
Canad. J. Math. Vol. 45 (2) 1993, pp. 295-339. 

PROJECTIVE AND MULTIGRADED REPRESENTATIONS 
OF MONOMIAL AND MULTISIGNED GROUPS 

I. GRADED REPRESENTATIONS OF A 
TWISTED PRODUCT 

PETER HOFFMAN 

ABSTRACT. Motivated by the problem of giving a functorial (or at least uniform) 
description of the projective representations for wreath products G lSn in terms of those 

a 
for G, we study a certain binary operation Y on the class of "cyclic covering groups 
with parities". Along with setting up the basic machinery associated to representations 

a 
graded by (Z/2)£ , the main result is a description of the irreducibles for AYB in terms 
of a (tensorlike) product of those for A and for B. Finally we describe a programme 
for producing a PSH-algebra theory in this context, analogous to that of Zelevinsky 
for the case I - 0, and that of the author with Michael Bean (structure) and with John 
Humphreys (applications) for the case t = 1 

Let H be a finite group, n a positive integer, and HI Sn the monomial group, that is, 
the wreath product of H with the symmetric group Sn. For any even integer 2m which is 
divisible by the exponent of the Schur multiplier M(H), all classes in M(H I Sn) may be 
"realized" by 2m-fold cyclic covers ofHlSn (defined below). That is, the map 

H2(HlSn;Z/2m)^H2(HlSn;Q/Z)^H2(HlSn-X
x) = M(HlSn), 

induced by the inclusion Z/2m —-> Q/Z, is surjective. [Equivalently M(H I Sn) has 
exponent dividing 2m; in fact, when n > 4, its exponent is the least common multiple 
of the exponent of M (H) and the integer 2.] Abstractly, M(H I Sn) is independent of n 
for n > 4, and each of its elements can be made to correspond to a sequence of covers 
{Yn—>HlSn:n> 0}. See Section 10. 

Our ultimate objective is to give the projective representations of HI Sn as a functor, 
in some sense, of the projective representations of H. The projective representations 
of HI Sn indexed by a given cocycle in M (H l Sn) may be identified with those linear 
representations of a corresponding cover of HI Sn for which "the" generator of the kernel 
of the covering projection acts as multiplication by a fixed 2m-th root of unity. 

For the linear representations, a functorial rendering can be given as follows. The 
Young subgroup embeddings 

(HlSi)x(HlSj)-+HlSn.j 
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296 PETER HOFFMAN 

give a multiplication 
R(H I Sd x R(H I Sj) — R(H I Si+j), 

where R(G) is the free abelian group on the irreducible representations of G. Then there 
is 

(1) an isomorphism of graded rings 

oo 

QR(H I Sn) ^ Z[xna : a e Irrep(//), n > 1] 

where xna is the class of the irreducible representation of HI Sn obtained by taking the 
«-fold tensor power of the a-th irreducible representation of H\ and 

(2) alternating sum formulae for operators on this ring whose iteration on 1 G R(HlSo) 
yield all the irreducibles in R(H I Sn) for all n, as well as explicit formulae for them in 
terms of monomials in the xia, branching rules, Littlewood-Richardson rule, etc. This is 
relatively simple, since the above graded ring is a tensor power of "| Irrep//|" copies of 
the ring when H = 1, the latter being a much studied object alternatively known as the 
ring of stable symmetric functions [M], the free À-ring on one generator [A — 7], the 
cohomology of BU, the atomic PSH-algebra [Z], 

To proceed analogously for the projective representations, it is necessary to find 
embeddings 

Yt Y Yj — Yi+j 

for each of the sequences {Yn —> HlSn} of 2m-fold cyclic covers mentioned above, 
a 

using some suitable operation Y, and then to give a determination of the representations 
a a 

of Y Y W vis-a-vis those of Y and of W. It turns out that Y may be defined by twisting 
the usual multiplication, using a number of "sign" homomorphisms Y —> Z/2. That 

a 

number (and so Y) depends not just on H but on which sequence of covers one is using. 
The number (apparently) needs to be arbitrarily large, by choosing a matched sequence 
of sufficiently subtle cocycles for HI Sn (n = 0 , . . . , oo) for a group H with sufficiently 
many homomorphisms into Z/2. 

