known as the
ring of stable symmetric functions [M], the free A-ring on one generator [A — T, the
cohomology of BU, the atomic PSH-algebra [Z], .. ..
To proceed analogously for the projective representations, it is necessary to find
embeddings

Y, $ Y =Y,
for each of the sequences {Y,, — H Sn} of 2m-fold cyclic covers mentioned above,
using some suitable operation 3( and then to give a determination of the representations
of Y \O; W vis-a-vis those of Y and of W. It turns out that $ may be defined by twisting
the usual multiplication, using a number of “sign” homomorphisms ¥ — Z/2. That

number (and so $) depends not just on H but on which sequence of covers one is using.
The number (apparently) needs to be arbitrarily large, by choosing a matched sequence
of sufficiently subtle cocycles for H S, (n =0, ..., 00) for a group H with sufficiently
many homomorphisms into Z /2.

In this first part we give a theory for treating the question immediately above, leaving

o
the application to H S, for later. Not unnaturally, since Y denends on some homomor-
phisms from Y to Z/2, it is necessary to consider representations also of the kernels

. . . . . . . x
of these homomorphisms, and their various intersections. To obtain an operation ><
something akin to the natural isomorphism

R(G1) ®z R(G2) — R(G) x G2)

(which uses the tensor product), it seems to be essential to use representations graded
by (Z/2)" where ¢ is the number of “sign” homomorphisms involved. In order to obtain
sanitary formulae, we use 2 in place of (Z/2)", where A is a fixed set of cardinality
¢, and 2% is the group of all subsets of A under symmetric difference. It turns out that,
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when £ > 1, the map analogous to the above tensor product isomorphism is not an
a

isomorphism. But it does determine all the representations of ¥ Y W and its attached
subgroups in a sense which is sufficient for the applications. The case of ordinary
ungraded representations and the tensor product can be considered to be the case £ = 0
of this theory. The main result is Theorem 8.2.

In the case £ = 1 and m = 1, the theory is equivalent to that given by Hoffman-
Humphreys [H-H1] [H-H3; Appendix 8]. An improvement here, which is crucial to the
cases £ > 1, is as follows. It is easy to see that when the multisign Y L2044 surjective,
the 24-graded representations of Y are essentially the same as representations of Ker o.
If E is a subset of A of cardinality £ — k, we find it essential to view representations
of the kernel of ¥ — 24 /2E not as representations of Y graded over (Z/2)* (i.e. 247E-
graded), but rather as 24-graded representations of Y with extra structure. Without this,
the definition of ><I and proofs of its properties become unmanageable. Several years
ago Michael Bean (as an undergraduate research assistant) succeeded in the somewhat
formidable task of producing a version of b for the case £ = 2, m =1, at a time when
the crucial idea above was lacking [B]. The present work depends heavily for motivation
on my previous work with Bean and with Humphreys; [B-H] [H-H1] [H-H2], [H-H3;
Appendix 8].

Besides the application to H S,, a motivation for the theory below (at least for the
author) is to clarify the status of the work with Humphreys for £ = 1 = m. The operation
R~ had a certain odour of the ad hoc about it whereas the operation here seems to arise
more naturally out of the given data.

A brief comment on the motivation for graded representations may be in order before
we start; see also [D], [S]. If H is a subgroup of G, one can think of the process of
inducing a representation V of H to a representation Y of G as a kind of “information
losing” process. If H is normal in G, the process can be factored in the form

Vs W~ Y,

where W is a graded representation of G, graded over G/H. The first step V~ W
is reversible, so the “information loss”, which consists of forgetting the grading, is
concentrated in the second step. We shall be dealing with a much specialized situation,
where G/ H is isomorphic to a product of cyclic groups of order 2. Because of this, quite
a bit of extra structure exists.

What follows is the first part of a three part paper. Part II deals with a classification
problem arising from Part I, and Part III with the application to monomial groups. More
detailed introductions will be attached to those two parts.

1. The categories G(A,m) and ‘T{ (G,y,0). Let A be an abelian group whose

elements will be denoted B, C, ..., with identity element ), and operation denoted
(B, C) — BAC, for later ease of transition to the main example. Let m be a positive
integer.
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DEFINITION. Let G(A,m) be the category whose objects are triples (G, y, o) for
which G is a group, y is a central element in G of order 2m, and 0:G — A is
a homomorphism such that o(y) = (), the identity element of A. A morphism § €
Map g a m) [(Gy, y1,01), (G2, y2,02)] is a group homomorphism 8: G; — G, for which
0(y1) = y2 and 03 0 0 = 0;. It is easily checked that G(A, m) is a category under ordinary
composition of functions.

DEFINITION. For each (G, y, o) in G(A, m), define a category “T(G)” = Tx(G, y. 0) as
follows. An object in T(G) is a pair consisting of:

(i) a G-module V (that is, a finite dimensional C-vector space V together with a linear
action of G on V) ; and

(ii) a A-grading on V (that is, a collection {Vp : B € A} of subspaces of V) ;
This data must satisfy the axioms:

(a) V is the (internal) direct sum 3 ®gVp ;

(b) forall g € G and B € A, we have

g Vp= VBAUg;

(c) y acts as multiplication by "™ onV.

A morphism ¢ € Map,;(V, W) is a linear map ¢:V — W which commutes with
the action [i.e. p(g-v) = g - ¢(v)], and such that p(Vg) C Wp for all B € A. It is
straightforward to see that 7(G) is a category under composition.

DEFINITION. Let C € A. Foran object Vin TG, let pcV be V as a G-module, but with
grading (pcV)p = Vgac. It is obvious that pcV is also an object of TG. For a morphism
» € Map,(V, W) let pcp = ¢ € Map)(pcV, pcW). [There is a slight conflict with
the usual conventions for categories here in that the sets of morphisms for different
(domain, codomain) pairs ought to be disjoint. This will not lead to ambiguity, and so it
will be ignored.]

PROPOSITION 1.1. For each C, the above pc is a functor. We have
pg =1d;  pcpp = pcap = popc;  pepc =id.

DEFINITION OF TAr (G, y,0). For each subgroup I of A, this category [whose name
will be abbreviated to 77 (G)] has objects ¥ = (V, 3), where V is an object in 7(G), and
B ={B(B) | B € T'} is such that

(1) B(B): V — pgV is an isomorphism in T(G);

(i1) B(B)B(C) = B(BAC) forall Band CinT.

A morphism ¢ € Map;rg, [(V, 3), (W, Y)]is amorphism in 7(G) such that 0 3(B) =
Y(B) o ¢ for all B € T". It is evident that 77(G) is a category under composition.

Note that T {@}(G) may be identified with T(G), and that, due to (ii), axiom (i) may
be altered to require only that 3(B) be a morphism in 7(G), with the added requirement
that 3(f) be the identity [as follows from (i) and (ii).] Several examples will be checked
in this way. Note also that a morphism in 7T (G) which is bijective is an isomorphism in
T7(G).
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DEFINITION OF @ ON 7T (G). On objects, define (V,3) & (W,7) = (Ve W,3E 7).
On morphisms ¢ @ 1 is also the usual map between ordered pairs from linear algebra.
PROPOSITION 1.2. The above operation is well defined, yielding a functor
©: T(G) x T (G)~ T'(G).
The standard formulae from linear algebra yield natural isomorphisms
VEW=EWDY
(MeMeN=ENG (1L 1)
vV &0 = v for the zero object 0.
COROLLARY 1.3. There is a Grothendieck group “T'(G)” = T};(G, y, o) generated
by the objects of T" (G) with respect to @.

With the obvious definition of irreducible, the analogous results to those of Maschke,
Schur, etc. hold, so that, for finite G, T"(G) is the free abelian group on the irreducibles.
The next section makes this unsurprising, but direct proofs are also easy. These will be
delayed until Section 8 in order to emphasize the independence from decomposition into
irreducibles of the constructions in the intervening sections.

2. “Real world” interpretation of 7" (G). Each of the following propositions as-
serts the existence of an equivalence between categories; that is, of a pair of functors
which are inverse up to natural isomorphism. These functors in fact commute with direct
sums.

PROPOSITION 2.1. Letting ot be the composite G LA—A /T,
72 (G.y,0) ¥ Ty (G, y, or)
forany (G, y, 0) in G(A, m) and any subgroup " of A.
PROPOSITION 2.2. Factoring o as G 2 Imo — A,
TA(G, ¥, 0) = [Timo(G, y, o))l .
PROPOSITION 2.3. If o is surjective, then
TA(G,y,0) ¥ R (Ker o, y)

where R (H, ), for central y of order 2m in H, is the category of H-modules on which
y acts as emn/m.

Combining 2.1 and 2.3, if o is surjective, the category 77 (G) is just a complicated
substitute for the category of those representations of o~ 'T" for which the element y
multiplies by a fixed primitive 2m-th root of unity. The motivation for considering 7"
is that the operations x, and particularly b< and , of Sections 3, 5 and 7, are very
awkward to deal with in ® ™. If o is not surjective, one uses also 2.2 to see that T' (G)
is really just a power of a category K ™ (H) for suitable H.
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PROOF OF 2.2. This is almost immediate, since for V in 75 (G) and each 7 € Coker o,
the subspace V() = Y gc, Vp is invariant. The required functor

TA(G, ¥, 0)~ [Timo(G. y, 0 )]
takes V to the function sending 7 to V), where V|, is graded by

_(Veifcer
Ve =10 if not.

PROOFOF2.3. Defineafunctor 6: Tp(G)~ R ™ (ker o) by (V) = Vy and 6(p) = ©|v,-
Let s: A — G be a cross section of ¢ [a function s with o o s = id] such that s(§)) = 1.
Define a functor u: ® ™ (ker o)~ Z4(G) by u(W) = WA = {n: A — W} as a vector
space, with grading defined by

[1(W)lc = {n € p(W) | n(B) =0 forall B # C},

and with action defined by
(g - m(B) = [s(B) 'gs(og 'LB)] - n(og™ ' AB).

It is straightforward to check that (W) is a well-defined object of 75 (G). Define p on
morphisms by (u(ap))(n) = @ on. Then it is easily seen that y is a functor, once one
checks that () is a TA(G)-morphism. Define a map from G(u(W)) to W by sending 7,
to (). This is an isomorphism in 74 (G) and yields a natural transformation from 6 o p
to the identity functor. Define a map from ;L(H(V)) to V by sending 1 to Y_gea s(B) - n(B).
This is surjective and linear, and so bijective since dim u(B(V)) = dim V. Itis a morphism
in ® " (ker o), and gives a natural transformation from y o 6 to the identity functor.

PROOF OF 2.1. Define a functor
w: T4 (G)~ Ty /r(G)

by letting w(V, () be the set of all functions{ € VA for which ((B) € Vg forall B € A, and
{(BAC) = B(C)(¢(B)) for all B € A and C € T; with action (g - ()(B) := g - (((BAag)):
and grading

[w(V, Dlpar = {¢ € w(V,B) | {((B) =0 for B ¢ DAT}.

Define w on morphisms by (w(go))({) = ¢ o (. It may be checked that w(V, ) and w(y)
are in 7y ;r(G) and that w is a functor.
Define a functor
v: Ty ;i (G)~ T3 (G)

by v(W) = (V, 8) and [v(¥)](n) := ¥ o n; where

V= {’[I € WA | ’l](B) c WBAF forall B € A},
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with action (g - n)(B) :=g - (n(BAog)); and grading
Ve:={neV|nD)=0foralD#C};

and with (B(S)())(B) := n(BAS) for S € T and B € A. It may be checked that 1/(W)
and v(v) are in 7} (G), and that v is a functor.