In this first part we give a theory for treating the question immediately above, leaving 
a 

the application to HI Sn for later. Not unnaturally, since Y depends on some homomor
phisms from Y to Z/2, it is necessary to consider representations also of the kernels 

a 

of these homomorphisms, and their various intersections. To obtain an operation X\ 
something akin to the natural isomorphism 

R(Gi)®zR(G2)^R(Gi xG 2 ) 
(which uses the tensor product), it seems to be essential to use representations graded 
by (Z/2)£ where t is the number of "sign" homomorphisms involved. In order to obtain 
sanitary formulae, we use 2A in place of (Z/2)£, where A is a fixed set of cardinality 
I, and 2A is the group of all subsets of A under symmetric difference. It turns out that, 
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when I > 1, the map analogous to the above tensor product isomorphism is not an 
a 

isomorphism. But it does determine all the representations of Y Y W and its attached 
subgroups in a sense which is sufficient for the applications. The case of ordinary 
ungraded representations and the tensor product can be considered to be the case I - 0 
of this theory. The main result is Theorem 8.2. 

In the case £ = 1 and m = 1, the theory is equivalent to that given by Hoffman-
Humphreys [H-Hl] [H-H3; Appendix 8]. An improvement here, which is crucial to the 
cases t > 1, is as follows. It is easy to see that when the multisign Y —-> 2A is surjective, 
the 2A -graded representations of Y are essentially the same as representations of Ker o. 
If E is a subset of A of cardinality I — k, we find it essential to view representations 
of the kernel of Y —> 2A/2£ , not as representations of Y graded over (Z/2)* (i.e. 2A~E-
graded), but rather as 2A-graded representations of Y with extra structure. Without this, 

a 

the definition of XI and proofs of its properties become unmanageable. Several years 
ago Michael Bean (as an undergraduate research assistant) succeeded in the somewhat 

a 

formidable task of producing a version of IX for the case I = 2, m = 1, at a time when 
the crucial idea above was lacking [B], The present work depends heavily for motivation 
on my previous work with Bean and with Humphreys; [B-H] [H-Hl] [H-H2], [H-H3; 
Appendix 8]. 

Besides the application to HlSn, a motivation for the theory below (at least for the 
author) is to clarify the status of the work with Humphreys for I = 1 = m. The operation 
E - had a certain odour of the ad hoc about it whereas the operation here seems to arise 
more naturally out of the given data. 

A brief comment on the motivation for graded representations may be in order before 
we start; see also [D], [S]. If H is a subgroup of G, one can think of the process of 
inducing a representation V of H to a representation y of G as a kind of "information 
losing" process. If// is normal in G, the process can be factored in the form 

y^ W^, y 

where W is a graded representation of G, graded over G JH. The first step V-^* W 
is reversible, so the "information loss", which consists of forgetting the grading, is 
concentrated in the second step. We shall be dealing with a much specialized situation, 
where G/H is isomorphic to a product of cyclic groups of order 2. Because of this, quite 
a bit of extra structure exists. 

What follows is the first part of a three part paper. Part II deals with a classification 
problem arising from Part I, and Part III with the application to monomial groups. More 
detailed introductions will be attached to those two parts. 

1. The categories Ç(A, m) and ^ ( G , ^ a). Let A be an abelian group whose 
elements will be denoted fi, C , . . . , with identity element 0, and operation denoted 
(B1 C) i—• BAC, for later ease of transition to the main example. Let m be a positive 
integer. 
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DÉFINITION. Let £(A, m) be the category whose objects are triples (G, y, a) for 
which G is a group, y is a central element in G of order 2m, and a: G —> A is 
a homomorphism such that a(y) = 0, the identity element of A. A morphism 0 G 
Map^(Am) [(Gi,yi, <7i), (G2,j27 ^2)] is a group homomorphism 6: G\ —» G2 for which 
0(yx) = y2 and 02 ° 0 = 0"i- It is easily checked that £(A, m) is a category under ordinary 
composition of functions. 

DEFINITION. For each (G, y, a) in £(A, m), define a category "T(G)" = TA(G, y, a) as 
follows. An object in T(G) is a pair consisting of: 

(i) a G-module V (that is, a finite dimensional C-vector space V together with a linear 
action of G on V) ; and 

(ii) a A-grading on V (that is, a collection { V# : # G A} of subspaces of V) ; 
This data must satisfy the axioms: 

(a) V is the (internal) direct sum T,®BVB ; 
(b) for all g G G and B G A, we have 

g • VB = VBAag, 

(c) y acts as multiplication by e7"'™ on V. 
A morphism <p G MaprG(V, W) is a linear map <p: V —> W which commutes with 
the action [i.e. (/?(# • v) = g • v?(v)], and such that <p(VB) C WB for all 5 G A. It is 
straightforward to see that <T(G) is a category under composition. 