Define a function from d)(l/(W)) to W by sending ¢ to |A| ™! ©pea (C(B))(B). This isa
morphism in 7, ,{_ (G), and is surjective and so bijective since dim Yv(W) = dim W. Itis a
natural transformation from 1 o v to the identity functor.

Define a morphism from I/(w(V, ,8)) to (V, B) by sending 1 to Y_ge A(n(B))(B), check-
ing that this behaves with respect to grading and 3-maps and that it commutes with the
action. Counting dimensions, this is bijective. It is easily seen to be a natural transfor-
mation, completing the proof.

3. The ring K and operations « acting on 7. For the remainder of the paper, A
will denote a fixed finite set whose cardinality is denoted £. The group A will usually be
specialized to 24, the group of subsets of A under A, the symmetric difference:

BAC=(BUC)\(BNC)=(B\ O)U(C\ B).

Since 2% is isomorphic to (Z/ 2)!, a homomorphism o: G — 24 carries the same infor-
mation as a sequence of “£” homomorphisms G — Z/2. The theory may readily be
generalized to homomorphisms G — (Z/p)’ where p need not be a prime, using the
“partition groups” p in place of (Z /p)*.

Note that 24 is a ring, using intersection of sets for multiplication.

Let A = 24, so that 2£ is a subgroup of 24 for each E C A. We shall abbreviate
QEEE(G, y,0) to TE(G). Our aim here is to define and analyze a functor, for F C A,

kp: TE(G)~ TEAF(G).

In the simpler cases F C E or FNE = (), this corresponds to restricting and inducing
respectively between the appropriate subgroups of G when we pass to the “real world”
interpretation from Section 2. The relations in 3.4 below then yield the appropriate
interpretation of & for general F. First we define pc on TZ.

DEFINITION. If (V, 3) is an object in T2(G), and C C A, let pc(V, B) = (pcV, pcf)
where (pcB)(S) = (—1)SC3(S). On morphisms, let pce = ¢. It is easy to see that
pc(V,B) and pcy are well defined, are in T2(G), and that pc: T5(G)~ TE(G) is a
functor satisfying 1.1. It follows that

pc = [ pa where p, := pg).
acC

Before launching into the definition of x, the thoroughly modern reader may prefer
to read the universal property of x5 given after Theorem 3.3.
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Fix an object ¥ = (V, ) of T%(G) for some E C A, and another set F C A. Let
{zcp| CCENF,D CF}

be a set of complex numbers (necessarily non-zero) with

(a)zpp =1forall D C F;

() z¢,Ac.0 = 2¢,.c,ap%¢,.p for 1, C; CENFand D C F;

©) zepar=zcpfor CCENF,D CF, TCF\E.
The definition of the operation xr will be based on such a set for later convenience.
As we shall see, a simpler definition exists which shows that xf is independent (up to
natural isomorphism) of the choices of z¢ p.

EXAMPLE (A). zcp = 1 forall C and D.
EXAMPLE (B). zcp = (—1)ITPl(—)I where i2 = —1.

EXAMPLE (C). Let « be an involution on A for which a(E) = E and o(F) = F. Let

ZC.D = (_1)|C{+|CﬂaD| ilCﬁaC].

Actually example (b) comes from (c) by taking « to be the identity map. Verification

of these uses the identity
iIBACH = (—1)IBOCljIBliCT

DEFINITION. Define an object k¥ = (krV, krf8) of TEAF(G) as follows. Let
keV = {¢ € V' | ((CAD) = 2¢pB(O)C(D)] for C C ENFand D C F};

with action
(8- QB) =g -((B);
and grading
(keV)g = {C € KFV | {(D) € Vgpp forall D C F}.

For each S C EAF, define (krB)(S): kpV — KfpV by

{{eBSI Q) B) = BESNE){C[BASNF)]}.

If :V — W is a morphism in T4(G) from 9 to W, define krp: kpV — KkpW by
(krp)(C) = ¢ o (. The following may then be verified in a straightforward manner:
(1) KrV =Y Ppca(krV)p as a vector space.
(ii) (g,¢)~ g - is a well-defined linear action of G on kgV with y - ¢ = €™/"(.
(iii) If ¢ € (kFV)p, then g - € € (KrV)paoe-
[So kFV is a well-defined object in T(G).]
(iv) (kpB)(S) is a linear map sending (krV)p into (KrV)gas.
(v) (kpB)(S) commutes with the action of G.
(vi) (kpB)(®) = id and (krB)(S) 0 (kpBNT) = (KEONSAT).
[So k¢ is a well-defined object in TE2F(G).]
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(vii) kpy is a morphism in TEAF(G) from kp ¥ to k.

(viii) kp(id) = id and kKp(p| 0 p2) = (KFp1) © (KF2)
(ix) The canonical linear isomorphisms

vaow? — v aw?
¢r= (myo(,mwo()

(B (¢i(B).G(B))] — (&1, %)

where 7y, Ty are the projections for V & W, have the following properties.
(a) They map kp(V @ W) to and from gV & kpW.
(b) They preserve grading and commute with the action.
(c) They are natural with respect to pairs

p1:(V,8) — (V',3) and 21 (W, ) — (W', 7)

of maps in T%(G).
These statements prove the following.

THEOREM 3.1. The above definition yields a functor kp: TE(G) — TEAF(G) and a
natural isomorphism

Ke(V ® W) = (kpV) @ (krW).

COROLLARY 3.2. The functor kr acts on isomorphism classes to produce a homo-
morphism

kp: THG) — THF(G)
of groups (for which we use the same name).

REMARK. For short term gain but long term pain, £ ¢V could simply have been defined
to be V2" with the same formulae for everything else. Restriction of the functions ¢
from 2F to 2F\E would give an isomorphism in T752F(G). This shows that our definition
of kp is independent of the choices of z¢p.

The functor £ r may also be defined implicitly by a universal property, a specialization
of the following theorem. Continue with a fixed 9 = (V, 3) in T%(G). Consider the class
of all quadruples (D, Z, Y, w) where D C A, DNENF =0, (Z,7) € T°(G),and w: V — Z
is a map in T(G) such that Y(S) ow = wo 3(S) forall S C DN E.

DEFINITION. Define dy p =6:V — kpV by

_ [ zppBB)v) if BCENF;
LBLIE) = 0 if not.
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THEOREM 3.3. The quadruple (EAF, kgV, kg(,0) is in the class just specified. It is
universal in that class in the following sense. Given (D, Z,7, w) there is a map &: KpV —
Z such that

(i) w=wobd;

(ii) & is linear;

(iii) Y(S) o & =& o (kpB)S) forall S C DN (EAF).
If D D ENF, then & is unique with respect to satisfying (i), (ii), and (iii). For any D, the
map & may be chosen to be a T(G)-map.

REMARK. Specializing to quadruples whose first component D is EAF then gives a
universal property implicitly defining xr. The previous construction(s) may be thought
of as proof of existence from this point of view.

PROOF. It is straightforward to check that ¢ is in T(G) and that (k3)(S) 06 = § 0 B(S)
forall S C E\ F. Given (D, Z,, w) define

wQ= . VB){wI(B)]}.

BCDNF
Then (ii) is clear. To check (i),
QoM = > YB{wIsMmB)]}
BCDNF
= > (B {wlzggB(B)(v)1} by definition of §
BCDOFNENF
= Y(0){wlzp pBB)(W)1} since DNENF =

w(v),

as required. To verify (iii), let § C D N (EAF). Then

[©o (kBN = 3 YB{wl(krB)S)C)(B)I}
BCDNF

> ¥B{w[BESNE{BAS N}

BCDNF

ButSNECDNEsowoB(SNE)=YSNE)ow. We obtain

> [V(B) 0 ¥(SNE) o w](¢[BAS N F))).

BCDNF

Now
SNFCDNEAPDNF=MDNENKHADNF)=DNF,

so we can make the variable change B — BA(S N F), yielding

> {MBASNAoYWSNE) ow}((B) = > YBAS{wI(B)]}
BCDNF

BCDNF
since (SNFASNE) =S

= (S)(@(©)
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as required.
To prove uniqueness, note that x ¢V is spanned by the set

{(eB)ON[6M] | v € V,C C EAF},

and @ is determined on elements of this set by (i) and (iii), as long as D D EAF. The
map & as defined in this proof is easily seen to preserve grading and to commute with
the action, proving the final statement in the theorem.

We shall use the functors p¢ and k¢ to generate a ring K, which will act on the disjoint
union T*(G) of the T£(G), and on the graded group T*(G) of all T(G) making it a
graded module. To do this we must find all the general relations which these functors
satisfy under composition.

THEOREM 3.4. There are natural isomorphisms
(i) pckr = KFpc;

(ii) pckr = po\rkF;

(iii) Krky = @ccry KEAIPC = KIRF.

COROLLARY 3.5. Letting K, := Ky,), we have
(iv) pckr = kpif CC F;
(v) keky = kpog ifFNJ = 0;
(vi) K} = Bccr pe
(vii) p, T K,p;; piky T Ky Iilz = id®p,;
(viii) ﬁ? T R DRy KK T KR

PROOF. These are all immediate from 3.4. (The reader may have also noticed that
(vi) follows by induction on |F| from (v) and the last identity in (vii). Also (iv) follows
by induction on |C| from the initial case, |C| = 1.)

Before proving 3.4, let us digress to define the ring K.

COROLLARY 3.6. Reinterpreting the functors kr and pc as operators on the graded
abelian group T*(G) := {TE(G) | E C A}, all the identities (i) to (viii) hold with =
replaced by =, and & replaced by +, and id replaced by 1.

DEFINITION. Temporarily regarding &, as a “variable”, define a commutative ring
K:=Z[k, :i € Al/(k] — 2K, :i € A),
with grading over 2 determined by having x, in grading {i}. Formally define

pt="5,2_17 pCZHpn K/F=HK/I'
1eC 1eF
We used (viii) to define K, and now all the relations (i) to (vii) follow formally in K
[with replacements as in 3.6]. As an abelian group, the F-th component K¥ of X is free
abelian with basis

{pckr | CNF =0}.
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Thus, K = Z3¢ as an abelian group. In fact, K is the tensor power of “/” copies of
Z[x]/{x* — 2x). By identifying the formal symbols in K with the operators in 3.6, each
T*(G) becomes a 2*-graded module over the 24-graded ring K. Note that we have used
“external” gradings for K and T*(G) [inhomogeneous elements are never considered],
whereas it was more convenient for objects V in T(G) to have “internal” gradings.
The fact that 24 occurs both times as the group of grading parameters is more or less
accidental: for example, p”-graded representations produce a collection of Grothendieck
groups which form a 24-graded module.

PROOF OF 3.4. First we shall show that, to prove (ii) and (iii), it suffices to give direct
proofs of (iv), (v), and (vi). Then we give the proofs of (i), (iv), (v), and (vi).
To deduce (iii) from (i), (iv), (v), and (vi):

krky = (Rpyirv)(Kinrkp p) by (V)

(Kpg) (CCGFBN ,UC) (k\F) by (V1)

12

1%

(NF\J'QJ\F)<CGF9N ﬂc) by (1)
C

¥ (renn)( D pc) by ).
CCFrJ
To deduce (ii),

PCKF = po\FPCFRF = pe\plF by (iv).