DEFINITION. Let C G A. For an object V in TG, let p c V be V as a G-module, but with 
grading (PCV)B = VBAC- It is obvious that pGV is also an object of ^TG. For a morphism 
<p G MapTG(V7 W) let pc^ = ¥ £ MapT(G)(pcV, Pc^O- [There is a slight conflict with 
the usual conventions for categories here in that the sets of morphisms for different 
(domain, codomain) pairs ought to be disjoint. This will not lead to ambiguity, and so it 
will be ignored.] 

PROPOSITION 1.1. For each C, the above pc is a functor. We have 

p0 = id; pcPD = PCAD = PDPC\ PCPC = id. 

DEFINITION OF ^[(G^y^ a). For each subgroup r of A, this category [whose name 
will be abbreviated to Tr(G)] has objects V = (V, /3), where V is an object in 'T(G), and 
(3 = {0(B) I B G T} is such that 

(i) [3(B): V —• PBV is an isomorphism in T(G)\ 
(ii) f3(B)f3(Q = f3(BAQ for all B and C in T. 
A morphism <p G MapTr(G) [( V, /J), (W, 7)] is a morphism in T(G) such that (po(3(B) = 

7(#) o <p for all 2? G T. It is evident that ^(G) is a category under composition. 
Note that T^ (G) may be identified with ^(G), and that, due to (ii), axiom (i) may 

be altered to require only that (3(B) be a morphism in T(G), with the added requirement 
that (30) be the identity [as follows from (i) and (ii).] Several examples will be checked 
in this way. Note also that a morphism in ^(G) which is bijective is an isomorphism in 
<Tr(G). 
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DEFINITION OF 0 ON Tr(G). On objects, define (V, (3) 0 (W, 7) = (V 0 W, (5 0 7). 
On morphisms (f 0 tj) is also the usual map between ordered pairs from linear algebra. 

PROPOSITION 1.2. The above operation is well defined, yielding a functor 

0: Tr(G) x <Tr(G)-> Tr(G). 

77i£ standard formulae from linear algebra yield natural isomorphisms 

<^0 <W= ^ 0 ^ 

M 0 <̂ 2) 0 ^3 = V\ 0 (^2 0 ^3) 

^ © 0 = ^/orf/iezero object0. 

COROLLARY 1.3. 77zere is a Grothendieck group "Tr(G)" = T^(G,y, a) generated 
by the objects ofrCT{G) with respect to 0. 

With the obvious definition of irreducible, the analogous results to those of Maschke, 
Schur, etc. hold, so that, for finite G, TT{G) is the free abelian group on the irreducibles. 
The next section makes this unsurprising, but direct proofs are also easy. These will be 
delayed until Section 8 in order to emphasize the independence from decomposition into 
irreducibles of the constructions in the intervening sections. 

2. "Real world" interpretation of Tr(G). Each of the following propositions as
serts the existence of an equivalence between categories; that is, of a pair of functors 
which are inverse up to natural isomorphism. These functors in fact commute with direct 
sums. 

PROPOSITION 2.1. Letting ar be the composite G -^ A —* A/r , 

TA
r(G,v,a)^TA / r(G,v,a r) 

for any (G, v, a) in £(A, m) and any subgroup T of A. 

PROPOSITION 2.2. Factoring a as G -̂ > Im a <̂-> A, 

TA(G,y, a) * [<WG,y, ai)] |Coke ra | . 

PROPOSITION 2.3. If a is surjective, then 

TA(G,y,a)^^ ( w )(Kera,v) 

where ^ (m)(7/, y),for central y of order 2m in H, is the category of H-modules on which 
y acts as el7T'm. 

Combining 2.1 and 2.3, if a is surjective, the category Tr(G) is just a complicated 
substitute for the category of those representations of a~lT for which the element y 
multiplies by a fixed primitive 2m-th root of unity. The motivation for considering T r 

a 

is that the operations Kf, and particularly XI and tt, of Sections 3, 5 and 7, are very 
awkward to deal with in f̂ (m). If a is not surjective, one uses also 2.2 to see that Tr(G) 
is really just a power of a category $^m)(H) for suitable H. 
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PROOF OF 2.2. This is almost immediate, since for V in 'TA(G) and each TT G Coker a, 
the subspace V )̂ = T^Ben VB is invariant. The required functor 

TA(G,;y,<7)^ [<Tlma(Giy,a{)f
okera 

takes V to the function sending 7r to V^), where V(7r) is graded by 

( V w ) c - ( 0 if not. 

PROOFOF2.3. Define a functor 0: TA(G)^ ^ (m)(kera)by 0(V) = V0 and#(v?) = y>| v 

Let s: A —> G be a cross section of a [a function 5 with a o s = id] such that s0) = lc-
Define a functor ji\ ^(m)(kercr)~-> TA(G) by /x(W) = WA = {r/: A —> W} as a vector 
space, with grading defined by 

[/x(W)]c = {r/ G /x(W) | r/(£) = 0 for all 5 ^ C}, 

and with action defined by 

(g • 7/)(£) = [*(*)" V t a _ 1 A * ) ] • r](ag-lAB). 

It is straightforward to check that /x(W) is a well-defined object of *2A(G). Define // on 
morphisms by (//((/?)) (r/) = <̂  o 77. Then it is easily seen that // is a functor, once one 
checks that //(< )̂ is a ^(G^morphism. Define a map from 0(/i(W)) to W by sending 77 
to 77(0). This is an isomorphism in *2A(G) and yields a natural transformation from 0 o \i 
to the identity functor. Define a map from //(0(V)) to V by sending 77 to EBGA S(#) • r](B). 
This is surjective and linear, and so bijective since dim j/(0(V)) = dim V. It is a morphism 
in ^(m)(ker a), and gives a natural transformation from \i o 0 to the identity functor. 

PROOF OF 2.1. Define a functor 

u: TA
r(G)- TA/r(G) 

by letting u( V, /ï) be the set of all functions ( G V A for which Ç(B) G Vfî for all B G A, and 
C(£AC) = /?(C)(C(fl)) for all B G A and CeT- with action (g • Q(B) := g • (Ç(£A<rg)); 
and grading 

MV, /3)]DAr := {C G w(V, /3) | «# ) = 0 for 5 £ DAT}. 

Define UJ on morphisms by ( C J ( ^ ) ) ( 0 = <£ ° C I* m a y ^ e checked that CJ(V, /?) and CJ((^) 

are in T^^G) and that a; is a functor. 
Define a functor 

1/: T A / r (G)^ < ( G ) 

by i/(W) := (V, /3) and IXVOK )̂ •= ^ ° rç; where 

V := {77 G WA | r/(5) G W W for all £ G A}; 
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with action (g • r])(B) := g • (r/(fiAcrg)); and grading 

Vc := {77 G V I T/(D) = 0 for all D 7̂  C}; 

and with (/?(S)(r/))(J?) := r/(5A5) for 5 G T and B e A. It may be checked that i/(W) 
and I/(X/J) are in ^ ( G ) , and that v is a functor. 

Define a function from V ^ W ) to Wby sending £ to |A|_1 £fle\(C(#))(#). T h i s i s a 

morphism in 1^(G), and is surjective and so bijective since dim ij)v(W) = dim W. It is a 
natural transformation from ijj o 1/ to the identity functor. 

Define a morphism from i/(o;(V, /?)) to (V, /?) by sending 7/ to E ^ A ^ Z ? ) ^ / ? ) , check
ing that this behaves with respect to grading and /3-maps and that it commutes with the 
action. Counting dimensions, this is bijective. It is easily seen to be a natural transfor
mation, completing the proof. 

3. The ring K and operations KF acting on fTE. For the remainder of the paper, A 
will denote a fixed finite set whose cardinality is denoted L The group A will usually be 
specialized to 2A, the group of subsets of A under A, the symmetric difference: 

BAC =(BUC)\(BnQ = (B\QU(C\B). 

Since 2A is isomorphic to (Z/2)£, a homomorphism a: G —• 2A carries the same infor
mation as a sequence of "£" homomorphisms G —> Z/2. The theory may readily be 
generalized to homomorphisms G —> (Z/p)1 where p need not be a prime, using the 
"partition groups"// in place of (Z/p)1. 

Note that 2A is a ring, using intersection of sets for multiplication. 
Let A = 2A, so that 2E is a subgroup of 2A for each E C A. We shall abbreviate 

7^ (G, y, a) to T£(G). Our aim here is to define and analyze a functor, for F C A, 

«F: T£(G)-> T£AjF(G). 

In the simpler cases FcE or FP\E = $, this corresponds to restricting and inducing 
respectively between the appropriate subgroups of G when we pass to the "real world" 
interpretation from Section 2. The relations in 3.4 below then yield the appropriate 
interpretation of KF for general F. First we define pc on (TE. 