To prove (i) and (iv), fix C, Fand ¥ = (V,(3) € TE(G). Consider pairs (9, w) where
¥ =(Y,7) € TEAF(G) and w: pcV — Y is amap in T(G) such that, forall S C E \ F,

Y(S) ow = (—1) TSl 0 B(S).

Except for the sign (— 1)/, this gives the universal property defining xz%. Using that
property, it is easily verified that both (pckr¥, pcdy) and (Kppc?¥.0,.v) are universal
among such pairs. This proves (i). But when C C F, the set C M S is empty, the sign
disappears, and so (iv) follows as well. [Following through the details, the reader can
verify that an isomorphism ¢: pckrV — KkppcV for (i) is given by

[L(O1(B) = (—1)BC(B).

In particular, although pckrV = kppcV in T(G), the identity function is not a map in
TELF(G), from pek ¥ to kppeV, except when C and F are disjoint. ]

To prove (v), we shall show that k;xr7 has the universal property characterizing
kg V. For this, the more general form given in 3.3 will be useful. Suppose given
(D, Z,7, w) such that

DO ENFU));, DNENFUN=0; (Z,7) € T°G),
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and w: V — Z satisfies Y(S) o w = wo 3(S) for S C DN E. Consider the diagram

I, S
1% v KV — ok kEV
(*) ( (xx)
w wy wy
Z

By considering the object (Z, {(vS$)|Sc D\ J}) of T°\(G), and noting that (D \ J)N
ENF =10, D\J D EAF, and (D\ J)NE C DNE, it follows from 3.3 [with D in
3.3 changed to D \ J] that there exists a unique 7(G)-map w; such that (¥) commutes
and Y(S) o wy = wy o (keP)(S) for all S C (D \ J) N(EAF) = EAF = DN (ENF).
Since D N (EAF)NJ = (), and D D (EAF)AJ we may apply 3.3 again [this time
with E in 3.3 changed to EAF, and F in 3.3 changed to J, and ¥ changed to xz%] to
deduce the existence of a unique 7(G)-map w, making (*x) commute, and such that
Y(S) o wy = wy o (kykpB)(S) for all S C D N (EAFAJ) [which equals EAFAJ] as
required.

As for (vi), the object @Bccr pc? is clearly isomorphic to AV = (ArV, Ag3), where

AFV = v? as a vector space,
with grading(A\rV)s := {n € V¥ | n(C) € Vgac for all C C F},
with action(g - n)(C) := g - (n(O)):
and where(ArB)(S)(n)(C) = (=S VB(S)(n(C0)) for S C E.
We shall realize K¢V as V2F\E as indicated in the remark after 3.2. Thus, as a space,
KprpV = (Vzlr\f)zrmf7
since F \ (EAF) = FN E. Define
P AFV — KprpV
eOXD) = 3 (~DFIBICABNE)(n(B))

BCF
B\F=D

forall C C FNEand D C F\ E. Linearity of ¢ and naturality are easy to see. We must
prove that ¢ is bijective, preserves grading, commutes with the action of G, and that

@ o (ArBXS) = (kprEB)(S) © ¢

forall S C E.
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Since ArV and krkpV both have dimension equal to (dim V)zm, bijectivity follows
from injectivity. To prove injectivity suppose that ¢(n) is zero. Writing B = J U D for
J C ENF, the equation ¢(1)(C)(D) = 0 becomes

S (=D)IYBW) [n(J U D)) = 0.
JCFNE

forall C C FNEand D C F\ E. But, given a finite set W, a subset {vy : X C W} of
a vector space, and linear relations ZXCW(—I)‘mXWX =0forallY C W, we getvy; =0
for all Z C W by applying Sycw(—1)"?l and interchanging summation variables. Thus
nJUD)=0forallJ C FNEand D C F\ E,son =0.

If 1 is in (ArV)g, then ﬁ(CA(B N E))(U(B)) is in Veapacasre) = Veacas\e) =
Vracap forall CC FNE,D C F\E,B C Fwith B\ E = D. Thus ¢()(C) is in
(kFV)rac forall C C FNE, and so ¢(n) is in (kprpV)g, as required.

The equation

(g - MO)D) = (g - () (C)D)
is an elementary calculation with the definitions.
Finally, iterating the definition of (xr(3)(S) yields the formula
(krREBYS)O(CXD) = B(S \ F) {CICAS N F)I(D)} .
Thus
[(krerB)S) © @IM(C)D)

= B\ H){pmICAS N D)}
= BS\F) Y (=1)FCASligienls N HABNE)(n(B))

8D
= 3 (DEFSEgIcABNE)AS)(1(B))
8D
= 3 DEFNBIeABNE{(—1)ESBS) (n(B)) }
B\E-D
= PlARBYS)IMNCOND),

as required.

4. The operation Y on G(24,m). Now fix a: A — A such that o = id. Let (G. y. 0)
and (G',y', 0’) be objects in G(24, m).

PROPOSITION 4.1. (i) The following operation on the set G X G' defines a group
G x¢ G': letting z = y", define

(gﬁ g')(h, /’l/) — (Zlggmaahlgh, glh/)'

(ii) Defining o(g, g') := a(g)AU’(g’) gives a homomorphism from G X¢ G' to 2.
(iii) The kernel of & contains {(y',y") | 1 < i,j < 2m}, which is a central subgroup
of G X% G,
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PROOF. (We’ll omit the prime on o’ when that on its argument eliminates ambiguity.)
To check associativity

[(g. g/)(h«, h/)](k. k/) - (Z[Ug’ﬂaah|+1a(g’h’)ﬂaak|ghk’ g,h/kl).
Bracketing the other way yields the same answer except that the exponent of z is
|oh' N aok| +|og’' Nao(hk)| = |oh' N aok| +|(og’ N a(chDok))|
= |oh' N ack| + |(0g’' N aoh)N(og' N aok)|
= |oh' N ack| + |og' N aoh| +|og’ N aok| (mod 2).

This agrees (mod 2) with the previous exponent of z, as suffices, since z> = 1. It is easy to
see that (1, 1) is the identity element, and that (g, g’) has inverse (z/78Mglg=1 ¢/~ 1),
The proof of (ii) and (iii) are equally obvious calculations.

DEFINITION. Let G $ G’ be the object in G(24, m) whose underlying group is the

quotient
(G xFGH/{o Y)Y |1 <i<2m},

with central element y g equal to the image of (y, 1), and with homomorphism ¢ «
GYG' GYG'
obtained by passing to the quotient with 7.

[e 4
Elements of G Y G’ will be denoted by ordered pairs which represent them. The same
symbols y and o will normally be used for the “add-on” components of several different
objects in a discussion, as long as no ambiguity threatens. Thus we have

a(g.8") = 0gNog'
with three meanings for o, and

y=0,D=(y
with three meanings for y.

REMARK. The formula
(g’ g/)(h* h/) = (gh, Z/IUg/ﬂaUh[g/h/)

will define a group G X ¢ G’ which in general is not isomorphic to G x§ G'. It does however
produce a quotient group as in the above definition which is naturally isomorphic to

a
GYG.
DEFINITION. If §: G — H and #': G’ — H’ are morphisms in G(2*, m) define
[0 4 a a
OYO®:GYG — HYH' by (g,g)— (0g,0'g).

It is easy to check that this is well defined and behaves with respect to composition and
identity maps, yielding the following.

https://doi.org/10.4153/CJM-1993-015-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-015-8

310 PETER HOFFMAN

PROPOSITION 4.2. The above definitions give a functor $: GQA m) x G2A, m)~
G224, m).
Let “Tr” = (Tr, y, o) be the trivial object in which Tr is the cyclic group of order 2m

generated by y, and o is the trivial homomorphism. The following basic properties of Y
are proved by straightforward calculation.

PROPOSITION 4.3. There are natural isomorphisms:
() (GYH)YK —GY HYK)
(&, 1) k) — (& (h, k));
(i) tGYH — HY G
(g, h) — 21" %8l(h, g);
(iii) GY Tt — G —TrY G
(gD —g—(1,9).

PROOF OF (ii). We shall do the calculation for this one in order to make a point below.
The product of the images of (g, 4) and (g, ') is zV(hh', gg’), where

N = |ochN aog| +|oh' N aog'| +|og N ach’|.
The image of the product of (g, k) and (g’, #’) is similar, except that the exponent of z is
lohN aog'| +|o(hh') N ao(gg')]
= [ohN aog'| +|(chAoh’) N (aoglaog’)|
= |ohNaog'| + |chNaog| + |chN acg'| + |oh' N aog| + |oh' N aog'| (mod 2).
This agrees with N, since |ogNacoh’| = |oh' N aog| using the fact that « is an involution.

REMARK. The last little argument shows that it makes no difference if we alter the
appearance of the exponent in the definition of the multiplication to |oh N aog’|, or of
that in 4.3 (ii) to |og N aoh|. Note that the power of z is definitely needed in 4.3 (ii).

5. The operation b Continue with A = 24 and the involution a on A. First we
shall define a binary operation on the category 7.

DEFINITION. Given objects V and V' in 7(G) and 7(G’) respectively, define an object

a
V& Vin T(G Y G’) as follows. The underlying vector space is V ® V’. Grading is
defined by

(Ve V=3 &(Ve ® Vgae)s
CCA
identifying V¢ ® V}, with a subspace of V ® V'. The action of G Y G' is defined by
(g.8)  v@V) = (—1)E"Cley @ o'V for v € V.

PROPOSITION 5.1. V & V' is well defined.
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PROOF. Evidently we have a well defined graded vector space. The right hand side
of the action formula is v @ v/ when (g, g’) = (y~', 'Y for any j, and is bilinear as a

function of (v, V') for each (g, g’). Thus each element of G \0; G’ gives a well defined
linear endomorphism of V @ V', which is multiplication by /™ or by 1 when the
element is (y, 1) or (1, 1) respectively. If v € V¢ and v € V}, the right side is in
Venog © V’DAog, cC(V® V’)CADAg(g.g/) as required. It remains to check associativity of
the action. We have, forv € V¢,

() 1(g,8) - v@V)=(=)"hg v h'g -V
[ W)(g.8)] - v @ = (—1)hg-v@ g’/

where

N =|og' NaCl+|oh' N a(CAog)|
M = |oh' Naog| +|a(h'g)NaC).

These agree mod 2, which suffices by linearity.

DEFINITION. Given morphisms ¢: V — W in T(G) and ¢’: V! — W’in T(G’), define
) ® p'tobe p ® p: VRV — W® W' (Recall that the underlying vector space of ®
applied to two objects is simply the usual tensor product of the underlying vector spaces
of the objects.)

[¢ 4 a
It is easily checked that p ® ¢’ is a morphism in T(G Y G') and that <§> behaves
properly on compositions and identity morphisms, yielding the first part of the following.