DEFINITION. If (V, (3) is an object in T£(G), and C C A, let pc( V, (3) = (pcV, pcf3) 
where (pc(3)(S) := (—l)'5ncl/5(5). On morphisms, let pc<p = ip. It is easy to see that 
pc(V, 0) and pC(f are well defined, are in TE(G), and that p c : T£(G)~» T£(G) is a 
functor satisfying 1.1. It follows that 

Pc = I I Pa where pfl :=P{a}. 
a(EC 

Before launching into the definition of «/r, the thoroughly modern reader may prefer 
to read the universal property of KF given after Theorem 3.3. 
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Fix an object V - (V, f3) of TE(G) for some E C A, and another set F C A. Let 

{ZC,D| CCEHF.DCF} 

be a set of complex numbers (necessarily non-zero) with 
(a) z^D = 1 for all D C F; 

(b) zc, AC2,D = zCl ,C2ADZC2,D for CUC2C EH F and D c F ; 

(c) ZçDAr = ZCD f o r C c £ n F , D c F J C F \ £ 
The definition of the operation KF will be based on such a set for later convenience. 
As we shall see, a simpler definition exists which shows that tip is independent (up to 
natural isomorphism) of the choices of zcp-

EXAMPLE (A). ZCJ> - 1 f° r all C and D. 

EXAMPLE (B). ZQD = ( - l ) | o n D | ( - 0 | c | where i2 = - 1 . 

EXAMPLE (C). Let a be an involution on A for which a(E) = E and a(F) = F. Let 

Z C D = (-l)lcMcnaDl/lcnofCl. 

Actually example (b) comes from (c) by taking a to be the identity map. Verification 
of these uses the identity 

t\BAC\ =(_l) |5nC| / | f i | . |C |_ 

DEFINITION. Define an object KF<V = (KFV, KF(3) of T£AF(G) as follows. Let 

KFV = {C e V2F | C(CAD) = zaDf3(QK(D)] for C C E H F and D C F}; 

with action 

(s-0(*) = s-C(S); 
and grading 

(^FV)^ = {C e KFV | C(D) E VBAD for all D C F}. 

For each 5 C £AF, define (KF(3)(S): KFV —• /cFV by 

{[(M)(S)] (0} W = /3(S n E) {c [BA(s n F>] }. 

If <p: V —• W is a morphism in <TE(G) from ^ to ^ , define «/rc î /c^V —> K/TW by 
(«F<^)(0 = V? ° C The following may then be verified in a straightforward manner: 

(i) KFV = £ ®BCA(KFV)B as a vector space. 
(ii) (g, Q i—> g • £ is a well-defined linear action of G on KFV with y • Ç = el7XlmÇ 

(iii) If C G («FV)*, then g • C G ( « F V W * . 

[So KpV is a well-defined object in T(G).] 
(iv) (KF(3)(S) is a linear map sending (^F^OA into («F^OBAS-

(v) (KF(3)(S) commutes with the action of G. 
(vi) («F/J)(0) = id and («F/3)(S) o (ACF/3)(7) = (KFf3)(SAT). 

[So K F ^ is a well-defined object in T£AF(G).] 
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(vii) KFy> is a morphism in <IEAF(G) from KFV to upW. 
(viii) KF(\<$) = id and KF(y\ o (p2) = O w i ) ° (KF^I) 

(ix) The canonical linear isomorphisms 

(vew)2'<—>v2F®w2' 
C I—» (7TV O £, 7TW O Q 

[B^(ÇX(B),C2(B))}+— (CI,C2), 

where 7Ty, 7i> are the projections for V®W, have the following properties. 

(a) They map nF(V 0 W) to and from /cFV 0 KFW. 

(b) They preserve grading and commute with the action. 

(c) They are natural with respect to pairs 

<pi: (V,/3) — (V,/3') and p2 : (W,7)-> (W,7') 

of maps in T£(G). 

These statements prove the following. 

THEOREM 3.1. 77œ aAovi definition yields a functor KF: TE(G) —* T£AF(G) ««J a 
natural isomorphism 

KF(<V ®w) = (KFV) e (/CF'W). 

COROLLARY 3.2. The functor KF acts on isomorphism classes to produce a homo-
mo rphism 

KF: TE(G) -+ TEAF(G) 

of groups (for which we use the same name). 