PROPOSITION 5.2. The above definitions yield a functor (%): T(G) X T(G)~
T(G Y G ). The following are natural isomorphisms.
(0) ps(V & W)=V @ psW — (psV) & W
Forw € Wp,v@wi— (—=1)BPly @ w,
() (VEWOV ——(VEVISWE V)
)RV — 1RV, w®V)
(ii)) (VEVYS V' VSV @ V"
VIRV — v (V @V
where V"' is in T(G") and we identify (G Y G'Y Y G" with G Y (G' Y G”) using the
isomorphism given in 4.3 (i).
(i) TV V eV @V
VRV e (=1l gy
forv € Ve, V' € V), where we identify G Y G withG' Y G using the isomorphismt in
4.3 (i), [t is safer to write this V @ V' = (V' & V); see the definition of restriction at
the start of Section 6.]
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PROOF OF (11) The checks required are all mechanical, with (111) being the most
interesting 1n showing that the map commutes with the action The image of (g, g') (v®@V')
on the right side 1s

(-1 )|c7g ﬂaC|(_ 1 )I((,‘Aag)ﬂa(DAog )|g/v/ ® gv,

whereas the action of zI7¢ "278/(g’, ¢) on the given right side 1s
(_ 1)|Cﬁ&D| (_ 1 )|rrg Naog| (_ 1 )lagﬁ(xD|glvl ® gv

The exponents agree (mod 2), as required, using twice that o 1s an involution
Now restrict the sets E and E' to be 1in

2* ={B€2"| aB=B}

Our objective 1s to produce a more general operation
a
[>"<] ,TE(G) % TE (G’)M TEDE GY G)

which 1s, among other things, functorial, associative, and bilinear with respect to the
action of the ring

Ko ={pckr F €2 Ce2'}

[e4
There will be some choices 1nvolved, since, given such an operation ><, taking (7, V")

[0 4
to pere V <4V’ can be seen to also have these properties
To begin, let E and E’ be any subsets of A, not necessarily invariant under o

DEFINITION OF ¥(R,R’) Given objects ¥ = (V,3) in T5(G) and V' = (V/,3') n
TE (G, forall R C Eand R’ C E/, define

Yoy R,R)=VR,R) VRV - VRV
by, for each subset D of E' ,
YR, R)|yay, = (=1)FP3R) @ 5'(R)
PROPOSITION 53  The function Y(R, R') 1s an isomorphism in T(G $ G') between
V&V and Pror vV &V IfalsoT C EandT' C E/, then
YRAT, RAT) = (=1 RIy(T, T') 0 Y(R, R')
= (—D)FT IR, Ry o (T, T')

COROLLARY 54 For R C ENE', the automorphism Y(R,R) of V (%) V' has the
properties

WR, R) o W(T, T) = (—1)ETly(RAT, RAT) [for T C ENE']
VR, R = (=)l
(B, 0)=1d
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PROOFOF 5.4. The last equation is immediate from the definition, the first is a special
case of 5.3, and the middle one is immediate from the other two.

PROOF OF 5.3. Analogous properties of the maps 3(R) and 3'(R’) give the last
equation, the bijectivity of ¥(R, R'), and that it alters grading by RAR'. To prove that it
commutes with the action let v € V¢ and v' € Vy,. Then

VR, R)(g, &) - (v @ V)] = (—1)l7"eC(—1)|R«DAoe g R) (1) @ B'(R')(g'V')
(g’ gl)[d)(R, R/)(v ® V,)] - (_l)lRﬂuD[(_l)Iﬂg’ma(CAR)lg . B(R)(V) ® gl . B(R/)(vl)

But B(R) and 3'(R') commute with the action, and the exponents agree (mod 2), as
required.

Now we shall be able to write V ® V' as a direct sum of subspaces, each of
which is an intersection of eigenspaces for the operators ¥(R, R). These operators have
eigenvalues either +1 or +i, depending on R, by 5.4. To split V ® V' we just write down
formulae for projectors 79: V® V' — V ® V', one for each C C ENE'.

wy|ENE'|»

DEFINITION OF 7©. With the above notation, let

wO = 2 IEET 5™ yIPnClibnedlyy p, p),
DCENE'

PROPOSITION 5.6. The maps ©© are endomorphisms in T(G Y G) of V é) 14
satisfying
(i) Y(R,R) o (@ = (—1)IRC(—})ROeRI (O for R C ENE';
(ii) 7O o 7® = g cn® (using the Kronecker delta),
(iii) Yccpe ™© =id.

[0 4
COROLLARY 5.7. In T(G Y G’), the object V é V' splits as ®ccpgrp Im O, Fur-
thermore,

Im#© = N [(—D)RCU(—j)lRORl) _gigenspace of (R, R).
RCENE’

PROOF OF 5.7. Being linear combinations of the T(G $ G’)-morphisms ¥(D, D), the
maps ©© are also morphisms, and so have images which are sub-objects of V é V.
The splitting of V é V' is then immediate from 5.6 (ii) and (iii). By 5.6 (i), Im 7(© is
a subspace of the given intersection of eigenspaces. But these intersections are a family
of linearly independent subspaces, whereas the family {Im7© | C C ENE'} spans
V ® V', so we must have equality.

In the Proof of 5.6 there are two identities which are needed later as well. If B and C
are sets, then

[BAC| = |B|+|C| —2|BNC|.

Thus
i]BACJ — I‘B’l‘q(—l)’b‘mq (5.8)
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If C C B, then, using the Kronecker delta,

> (=D =5y 28 (5.9)
DCB

PROOF OF 5.6. (i) By 5.4 and the definition of 7,

YR, R) o 7O = 27 IENEL S~ ()IPNClibnadl_[ReDlyy RAD, RAD)
DCENE'

- 2—|E|"1E’| Z (_ 1 )l(RAB)ﬂCii|(RAB)ﬂL’X(RAB)|(_ 1 )‘ROG(RAB”I/)(B. B)
BCENFE'

Iterating (5.8), the coefficient of ¥)(B, B) inside the summation is

(_ 1 )lRﬁCli’lBﬁCl ilRﬁaRl ilRmO(BlileD(R‘ iBﬁO(B|(_ 1 )N(_ 1 )IRI’WC(R| (_ 1 )]RﬁOIBl
where

N=|RNaRNRNaB|+|RNaRNBNaR|+|[RNaRN BN aB|
+|/RNaBNBNaR|+|RNaBNBNaB|+|BNaRNBN aB]
=|RNaRNaB|+|RNaRNB|+|RNaBNB|+|BNaRNaB| (mod 2).

Since « is an involution, we obtain
|[RNaRNaB|=|RNaRNB|and |[RNBNaB| = |BNaB N aR)|

giving N = 0 (mod 2), and we also obtain |[RNaB| = [BN«R|, so the coefficient becomes
(_1)‘RQC|(_ 1 )lBﬁClilRﬁO(Ri(_ 1 )lRmaBlileaBt(4 1 )\RﬂaR|(_ 1 )‘Rf‘l(iBl
- (7 1 )lRﬁCl (_i)‘RmO(Rl(* 1 )\BHC\ i‘BﬁD(B| .
Thus
w(R’ R) ° 7TC - (7 1 )[RﬁC[(*i)[RﬂaR|2fiEﬂE/] Z (_ 1 )lBﬁC{ﬂBﬂO{B'w(B. B)
BCENE'
- (_ 1 )1RﬁCl (_i)[RﬁaRiﬂ_(C)’

as required.

(ii):
7O o 7B = p-IENE] Z (;l)lDOCl i‘maD‘w(D, D)o 7P
DCENE’
- 2~|EﬂE’| Z (_1)‘Dﬁqi‘mO(Dl(_V1)|DﬁB‘(_i)‘maD|ﬂ.(B)
DCENE'

- zlemElln.(B) Z (71)‘(DﬁB)A(Dﬂ()‘
DCENE’

- zf\EmE’lﬂ_(B) Z (7])\00(3&(,‘)\
DCENE'

= 27 LBy o 27 by (5.9)

- 5B.C7T(B)
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(1ii):
Z 7.[.(C) - 2—’EﬂEl| Z i‘BmaBI'l/)(B, B) Z (_l)|BﬂC’

CCENE' BCENE' CCENE'
= 2 IEE S neBlyg By, 12 E by (5.9)
BCENE'

i%y@, 0) =id.

DEFINITION. Let Cy be the set of those elements in E N E’ which are fixed by a.
Abbreviate 7 to 7, and let Uqqr = Im .

The object Uy of T(G $ G') will be the first coordinate of ¥ [>a<1 9. The choice
referred to earlier was just made when we chose the image of 7 rather than some
other 79,

At this point we must take E and E’ in 2% that is, «F = E and oE' = E'. The
subgroup 2% is isomorphic to (Z/2)"*2, where A has “¢,” fixed points under «, and
“f,” doubletons interchanged by « (so that £ = £; + 2¢,).

PROPOSITION 5.10. (i) For S C EAE', let (3 @% BYS) = Y(SNE,SNE'). Then the
pair (V& V', 3 & B') is an object in TESE (G Y G,

(i) If S C ENE/, then ™ commutes with y(SN\E, SNE'). In particular, y(SNE,SNE")
maps Uy into itself.

PROOF. The first part is immediate from 5.3. As for (ii), it suffices to prove, for each
B C ENE, that (SN E, SN E") commutes with (B, B). Using 5.4, we need only note
that

IBNa(SNEH +|SNENaB| = |aBNSNE'|+|aBNSNE|
= [aBNSN(EAE")| =|aBNS| = 0| =0 (mod 2),

sinceaB C (ENE)=ENE and SC EUE' \ENE"

DEFINITION OF V >a<1 V. Let v >a<1 v’ be the pair (Uyyr,7Y) where Y(S) is the
restriction to Uyqr of (3 @ B3)(S) = W(S N E, SN E).

THEOREM 5.11. (i) The object V b of TEAE (G Y G') is well defined.

N @
(ii) We have isomorphisms in TEAE (G Y G')

VOV.BSE)T @ pc(¥ V)X kL p(V a1,
CCENE

PROOF. (i) The map (S) is a well defined linear map by 5.10. Since Y(SNE, SNE") is
an isomorphism from V & V'to PsnEASEYY 2V by 5.3, and since (SNE)A(SNE') = S,
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it follows that Y(S) is an isomorphism from Ugyq to psUqqr. It remains to prove that
Y(SYY(T) = Y(SAT) for subsets S and T of EAE'. But

YSNESNEYNTNE TNE) = ¢((SAT)NE,(SAT)NE')

by 5.3, as suffices.
(i1) By using 5.7, this will follow if we can find an isomorphism between pc(V l>“<l 1%8)
and (Im 7©29) restriction of 3 ® ). The map ¥(C, 0) yields such an isomorphism.
PROPOSITION 5.12. If ¢: V — Wand ¢': V' — W' are maps in TE(G) and TE (G"),
respectively, then ¢ @ @' maps Uy into Ugyqy. The resulting restriction is a morphism

~ ! a
from vV 5 V' 10 Wb W in TEOE (G Y G"), which we shall denote ¢ B ¢'. Then we
have a functor

bt TE(G) x TE (G') — TECE (G Y G).
The proof of each part is a short calculation.

Now we shall give a universal property which characterizes 1V B V' up to a unique
isomorphism. Consider the class of all pairs (%, v), where W = (W, ) is an object in

7 @ o
TEAE(GY G'yand v: V® V' — Wisamorphismin T(G Y G') such that the following
two diagrams commute:

VeV
v VeV ——Ww
™ w Y(SNE.SNE") &(S)
v VRV — W
VeV

forall § C EAE'. [The first is equivalent to the commuting of

ve Vv

B
,B mB\V

U(B.B) w

VeV
forall BC ENE')
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DEFINITION. Let u: V® V' — Uyy be given by w essentially; i.e. u(x) = 7(x); i.e. 7
factorsas V@ V5 Upy s V@ V.