REMARK. For short term gain but long term pain, KFV could simply have been defined 
to be V2 with the same formulae for everything else. Restriction of the functions £ 
from 2F to 2F\E would give an isomorphism in TEAF(G). This shows that our definition 
of KF is independent of the choices of ZCD-

The functor KF may also be defined implicitly by a universal property, a specialization 
of the following theorem. Continue with a fixed V = ( V, /?) in IE (G). Consider the class 
of all quadruples (Z), Z, 7, UJ) where Z) C A, DHEHF = 0, (Z, 7) G TD(G), and u: V —> Z 
is a map in T(G) such that 1(S) OCJ = UJO /?(S) for all S C D H E. 

DEFINITION. Define 6yiF = <5: V —> KFV by 

zB#P(B)(y) ifBcEHF; 
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THEOREM 3.3. The quadruple (EAF, KFV, K>FP, à) is in the class just specified. It is 
universal in that class in the following sense. Given (D, Z, 7, d) there is a map CJ: KFV —> 
Z such that 

(i) UJ = LJOS; 

(ii) CJ is linear; 
(Hi) 1(S) OLJ = LÙO (nF(3)(S)for allScDH (EAF). 

IfD D EAF, then CJ is unique with respect to satisfying (i), (ii), and (Hi). For any D, the 
map CJ may he chosen to be a ^(GYmap. 

REMARK. Specializing to quadruples whose first component D is EAF then gives a 
universal property implicitly defining KF. The previous construction(s) may be thought 
of as proof of existence from this point of view. 

PROOF. It is straightforward to check that S is in <T(G) and that (KF(3)(S) o S = 6 o (3(S) 
for all S C E \ F. Given (D, Z, 7, a;) define 

<*0= E W){UJ[C(B)]}. 
BcDHF 

Then (ii) is clear. To check (i), 

û[Sm = E W)Mè(v)(B)]} 
BcDHF 

E 1(B){LJ[ZB$(3(B)(V)]} by definition of 6 
BcDDFDEnF 

= 7(0)Mz0?0/3(0)(v)]} s inceDn£f7F = 0 

= o;(v), 

as required. To verify (iii), let S C D D (EAF). Then 

[CJO(KF(3)(S)](Q= £ 7(B){uj[(KFf3)(S)(Q(B)]} 
BcDDF 

= Y, 7(B){u[/3(SnE){aBA(SnF)]}]}. 
BcDHF 

But S HE Cl DH E so LJo(3(SnE) = l(SnE)ou;. We obtain 

E [7(5)o7(5n£)o^](C[5A(5nF)]) . 
flCDHF 

Now 
SHFCDH (EAF)nF=(DHEnF)A(DnF) = Df lF , 

so we can make the variable change B \—> BA(S Pi F), yielding 

E {i[BA(snF)]o^(snE)ocj}aB)= E 7(*AS){O;[C(£)]} 
BCDDF BcDHF 

since(SnF)A(SnE) = S 

= 7(S)(û(0) 
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as required. 
To prove uniqueness, note that KFV is spanned by the set 

{(KF/Î)(Ç)0(V)] I v G V, C C EAF} , 

and CJ is determined on elements of this set by (i) and (iii), as long as D D EAF. The 
map CJ as defined in this proof is easily seen to preserve grading and to commute with 
the action, proving the final statement in the theorem. 

We shall use the functors pc and «f to generate a ring K, which will act on the disjoint 
union T*(G) of the T£(G), and on the graded group T*(G) of all TE(G) making it a 
graded module. To do this we must find all the general relations which these functors 
satisfy under composition. 

THEOREM 3.4. There are natural isomorphisms 

(i) pcKF = KFPC 

(ii) pCKF = PC\F*F; 

(iii) KFKJ = ®ccFrv^FAjPc = KJ^F-

COROLLARY 3.5. Letting /c/ := «;/,•!, we have 
(iv) pc^F = t f jfC C F; 
(v) KFKJ^ KRJJifFnJ = $; 

(vi) K2
F = © C c F pc. 

(vii) pjKi = Kipj; ptKi = /€/; «? = i d 0 p / ; 

(Vlll) hv- = K[ (x3 K>i! ftiftj = : failli' 

PROOF. These are all immediate from 3.4. (The reader may have also noticed that 
(vi) follows by induction on \F\ from (v) and the last identity in (vii). Also (iv) follows 
by induction on | C\ from the initial case, | C| = 1.) 

Before proving 3.4, let us digress to define the ring K. 

COROLLARY 3.6. Reinterpreting the functors KF and pc as operators on the graded 
abelian group T*(G) := {TE(G) | E C A}, all the identities (i) to (viii) hold with = 
replaced by =, and © replaced by +, and id replaced by 1. 

DEFINITION. Temporarily regarding KI as a "variable", define a commutative ring 

K := ZK- : i G A]/(^ - 2/c/ : i G A), 

with grading over 2A determined by having K( in grading {/}. Formally define 

/9i=/C?-l , pc =11 Ph «F=I1 /C«-
iec ieF 

We used (viii) to define K, and now all the relations (i) to (vii) follow formally in K 
[with replacements as in 3.6]. As an abelian group, the F-th component KF of K is free 
abelian with basis 

{PCKF\ Cf lF = 0}. 
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Thus, K = T}1 as an abelian group. In fact, K is the tensor power of "£" copies of 
Z[x]/(xi — 2x). By identifying the formal symbols in K with the operators in 3.6, each 
T*(G) becomes a 2A-graded module over the 2A-graded ring K. Note that we have used 
"external" gradings for K and T*(G) [inhomogeneous elements are never considered], 
whereas it was more convenient for objects V in TiG) to have "internal" gradings. 
The fact that 2A occurs both times as the group of grading parameters is more or less 
accidental: for example, //-graded representations produce a collection of Grothendieck 
groups which form a 2A -graded module. 

PROOF OF 3.4. First we shall show that, to prove (ii) and (iii), it suffices to give direct 
proofs of (iv), (v), and (vi). Then we give the proofs of (i), (iv), (v), and (vi). 

To deduce (iii) from (i), (iv), (v), and (vi): 

KFKj = (KF\jKFCu){KjnFKj\F) by (v) 

= (KF\J)( © Pc)(KJ\F) by (vi) 

= (KF\JKJ\F)( © Pc)by(i) 

= ( « F A / ) ( © Pc) by (v). 

To deduce (ii), 

PCKF = PC\FPCHFKF = PC\F^F by (iv). 

To prove (i) and (iv), fix C, F and 1/ = (V, (5) G TE(G). Consider pairs (y, uS) where 
j = (y, 7) G T£AF(G) and UJ: pcV -> Y is a map in T(G) such that, for all S C E \ F, 

l(S)ou; = (-lfrs\ujo(3(S). 

Except for the sign (—l)'cas', this gives the universal property defining K^V. Using that 
property, it is easily verified that both (PCK>FV, pc^v) and (KFPCV,6PCV) are universal 
among such pairs. This proves (i). But when C c F , the set C H S is empty, the sign 
disappears, and so (iv) follows as well. [Following through the details, the reader can 
verify that an isomorphism ip: pc^F^ —• KFpçV for (i) is given by 

M0]m = (-ifnclaB). 

In particular, although PC^FV = KFPCV in *T(G), the identity function is not a map in 
rTEAF(G)J from pc^F^ to KFpcV, except when C and F are disjoint.] 

To prove (v), we shall show that KJKFV has the universal property characterizing 
KFUJV. For this, the more general form given in 3.3 will be useful. Suppose given 
(£>, Z, 7, UJ) such that 

DDEA(FUJ); D n £ n ( F U 7 ) = 8; (Z,7) G TD(G); 
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and u: V —> Z satisfies 7(5) o ^ z ^ o f3(S) for 5 C D H F. Consider the diagram 

V K f V KjKfV 

\

(*) I (**) . / 

z 

By considering the object (Z, {7(5) | 5 C D \ J}) of TD\y(G), and noting that (D \ J) H 
EHF =(è,D\J D FAF, and (D \ 7) H E C F> H F, it follows from 3.3 [with D in 
3.3 changed to D \ J] that there exists a unique T(G)-map o;i such that (*) commutes 
and 7(5) o UJX = ux o («F/?)(S) for all 5 C (D \ 7) n (FAF) = FAF = DH (FAF). 
Since D n (FAF) H 7 = 0, and D D (EAF)AJ we may apply 3.3 again [this time 
with £ in 3.3 changed to FAF, and F in 3.3 changed to / , and V changed to KFV] to 
deduce the existence of a unique T(G)-map UJ2 making (**) commute, and such that 
7(5) o UJ2 = UJ2 o (KJKF/3)(S) for all 5 C D n (EAFAJ) [which equals EAFAJ] as 
required. 