PROPOSITION 5.13. The pair (V B , [t) is a pair as above and is universal among
such pairs in that, given (W, v) there is a unique linear map : Uy — W such that

a , a
v =1 o p. Furthermore, ¥ is a morphism V > 9" — W in TEAE (G Y G).
PROOFE. It is immediate from the construction that (7 1;"4 9, 1) has the required

properties. The existence of a linear map # with v = © o y is equivalent to having
Kerm C Kerv, which is immediate from the first diagram which v satisfies. Since p is

a
surjective, ¥ is unique, and is a morphism in 7(G Y G’). Now consider the diagram

VeV
B v
U———Ww
Y(SNESNE") Y(S) ()
U—F—W
" 7
ve Vv

The triangles, the trapezoid and the entire diagram commute. Hence, so does the square,
as required, since p is surjective.

REMARK. One could alternatively formulate a universal property for pairs (W, v),
for bilinear maps v: V x V' — W satisfying certain properties. Take v tobe V x V/ —
V® V' 5 W to work out what these properties are.

Next are the distributive, associative and “commutative” properties of the operation

[e4
><. Properties (0), (i) and (iii) follow using the universal property, whereas a direct
argument (surprisingly intricate, it seems) appears to be easier for proving associativity.

THEOREM 5.14. There exist natural isomorphisms:

(0) pp(V V) ¥ V5 pp ¥ ¥ (ppV) 54V

(i) (Vi ® ) o V' = (V) b4 V) @ (V) 54 V') for Vi and Vy in TEG), and V' in
‘TE/(G/);

(ii) (V51 V') V' X Vs (V' 5 V) for V, V', V" in TEG), T (G), TE'(G),
respectively, [with E', E' and E all invariant under «, of course];
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@ a [0 4

(iii) V< V' ¥ pe, V' o<1V where G Y G is identified with G' Y G by means of the
isomorphism (g, g") o Zl78'0egl (ol oy of 4.3 (ii).

[Recall that Cy consists of those a in EN E' with @a = a. Referring forward to
Section 6, it is better to write this ¥ <1 1/ ¥ r*p¢, 1 54 V]

PROOF. (o) This may be proved using the universal property, by considering maps
which shift grading by D. Alternatively, the isomorphisms of 5.2 (0) preserve the direct
sum decompositions of 5.7.

(i) By abstract nonsense, taking v = 9} @ 75 in the universal property, it suffices to

find a map
CZ (Vl P Vz) X V/ — U’V,‘V’ P Uq/zq//

such that the pair [(V} B YY® (1 B "), (] is universal. Such a map is determined by
G, v2) @V = (Mg (v @V, Ty (v @V)),

as may be readily checked. [We have subscripted the maps 7 in the obvious way, to
distinguish them.]
(iii) The map [using 7 from 5.2 (iii)]

)(Co,d byt
aveVv vevi e vievih vy,

a a
gives a pair (©*pc, V' > ¥, A) which is universal in the same context that (7 ><1 1, y1,,/)

N " ¢4
is universal, as suffices. To check this, first note that A is a morphism in TEAE (GYG)
since it is a composite

« 4 * /(l * ,(X *
VRV — (V' ®V)— pe, (V' @ V) — 1 pc,Up,

of such morphisms. The commutativity of the first required diagram for X is, for B C

ENE,
VeV : Veoy—ued  _yiey
1y,
v, 1(B.B) (—1)/BnaBly, . (B, B) ¥, (B.B) Uy
o,
! ! !
VeV - VeV—ep—— VoV

The triangle commutes, being one of the diagrams in the universal property for
9" 5 4. The middle square commutes by 5.3. The left square commutes since both paths
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send v@V' € Ve @V, to (—DNF'(B)(V)@B(B)(v) withN = |BNaB|+|CNaB|+|CNaD.
The commutativity of the second diagram is, for § C EAFE/,

w(Coh)

VeV =V eV Veov-Lieu,,

VeV —vVveV V@V Uy

WCoD)

where, from left to right, the vertical arrows are Yy (SN E, SNE'), Yyp(SNE,SNE)
twice, and Vqr4(S). Verification from right-to-left is similar to the previous one: by a
diagram for the universality of 7" l>a<1 v, by 5.3, and by a direct calculation, this time the

answer being
(‘l)‘maDH‘SﬂE,maClB/(S 8 EI)(VI) ® B(S N E)(V),

and depending on E and E’ being invariant under «. Finally, we check that X is universal.
Given (W, v) consider the diagram

VeV -viey —Yo ypoy iy,

\\//

Linear maps |, then ¢, then ¢, exist uniquely to make the triangles commute
because the maps at the top are isomorphisms in the first two cases and universal in the
case of ¢.

(i1) Rather than attempting to formulate a universal property which both (“tri”’) functors
satisfy, we shall give some explicit formulae. First note that, by 5.4, fora, b in ENE’
andR C ENE,

Y(a.a) o (b, b) = yY(b.b) o Y(a. a)
and
YR, R) = (=D)™® T y(a,a)
acR

where forb(R) is the number of two element sets {a., aa} contained in R. It follows that

Upp = () L(¥(a.a))

acEnNE’
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where I,(T) is the {“"*@_eigenspace of T. Given a third object ¢ = (V", 8") € TE"(G"),
define endomorphisms 115(a), ,3(a) and 13(a) of V® V' @ V" by

Y12(a) = Yy(a,a)®id fora € ENE'
Pa3(a) = id @y (a, a) fora € ENE"

and
[Wis@]lv @V @V") = (=1 CEDIgayw) @ v © B (a)(v")

forve V,v e Vi, V" € Vjanda € ENE". Now

P! P

= Ia o ,

ae(EAQ/)mEu (ww'rchw(a a))

=[ N Ia(wzz(a,a))]ﬂ[ N Ia(¢13(a,a))}m[Uv,,,,@)v“J
a€E'NE"\ENE" a€ENE"\E'NE"

={ N Ia(wza(ma))]ﬁ[ N Ia(lﬁna(a.a))]ﬂ[ N Ia(wlz(a.a))].
a€E'NE" a€ENE" acENE'
af ENENE" af ENENE"

Similarly, removing the conditiona ¢ E N E' M E" from the left term and placing it on
the right term gives a formula for Uru e Now let
. IN 2z

o= II  (Viad) +vasb)).
bEENE'NE"
Using the following identities (readily verified using 5.4):
Yi(a)’ = Yoy(@)? = (= 1)
Vi2(a) 0 ¥3(a) = (=) yys(a) o Yra(a);

and for a # b, letting [S,T] =SoT—To S,

[Y12(a), Y12(b)] = [V23(a). Y23(b)] = [12(a), Y23(b)]
= [Y13(a). Y12(b)] = [Y13(a). ¥23(D)] = 0;

we see that ¢ is independent of the order in the product, that it maps Ugrqqr g» into
Uy 4yqqr, and that

('92 - (_2)}Eﬂ£’ﬂ£”| id.

Itis clear that ¢ preserves grading and commutes with the action since each of 12(b) and
123(b) do. Thus it remains only to check that ¢ commutes with the maps Bypqq7 97(S)
and By gy (S) for all S C EAE'AE". This follows using 5.3.
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DEFINITION. The collection {T¢(G) : E € 2%}, which we shall denote T%(G), is a
group graded over 2%, and in fact is a graded module over the 2%-graded ring K, defined
after 5.2.

By 5.12, the isomorphism class of 7 B depends only on the isomorphism classes

of ¥ and of 9. By 5.14 (i), the operation §<1, after passing to isomorphism classes,
extends biadditively to all of TE(G) x TE/(G' ), and so yields

st T*(G) X TG') — TG Y G

[which is K,-bilinear as we see in Section 9]. It is immediate that the associative and

“commutative” laws of 5.14 (ii) and (iii) hold also for this version of l;.él Either the
“commutativity”, or a direct argument, proves the other distributive law (linearity in the
second variable), which is needed for the above extension of l>a<1 fromTtoT.

6. Restricting and inducing. In this section, A will again be a general abelian
group. Let 0: G — H be a morphism in G(A,m). Let W be an object in T(H). Define
0*W, the restriction of W along 8 , to be the following object in 7(G): as a graded vector
space, 8*W := W, and the actionof Gis g - w := 6(g) - w.

Itis immediate that 8*W is in T(H). Now suppose further that W = (W, 3) is an object
in 7T (H)) for some subgroup I of A. Define §* % to be (§*W, 3. Finally, if o: W; — W,
is a morphismin T T(H) from W, to Wh, let 8*(p) := . The following is then immediate.

PROPOSITION 6.1. (i) Each 8 yields a functor
0*: 7V (H) — TV (G).

(ii) Sending G to T"(G), and 0 to 0%, gives a contravariant functor from G(A,m) to
the category whose objects are categories and whose morphisms are covariant functors.

The next proposition is proved directly from the definitions without difficulty.

PROPOSITION 6.2. (i) If W' is also in T' (H), then

0 (W W) =@O"W) o O W).

(ii) When A = 2% and T = 2F, the functors 8% commute with both p¢ and k¢ for all

CCA

PROPOSITION 6.3. Given morphisms 0:G — H and ,: G, — H, in G(2*, m), an
involution o on A, objects W and W, in TE(H) and T Ei(H)) respectively for subsets E
and E| invariant under o, we have

O )" (W W) = (6°W) 59 (0, W).

The proof is simply to observe that none of the ingredients in constructing b differ
when comparing W B W to (*W) B (87 M); the group action itself is not used
directly in the construction.

To define induced graded representations, assume §: G — H is an injective map in
G(A,m). Let V = (V, 3) be an object in T76).
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DEFINITION. An inducing of v to H is a pair (6, ), where 0,7 = (W.7) is an
objectin TV (H) and ¢: V — W is a T'(G)-map from 9’ to 8* W which is universal among
pairs (9, ) of objects 9 = (¥, 6) in TV (H) and T" (G)-maps : V — 6*Y. That is, there is
aunique 77 H-map (: W — Y with ¢ = Cot. The object 6,7 is said to be induced from V.

The usual abstract nonsense shows that, modulo the question of existence of 6,7, we
have

0.(V B V)Y (0,7) D (0,7,
id, = id,

and
(0106). =0y, 00,,.

The definition may be summarized by
Map v, (0 V, W) = Mapr ) (V, 0" W).
This reciprocity relation is generalized in Proposition 7.8.
THEOREM 6.4. (i) Each injective 0 defines a functor
0, 77 (G) — T (H).

(ii) Sending G to T"(G) and 8 to 0, gives a covariant functor to the category of
categories from G'(A, m), the category obtained by removing the non-injective maps
Sfrom G(A, m).

PROOE. It remains to construct an inducing (6,7, t) of each 7/, and to define 6, on
morphisms in 7T (G). The latter is done by the diagram

Vi —— W,  where 6,7 = (W;.7"1);

4 0.p

%)

W, where 0,15 = (W,, 72).

L2

A morphism 6, in 7T (H) exists and is unique by the universal property for 6,}. which
also easily yields functoriality of 6..

As for existence, given V = (V, 3) define 0,V = (6,V, 6.8)[= (W, ) say] as follows.
Let W := VH/%C a5 a vector space. To define the action of H and the grading, pick a cross
section

s:H/0G — H,

that is, s[k]6(G) = [k] := kO(G) for all k € H Define the grading by having £ in W if and
only if £[k] is in Vpag(i)) for all [£] . Define the action by

(h- &K1 = 07" (slk] " hslh~ k1) - €[h k1.
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It is straightforward to verify that we have a well-defined object in T(H). Define v = 6,3
by

(VSHO)k] = AS)(EIKD) for S € T
Then (W, 7) is an object in 7T (H). Finally, define t: V — W by

v if k € 0(G);
0 otherwise.

(o)k = |

To prove universality, given 9 = (Y, §) as in the definition, and given (: V — 6*Y, define
Cby .
(&= > slkl-h([kD).
[KIEH ] 0(G)
Checking that ¢ = ¢ - ¢ and that { is in 7T (H) are mechanical. Uniqueness of { is also
straightforward.

PROPOSITION 6.5. Taking A = 24 and T = 2F for E C A, we have natural isomor-
phisms for all C and F:
(l) H*PC = PCO*
(ii) 0*1‘61: = ﬁpe*.
PROOF. The proof of (i) is easy. As for (ii), let ¥ = (V,3) € T£(G). Using the
universal properties in 3.2 for xr and in the definition for 6, let

0,7 = (W,7) € TE(H) with ¢;: V — Wy;
kp0V = (Uy, o) € TEAF(H) with §,: W, — Uy;
kEV = (Wa,Y2) € TTAF(G) with 6,: V — Wy,
0,65V = (Us, az) € TEAF(H) with 15: Wy — Us.

Then it is easy to check that both the pairs (k0,7 V by Up)and (O, V b U,) are
universal in the class of pairs (2, V — Z) for 2 = (Z, m) € TEAF(H) and TE\F(G)-maps
w, where 7 and 2z are made into T£\F' (G)-objects by forgetting 5(S) and 7(S) for any S
not in E \ F (that is, we are considering the objects kg~r¥ and ﬂF\EO* 2). Universality
means the existence of a unique T5°F(H)-map & from U, or U, into Z which factors w.
In each case, one applies the two universal properties, of xr and of inducing, to verify
this. It follows that (ii) holds.

Reverting to general A and T, the functoriality of 8* and 6, implies that they can
operate on isomorphism classes. Since they commute with direct sums, we obtain group
homomorphisms

0 T"(H) — T"(G) for all : G — H;

and
0,: T"(G) — T" (H) for injective 0: G — H.

When A =24 and T = 2, these maps commute with the module action of the ring K.

[04
For each involution o on A, the maps 8* commute with the biadditive maps ><.
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7. Infernal Hom. Again specialize A to 24 where A has a given involution «, and
specialize T to 2F,2F, ... for a-invariant subsets E, F, ... of A. Let T%(G) denote the
disjoint union of the categories T£(G) for sets E invariant under «. The construction in
this section will later be used to define a K,-valued inner product on 7%(G) , where K,
is the subring of K defined after 5.2. Sooner than that, it will be used to prove the central

[e 4
result in Part I, which describes all objects of 7*(G Y G’) by using the operation B
Suppose given ¥ = (V,3) € TE(G) and W = (W,Y) € TF(G Y L), where G and L
are both objects in G(2#, m). We aim to define an object

“9‘[” = }[a((V, W) c (I'EAF(L)

in such a way that the relation of # to b will be analogous to that of Hom to ®.

DEFINITION. For B C A, let Hg be the space of all linear maps ¢: V — W such that:
(1) ¢(Vc) C Wepp forall C C A;

(1) p(g-v)=(g,1)- p(v)forallg € Gandv € V;

(iii) For all § C ENF, the following commutes:

v-2oow
(=DIE=sla(s) | LS.
V"W
Thus, when « = id, the space Hp consists of all T5(G)-maps from rp p¥ to

Kpeppt” W, where 1: G — G $ L is the embedding, g — (g, 1),0f 4.3. When ENF = {),
the space Hp consists of all T(G)-maps from V to pgW.

Let H be the subspace of Hom¢(V, W) spanned by UgHp. It becomes a graded vector
space, since the Hp are clearly linearly independent subspaces by (i). Define an action
of L on H as follows. For £ € Land v € V¢, let

(£- @) = (=D, 0 - o).
PROPOSITION 7.1. This action is well-defined, making H into an object in T(L).
PROOF. The map ¢ - ¢ is certainly linear. Let ¢ € Hg and v € V. Then
(L)) € Weapnoe = (rseW)e,

so that ¢ - ¢ behaves with respect to the grading. Also

(£ p)g-v) = (=DITNACBaRIL 7). p(g-v)
— (_1)Iafﬂa(CAag)f[Z\afﬁozagi(gq 0]- o(v)
= (—D)IC g, 0) - p(v)
= (g, 1) (=D, 0) - p(g - v)]
= (g - [(£- 9)V)],

https://doi.org/10.4153/CJM-1993-015-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-015-8

GRADED REPRESENTATIONS OF A TWISTED PRODUCT 325

verifying (ii) in the definition. As for (iii),

[Y(S) o (£ - p)](v) = (= D)7y (S)[(1, £) - p(v))
= (=D U1, 0) - ¥ (ev),

since Y(S) commutes with the action of G 3/ L
= (=D U=1)ESU(1, 0)p[B(S)()], by (iii) for ¢,

whereas
[(£- ) 0 BI) = (=D)AL, 0) - H[BS)(W)].
The last two exponents differ (mod 2) by |(BAc¢) N «S|, as required. To complete the
proof, (£'0) - ¢ = £' - (£ - p) is easy to verify, and 1 - ¢ = ¢ is obvious.
To obtain an object # = (H, §) in TEAF(L), let ¢ € Hp and R C EAF, and define

8(R)(p) = (= DIFENRIENRTRly (R F) 0 o 0 B(R N E).
PROPOSITION 7.2. This defines an object in TE®F(L), whose full name will be
HN(V, W).

PROOF. First we shall show that §(R)(¢) above is in Hgag. For this the scalar factor
+iV in the definition is irrelevant. We certainly have a linear map from V to W, taking
Ve into Weapgagr, and commuting with the action of G (since each of the three factors
do). To check (iii), use the diagram

B(RNE) %) Y(RNF)
\% Vv - w w
(=1)lBARNaSIg(5) (= D)Basi(s) Y(S) ()
4 B(RNE) 4 P w Y(RNF) w

The right and left squares commute by defining properties of ¥ and (3, using also that
RNaS C(EAF)Na(ENF)=(EAF)NENF=0.

The middle square is (iii) for .

Next we check that §(R) commutes with the action of L. Let v € V. Then
[O(R)(L - ©)](v)

— i|EﬂRI"IClR|(*l)lEﬁ(BAUl')ﬂaR\[,Y(Rva) o (( X S0) o B(RHE)](V)
— ilEﬂRﬂaR\(_1)}EﬂBﬂaR}+|Eﬂo[ﬁaR|+{o€ﬂ(x[CA(RﬁE)]\,Y(Rn F){(l. £)-[¢oBR mE)](V)}
— i’EﬂRﬁam(_1)[EﬂBQaR|+‘0€ﬂaC1(l’ Z) . [’)’(Rﬂ F) opo B(R N E)](V)
= (=11, 0) - [BRN()v)
= (- [6(R)(P)D(v)
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as required.
Since §(9) is the identity map, it remains only to check that §(R) o §(T) = 6(RAT) for
all subsets R and T of EAF. Let ¢ € Hg. Then

[6(R) 0 8(T))(p) = (—)IEBTE TS RyY(T N F) 0 p 0 B(T N E)]
- (_1)|EﬂBﬁaT|+|Eﬁ(BAT)ﬂaR| JIENTOeT] [ ENRNerR| .

where
n=YRNF)oYTNF)opoB(TNE)oBRNE) =Y[(RAT)NF]op o B(RAT) NE].
On the other hand,

6(RAT)((,0) - (_l)‘EﬁBﬁOI(RAT)\i‘Eﬂ(RAT)ﬁa(RAT)Ln‘

These agree, as required, by the following calculation:
l-|Eﬂ(RA7)r‘sa(RAT)| - (_ 1 )NiIEﬁRﬂaRIilEﬂRﬁaT] i]EﬁTﬂaR' ilEﬁTﬁaT!

where N is a sum of six terms which are the cardinalities of the intersections of the four
exponents of i in pairs [as in the proof of 5.6 (i)]. This yields zero (mod 2). Also, the
middle two powers of i are equal, so their product is (—1)/E"TNRl a5 required.

DEFINITION. Continue with the previous notation. Since EA(EAF) = F, we have,
in 7F(G $ L), an object V (§> H =V (§Q§> H, (3 (%) 6) from section 5. It is a direct sum of
objects pc(V B H ) as C ranges over subsets of E N (EAF) = E \ F. Let the linear map

vVQH—W

be the evaluation map, determined by sending v & ¢ to ¢(v).
[e4 ¢4
PROPOSITION 7.3. The map v is a morphism in T¥(G Y L) from V @ # to W.

[ed
COROLLARY 7.4. Let W be a non-zero object in T¥ (G Y L). Then there are objects vV

in TF(G) and 5 in TV(L), and a non-zero TF(G Y L)-morphism from v 14 #[= ¥ & (]
to W.

PROOF OF 7.4. In the previous discussion, let E = F. Let 7 be any object (for
example, i* W itself) in 7F(G) for which a non-zero 7%(G) morphism ¢: ¥ — i*W

exists. Such a ¢ is in Hy, and v is non-zero, and is in 7/(G Y L) by 7.3.
PROOF OF 7.3. Let v € Ve and ¢ € Hp. Then v(v ® ) = @(v) is in Wgac, SO v
preserves the grading. It also commutes with the action of G ¢ L, since
vl(8: - (v® )] = V(=D g @ (L )]
= (=D)L p)g v
= (=17 g, 1) - [(£ - p)(v)] since £ - ¢ is in Hp
=(g, 1)~ [(1, ) - ¢(v)] by definition of £ - ¢
= (80 e
=g 0 viv®yp)
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as required. It remains to prove that for S C F, the following diagram commutes

VOH——W

(BE6)(S)=LSME,SNEAP)] )

VRH—— W

Letting ¢ € Hp, we have, since SN (EAF) =S\ E,

[V o (BR OS] @ ) = (—)SEBL[3S M E)v) @ 6(S \ E))]

= (—1)FERBISS \ E)X@)[BS NE)v)]
= (_I)ISHEQGBI(_1)IEﬂBﬂa(S\E)Il‘lEﬂ(S\E)ﬂa(S\E)Iy[(S \ E)NF)

o@oBl(S\E)NE]oB(SNE)v)
= (—DSEEY S\ E) o p 0 BS M E)(v)
- (__1)’SﬂEﬂaBl(_l)’Bma(SﬂE)[’y(S \ Ev)
o Y(SN E) o p(v) by (iii) for ¢
=Y(S) c p(v) =Y(S)[v(v ® ¢)], as required.

PROPOSITION 7.5. The map v factors as
a m a £
VRQH—>VIH — W,
where E is a map in TF(L).

PROOF. The last part of the previous proof checked the second diagram in the uni-
versal property after 5.12 for !;<1, so it remains only to check the first. That is, for all
SCEN(EAF)=E\F,

V®H

{lsnas|;,

Yy (S.S) V®H

https://doi.org/10.4153/CJM-1993-015-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-015-8

328 PETER HOFFMAN

commutes. To see this, for v € V and ¢ € Hp we have, with é as defined before 7.2,

v[(=DFEBS)v) @ 8(S)()]

= (=D BES) () BS) (V)]

= (—1)ISTeBl(1)lEBnas|ENSNeSly (g Fy 0 o 0 B(S N E)BS)(v)]
i15798l o (y) since SMF =0 and SNE=S

Sy (v @ @),

[V o P(S, 9V ® ¢)

as required.
o a
To describe an adjointness relating ><i to H“, it is convenient to first relate @ to a
larger object Hom®, which decomposes as a direct sum over C C ENF of pc o H* [just

as é decomposed in terms of pco l;<1]. This discussion below also makes condition (iii)
in the definition of #“ appear to arise more naturally.

With 7 and W as before, let Hom® (7, W) be defined [as a graded L-representation]
to have B-th component equal to the subspace of Hom¢(V, W) defined by (i) and (ii) in
the definition of H“(V, W), i.e.

(1) p(Ve) C Wepp forall C C A;

(i) p(g-v)=(g, 1) p(v) forallg € Gand v € V,;
and with the same formula for the action of L, i.e.

(£ o)W = (=D, 0) - ().
IfRCEand T C F, let

§(R, T): Hom™(V, W)g — Hom™(V, W)garar

be given by
ER, T)(p) = (—1)ERIy(T) 0 0 B(R).

It is easy to check that £(R, T) is well-defined, and, because of the sign (—1)B Rl it
commutes with the action of L. Furthermore

&R\, T1) 0 E(Ry. To) = (— 1)/ RATIRIC(R ARy TIAT).

It follows that Hom® (/. W) can be made into an object in 752#(L) by taking the structure
maps, for R C EAF, to be [EORNeRie (RN E, RN F). [The power of i is needed to make
the maps compose correctly.] These maps commute with £(S, S) foreach S C ENF, and
&S, $)2 = 1. Then HX(V, W) is given from this point of view as the intersection over
all S C ENF of the +1-eigenspace of £(S, S). [This is (iii) in the definition of #*.] The
appropriate projectors are

27 IEF S (=) TS, ).

SCENF
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one for each C C ENF, the case C = {) projecting onto #“. For general C, the above
projector maps onto the intersection over all B C E N F of the (—1)/P"‘I_eigenspace of
Y(B, B), giving an object isomorphic to pc H*(V, W). Thus

Hom*(V, W)= € pcHY(V,W).
CCENF

Now for adjointness, suppose given objects 9 in T5(G), V' in TE(G’) and W in
TFG Y G $ L), where, of course, each of E, E' and F is invariant under «. The

following proposition will have its proof described rather than presented in detail, since
we won’t use it in Part I [and a less tedious proof may emerge].

PROPOSITION 7.6. There is a commutative diagram in which the horizontal maps
are isomorphisms in TEAEAF(L), and the vertical maps are given by using the above

projectors, and on the left, the inclusion of V b4V into V@ V':

Hom®(¥ & v/, W) = Hom®[7", Hom®(¥, W)]
! !
(04
HV AV, W) X H [, Y, W]

One can see that the existence of an isomorphism on the bottom is not unreasonable,
[¢4
given one on the top, as follows. Using the decompositions of @ and Hom®* in terms

of 5t and “, both upper objects can be seen to be direct sums of p¢ applied to the
corresponding lower object over all C C (ENE') U (ENF) U (E' N F). This part of
the proof is made precise by giving the upper isomorphism explicitly, and then proving
that there are linear maps both ways at the bottom which make the diagram commute.
Because the vertical maps are surjective, these lower maps are unique, are mutually
inverse and are morphisms in TEAEAF(L),

Now it is easy to give isomorphisms at the top which are in 7(L), using the usual
adjointness, namely

B(p)(V)(v) = p(v @ V') for  on the left;
B 1)y @ V) = (v)(v) for 1 on the right.

Then B and B! are certainly mutually inverse if well defined, and checking well-
definition, and behaviour re grading and action of L, are straightforward. When one
comes to check that B commutes with the structure maps correspondingto S C EAE'AF,
there is a scalar factor problem if SN EME NF # (), and more seriously, initially a
mystery if ENE N F # (. The following is the key point in the proof [and led to the
alteration of the section title from “Internal Hom”]. On either upper object there is a map
n(S, 8, T), foreach S C E, ' C E', and T C F, defined using 3(S), 8'(S’) and Y(T),
where V = (V, 8), V' = (V', ') and W = (W, ). For example, on the left

n(S7 S/7 D((P)(V ® V’) = (_1)|C’ﬂa5[+|Bﬂa(SAS/)|/y(T) {SO[,B(S)(V) ® ﬂ/(S')(v/)]}
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for ¢ € Hp, v € Vi,. This map commutes with the action and changes grading by
SAS'AT. In particular, the intersections of eigenspaces of 1(S, §’, SAS"), for S C E and
S’ C E' such that SAS’ C F, provide decompositions. Much of this information has

already been used up in decomposing Hom” and (%) in terms of #* and <. Essentially
the extra information is contained in the operators 7(S, ', SAS’) where both S and §’
are subsets of E N E' N F. One can then define an adjointness isomorphism for the
top line of the diagram in the proposition by using a different multiple of B for each
summand arising from these last operators. Once the appropriate multiples are chosen,
the remainder of the proof is mechanical, but tedious. It is hoped that a more palatable
proof will be found.

A second result, not needed till Part II, with a similar proof, is “coadjointness”.

Suppose given objects: V = (V,3) in T5(G); W = (W,7) in TH(G Y L); and W' =
(W'.7") in TF'(G’). Then there is a T(L $ G’) isomorphism

C: Hom®(V, W) & W — Hom®(V, W & W)

given by C(¢ ® w)(v) = ¢(v) ® w'. As with the adjointness, a problem arises with
the structure maps for § C ENFN F', as well as a scalar factor problem for all S if
ENFNF #{. The solution is exactly analogous to the case of adjointness. Both the
domain and codomain of ¢ admit self maps, indexed by (S C E,T C F,T' C F'), which
preserve degree when S = TAT'. The extra information, beyond that used to decompose
® in terms of <t and Hom® in terms of H“, is essentially contained in the self maps
when T, T" and S = TAT' are subsets of ENFN F'. These define a decomposition of the
domain and codomain of C. Multiplying C by a suitable scalar factor on each summand,
the following result may be proved.

" [0 4
PROPOSITION 7.7. There are TEAFAF (LY G) isomorphisms giving a commutative
diagram

1%

Hom®(V, W) & W' =~ Hom™(¥, W & W'
| |
HOV, Wypa W = H(V, Wa W)
Generalizing the formula before 6.4, essentially the definition of inducing, is the
following reciprocity formula.

PROPOSITION 7.8. Suppose that 0: G — G' is an injective map in GQ2*, m), and
that we have objects V in TE(G) and W in TF(G' $ L). Then H(0,V, W) and
H(V, (0 Y id)* W) are isomorphic in TEAF(L).

PROOF. Let

V=(V,0); W=(W,7); (H,0) = =H(0.V, W), and
(H',8) = 3 = 35(V. 0¥ i)' W),
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Given ¢ in H}, we use the construction in 6.4 of 8,V as VE'/% to define ¢,: 0,V — W
by
e©= > s(yD- €D

1¥)€G' /6G

where s: G’ /0G — G’ is a fixed section with s[1] = 1. Straightforward calculations show
that
(1) if £isin (B.V)c, then @, (&) is in Wepp;
(i) ¢+(g' - =g pu(&)
(iii) forallS C ENF,

Y(S) 0 s = (—1)ESlp, 0 (8,8)(S).

Thus ¢, is in Hp, as required.
Conversely, given ¢ in Hp, define ¥_: V — W by ¢¥_(v) = ¥(&,), where

v if [y] =[1];
0 if not.

ét[)’] =

It is easily seen that ¢_ is in Hy), and that (), = v and (p4)— = ¢ for all ¥ and .
Thus we have a pair of mutually inverse, linear, gradation preserving maps. To check
that £ - (¢¥_) = (£ - ¢)_, evaluate both sides at v € V, yielding (*l)l"m"‘q(l, £)-Y_(v).
It remains only to check that [§(R)(y)]_ = §'(R)(¢_) for all R C EAF. This reduces to

Earrmexmlyl = BR N E)E,[y])

[which is immediate from the definition of £, ], since the desired equality, when evaluated
at v, then at [y], becomes V(R M F) o ¢ applied to the equation above.

8. Irreducibles for G \O; G'. The elementary aspects of classical representation the-
ory carry over to 7' almost verbatim. Here I" and A are general once again. The following
could be deduced from the “real world” interpretation of Section 2, but deductions di-
rectly analogous to the methods for ordinary representations are probably simplest. This
has been delayed till now to emphasize the independence of all the previous machinery
from decompositions into irreducibles, efc.

A sub-object (W,7) of (V, ) € TV (G) is a subspace W of V which is invariant under
G [and with that restricted action]; such that W = ¥ @(Vs M W) [and with grading
Wp = Vg N W]; such that, for § € T, 3(S)(W) C W [and with Y(S) equal to a restriction
of B(S)]. It follows that (W,7) is also in 77 (G). An equivalent definition is essentially
that the inclusion of W into V is a morphism in T7(G).

DEFINITION. An object (V, 3) is irreducible if and only if it has exactly two sub-
objects. It follows that they are the zero object and (V, 3) itself, and that V # {0}.
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If (W,7) is a sub-object of (V, 3), then there is a quotient object (V/W, §), with the
following structure:

(V/W)g= (Vg +W)/W = image of Vg/Wp;
g-(v+tW)=(g-v+W;

and
S+ W) =B(S)(v) + W.
Then (V/W,8) € T T(G), and the inclusion and projection

W Vo V/W

are morphisms in 7" (G). A
The usual averaging trick shows that, when G is finite, any 7" (G)-morphism V = U

which is surjective has a right inverse U 2 Vin 77(G). To see this, one chooses any
linear gradation-preserving right inverse n: U — V, and then one sets

V=[G Y g ng™ - w.
geG
Since kernels and images of 7" (G)-morphisms are evidently sub-objects of the domains
and codomains respectively, it follows that any sub-object (W, ) of (V, 3) has a comple-
mentary sub-object (W;,7;): Let U = V/W with ¢ being the projection, and then let W,
be the image of . Since all spaces are finite dimensional, it follows that every object is
a direct sum of (finitely many) irreducible objects.

By the remark above about kernels and images, the usual proof of Schur’s lemma
is valid in this context. Thus any non-zero 7T (G)-morphism between two irreducible
objects is an isomorphism, and any 7' (G)- endomorphism of an irreducible is a scalar
multiple of an identity map.

DEFINITION. Given two objects (V;, 8;) in TT(G), let ((Vi,B1), (Va,32))z be the
dimension of the vector space of all 77 (G)-morphisms between them; say, from V|
to V5.

The notation (, ) will be reserved for a K-bilinear inner product with values in K (to
be defined later), which specializes to (, )z, at least when I" = 2, A = 24, by composing
with amap K — Z.

It is elementary to check that (, )z is bi-additive with respect to &. If ¥ and W are
irreducible, the above analogue of Schur’s lemma yields

1if V> w,
(V. W)z = 0 if not.

In particular, (, )z is symmetric, and it follows that the irreducible summands 4/ in a
decomposition
VEVONSD---

are unique up to order and isomorphism. Thus
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PROPOSITION 8.1. The group T'(G) is free abelian, a basis consisting of the isomor-
phism classes of irreducibles in T'(G) [of which there are finitely many], when G is
finite.

Now we can prove the initial version of the main result of this part.

THEOREM 8.2. Let A = 2%, where A has a given involution o, let G and L be finite

objects in G(24, m), and let W be any irreducible in TE(G $ L) where E is a-invariant.
Then there exist irreducibles V in TE(G) and V' in TY(L) such that W occurs as a

(04
summand in V >4 V.

PROOF. Let ¥ be any irreducible occurring in ¢* W, where 1:G — G $ L is the
embedding g ~— (g, 1). Thus there is a non-zero T%(G)-morphism from ¥ to .*W. By
7.4, there is an object H in T (L) and a non-zero T5(G $ L)-morphism from v lf<1 H to
W. When restricted to the sub-object V B 9 for at least one irreducible summand 9"
of A, it remains non-zero [indeed surjective] by Schur’s lemma. By using a right inverse

W — V5V in TEG Y L), the result follows.

REMARK. Since
« NP & Q@
(PrV)DA(prV') = ppV RV = VDIV,

there are trivial reasons why % and %’ will not necessarily be unique when £ > 0. We
shall see later that uniqueness does hold modulo this K-bilinearity of b<. Furthermore

(k) < (5F V) KPRV Y Y P (pc¥ B4 V),
CCF

o
as we see in the next section, so a ><product of irreducibles may not be irreducible.
When £ = 1, this is essentially the only such annoyance, but, as we shall see in Part II,
for £ > 1 there are also less obvious reasons for this to happen.

9. The K-bilinearity of <. Recall Tr, the trivial object in G(24, m). It is cyclic of
order 2m, generated by y, and oty is the trivial homomorphism. There is a unique object
One € T(Tr) = 7(Tr) for which

Onen = CifB=0;
2710 ifnot.
One may directly verify that the irreducible objects in 77 (Tr) are pck r One for CNF = ().
We have
~ |CifBCF,
(k- One)p = { 0 if not.

If 15 is a chosen generator for (krOne)g, the map 3(S) for the object Kz One may be
chosen to send 1 to 1pag forall S C F.

https://doi.org/10.4153/CJM-1993-015-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-015-8

334 PETER HOFFMAN

PROPOSITION 9.1. The map K, — T%(Tr) sending X to A One is an isomorphism of
graded K ,-modules.

This is immediate from the statement above about the irreducibles. This holds for
any «. The involution « plays little role in this section, since with o, trivial, Tr $ Gis
independent of c.

Recall now, for any G in G(2*, m), the isomorphisms of 4.3:

TTYGE G % gy
(lLg) —g— (&1

PROPOSITION 9.2. For all F and all V in T*(G),
a ~ [e4
05(kpOne < V) = ke = 05(V >4 kF One).

REMARK. The case F = ) of this makes the name “One” seem reasonable. This
proposition shows how the action of the ring K, on TG is essentially a special case of

a
the >< product.

PROOFE. If ¥ = (V, 8), recall that k¥ = (k£V, kgB), with £V a subspace of V2. A
map for the right-hand isomorphism is given by sending ¢ € V¥ to YecrGO) @ 1c €
V ® kr One. This is evidently a linear isomorphism. It is readily checked that this map
preserves grading and commutes with the action of G. An elementary calculation shows
that the subspace KV of v maps onto the subspace Uy, one Of V & kr One. This uses
example (c) of z¢ p before the definition of k. The calculation of the righthand vertical
arrow in the required commutative diagram, for S C EAF,

kpV & U'V.repOne
(KeB)S) | L
EFV = U'V.n,:One

where Y(S) is the structure map for v Da<l xr One, may be taken as the motivation for the
formula in the definition for (k r3)(S)({)(D).

The other isomorphism may be proved similarly; alternatively it is deduced from the
“commutative” law in 5.14 (iii) as follows:

12

0% (k. F One B 1) e, (V B kr One)

~ a ~
0%pc,(V > kp One), since O =10 fg

1R

P RFV
KrV, by 3.4 (i) or (iv), since Co C ENF C F.

IR
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REMARK. We have
pcV ¥ pclis(One <1 4/) taking F = §in 9.2
¥ 05pc(One B )
& 9%(pc One 4 ) by 5.4 (o).
Similarly, --- = 92‘;(’1/ B pc One). A second proof of this may be given which is

analogous to, and easier than, the proof of 9.2. A third proof proceeds by induction on
|C|, using 9.2, the relation k> = Y pc, and decomposition into irreducibles.

PROPOSITION 9.3. Forall G, G', V € TE(G), V' € TF (G'), F C A where E, E' and
F are invariant under the involution o of A, we have

a (o3 (04
Vid eV ¥ kp(V V)Y (kpV) DA V.

PROOF. We shall use the associativity of ;4, that is, 5.14 (ii), to give an easy formal
proof of this. Note that
a ~ a a a a ’
idg Y05 =06Yidg:GYG —GYTrYG
and
a . o (04 a ’
0 Yidg =0 . :GYG —-TrYGYG.
GYG’
Thus we have
Vi kpd ¥ V505, (kp One b V')
= (idg Y O)* [V 54 (e One 54 )]
~ [¢4 (1
~ (G Y idg)"[(V 4 K One) <1 V']
= 05(V >y One) < 9/
X (kpV) B2 V'
~ 0%(rp One b1 V) b1 V'
(B Y idg)*[(k 7 One b1 V) 5 4]
@ « )'lrrOne < (V< V)]
GYG'

104

1%

a
ke(V D V).

REMARK. This result is the analogue of 5.14 (o) with k¢ replacing pc. It can similarly
be obtained by a direct proof, much more tedious than that for 5.14 (0). On the other

hand 5.14 (o) has a proof as above, based on the associativity of b<t. It has a third proof
by induction on |C| from the relation x> = Y ccr pc, using 10.3 and decomposition into
irreducibles.
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COROLLARY 9.4. The map
a a
>: TG X T°G' - T*(GY G)
is Kq-bilinear, and so it determines a morphism of 2%-graded K o-modules
o
T°G®g, T°G' - TG Y G).

REMARK. When £ = 1 = m (so o = id) one main theorem of Hoffman-Humphreys
[H-H1; Theorem 2.24] is that this last morphism is an isomorphism. This will follow
from a later result which shows that in general the map is injective with finite cokernel. In
part IT we investigate its deviation from being an isomorphism. It will be an isomorphism
whenever either 7°G or T*G’ is a free K,-module. Freeness is automatic when ¢ = 1 for
any m, confirming the first sentence above.

10. Summary of Parts II and III. Taking L = Tr in Section 7 yields a map
(,): THG) x TF(G) — KE4F,
by passing to isomorphism classes with the biadditive map
TEG) x TF(G) ¥ TE(G) x TF(G Y Tr) 2o TEOF(Tr) & KELF = KEAF,
By 9.4, (, ) is bilinear over K,. Combining 7.7 and 7.6 gives the identity

>ax,y>ay) « =(x, "V .
(roax,yoay) o = {ny)elry),
[By taking G’ = Tr, part of the bilinearity is essentially a special case of this.]
y g p y y asp
Reciprocity,

(0:x,2)n = (x,0"2)G.

for injective maps 6: G — H in G, follows from 7.7. In part II, these laws and others
satisfied by the modules 7*G are studied abstractly. The main point will be that such a
module with inner product and positivity is uniquely decomposable as a direct sum of
indecomposable sub-objects. These are the submodules, one for each equivalence class
of special irreducibles, generated by such special irreducibles. Here an irreducible x is
special if it does not have the form gy for any F # {}. Two such elements x and x’ are
equivalent if and only if (x, x') # 0. Attempted classification of such indecomposables is
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likely to lead to a combinatorial morass, if attempted for general ¢ and «. But for small
¢ itis quite easy. For example, when £ = 1 [and so « = id], all such indecomposables are
free on one generator x with (x, x) = 1 [and so T*G is always free over K, where a K-basis
{xo} of special irreducibles leads to the canonical Z-basis {Xq, pXa, KXo } Of triple the
size]. There are two indecomposables up to isomorphism, depending on the two choices
for the grading of the generator. When ¢ = 2 and « = id, there are six indecomposables,
four of which are free on one generator, one for each of the four elements in the
group 24 of grading parameters. Letting A = {b, c}, the other two indecomposables
are both generated by two special irreducibles, say x and y, in “antipodal” gradings
[i.e. grxAgry = A], with two relations, k5x = K.y and K.x = Kpy. Inner products are
determined by
(x,x) = 14 pa = (y,y) and (x,y) = Ka.

[See the remark below.] The Z-basis of irreducibles, in the four different gradings, is
{x, ppx} U{y, ppy} U{rpx} U {Kcx}.
Other relations are, for example,
pax = x and ppx = pex;
and similarly for y. To deduce one of these,
X+ PpX = KX = KpKey = Kekpy = n?x =X+ peX.

REMARK. In general, for an irreducible x, there is a subgroup I' of 24 such that

(x.x) =3 pc-
ccr
For x to be special, it is necessary and sufficient that 22 C T only for B = {). In general,
x = rpx’ for a special irreducible x’ and the maximal B with 28  T. When x is special,
it generates one of the indecomposable submodules [necessarily freely] if and only if
I' = {0}. The other indecomposables are neither cyclic over K, nor are they free over
K.
In part III, the application to projective representations of monomial groups will be
given. For this we need an isomorphism, for n > 1,

M(HS,) = M(S,) ® M(H) S Hom(H; Z /2) ® A* Hom(H; Z./2) ® Hom(H; Z / 2)! %>~

The existence of such an isomorphism is due to Read [R], and also follows from the
Lyndon spectral sequence [M]. We shall give a very explicit isomorphism: each element
on the right-hand side above [where the first two components are given in terms of cyclic
covers of S, and H] will produce an explicit cyclic cover of H S,. Varying n, [including
n = 0 and 1] will produce sequences of cyclic covers as discussed in the introduction.
An abstraction of these sequences (which generalize the Young systems of [H-H2] )
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will consist, among other things, of a sequence of objects Y, 1 G(24, m) together with

embeddings Y, Y Y» — Yaupr Applying the functor 7%, using the operation ><1 and
inducing along the above embedding gives a map

(Taya) Bk, (TaYb) i TaYa+b

and thereby makes @©,>07*Y, nto an algebra over K, graded over IN, in which each
homogeneous component 1s a module over K, graded over 2* Such algebras with inner
product and positivity are likely to decompose uniquely into a tensor product of atoms,
where an atom 1s an algebra whose component 1n lowest positive N-grading 1s one of
the indecomposable modules discussed above This should follow formally, imitating
Zelevinsk1’s argument [Z], which can be regarded as the case £ = 0 The case £ = 1 was
done by the author and Michael Bean [B-H]

The other side of the coin 1s the classification of atoms Here 1t seems likely that each
indecomposable (occurring in lowest grading 1) will give rise to at most one (perhaps
exactly one) such atomic algebra Progress on this at the time of writing has concentrated
on the example of H S, where H 1s cyclic of order 2 [1 e the hyperoctahedral group]
Four of the eight sequences of covers are taken care of by the case ¢ = 1 done in [H-H2]
[In fact, one of them 1s really the case £ = 0 ] The other four can be done with ¢ = 2 and
a #1d, with ¢ = 4 1f we prefer & = 1d The main complication 1s the failure of

B4 (T°X) @, (T°Y) — T*X Y 1)

to be an 1somorphism, except when ¢ = 1 or, more generally, when 7%X or T%Y 1s free
over K, This leads to the failure of the above algebra to be a Hopf algebra However, by

(o3 [e4
simultaneously and inductively working out all the groups TE(YaI YY,Y ), thecore
of the Hopfian methods can be extracted and used to make progress on the structure of
these algebras
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