As for (vi), the object 0CCF P C ^ is clearly isomorphic to A/r^ = (A/rV, A/r/3), where 

AFV = Vz as a vector space, 

with grading(AFV)fi := {77 G V2' | 77(C) G VflAc for all C C F}, 

with action^ • 77XC) := g • (77(C)); 

and where(AF/3)(5)(77)(C) = (-l)|5nc|/3(5)(77(C)) for 5 C F. 

We shall realize KFV as V2 as indicated in the remark after 3.2. Thus, as a space, 

KFKFV = (V2 ) 2 , 

since F \ (FAF) = FHE. Define 

V?: A/rV—• KFKFV 

by 
^(77)(Q(/))= 53 (-l)lfincl/3[CA(JBnF)](77(5)) 

for all C C F Pi F and D C F \ F. Linearity of (/? and naturality are easy to see. We must 
prove that (p is bijective, preserves grading, commutes with the action of G, and that 

if O (XF(3)(S) = (KFKFf3)(S) O y 

for all 5 C F. 
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Since XFV and KFKFV both have dimension equal to (dim V)2 ' , bijectivity follows 
from injectivity. To prove injectivity suppose that (̂77) is zero. Writing B = J U D for 
J C F D F, the equation (y2(r/)(C)(D) = 0 becomes 

£ (-l) |crv|/3(/)[77(7UD)] = 0. 
/cFn£ 

for all C C F n F and D C F \ F. But, given a finite set W, a subset { v x : X c W } o f 
a vector space, and linear relations T,xcw(— l)'rnx 'vx = 0 for all Y C W, we get vz = 0 
for all Z C Wby applying Ercw(~l)'FnZ ' and interchanging summation variables. Thus 
r)(J U D) = 0 for all J C F H F and D C F \ F, so 77 = 0. 

If 77 is in (\FV)R, then (5(CA(B H F))(r/(5)) is in V ^ A C A ^ R E ) = ^ A C A ^ E ) = 
V W A Z ) f o r a l l C c F n F , D c F \ F , # C F with B\E = D. Thus y?(r/)(C) is in 
( « F ^ A C f° r ail C C FPi F, and so (̂ (77) is in (KFK>FV)R, as required. 

The equation 
<̂ (g • 77XCXD) = (g .^(77)) (Q(D) 

is an elementary calculation with the definitions. 
Finally, iterating the definition of (nF/3)(S) yields the formula 

(KFKFP)(S)(Q(Q(D) = (3(S\F) {aCA(S n F)W)} . 

Thus 

K«F«Fi9)(S) o ^](r/)(Q(D) 

= i 8(S \ f ){^ ) [CA(SnF) ] (D)} 

= P(S\F) E (-l) | jBn[CA(5nF)] |/3[CA(5nF)A(^nF)](77(5)) 

= E (-l) l^ l+ |BnC|/3[CA(^nF)AkS](77(5)) 

= E (-D | f înC|/3[CA(JBnF)]{(-l)lf îaSl^)(77(5))} 

£\£=D 

= (^[(AF/3)(5)(77)](C)(D), 

as required. 

4. The operation Y on £(2 , m). Now fix a: A —> A such that az = id. Let (G, y, a) 
and (G', / , <r') be objects in £(2A, m). 

PROPOSITION 4.1. (i) The following operation on the set G x G' defines a group 
G x J G': letting z = /*, define 

(g,g')(h,ti) = (zMna^gh,g'ti). 

(ii) Definingâ(g, g') := a(g)Aa,(g/) gives a homomorphismâfrom G x® G' to 2A. 
(Hi) The kernel of a contains {(y1,/7) | 1 < ij < 2m}, which is a central subgroup 

of G x? G'. 
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PROOF. (We' 11 omit the prime on a' when that on its argument eliminates ambiguity.) 
To check associativity 

[ ( £ , g')(h, ti)](k, k') = (Z\^navh\+\a(8>h>)naak\gh^ g W ) < 

Bracketing the other way yields the same answer except that the exponent of z is 

\ati H aak\ + \agfn aa(hk)\ = \ati H aak\ + \{ag D a{ah/\ak)\ 

= \oti H aak\ + \{ag H aah)A(crgf H acrk)\ 

= \oti H aak\ + \ag' H aah\ + \ag' n aak\ (mod 2). 

This agrees (mod 2) with the previous exponent of z, as suffices, since z2 = 1. It is easy to 
see that (1G, IGO is m e identity element, and that (g, g') has inverse 
The proof of (ii) and (iii) are equally obvious calculations. 

a 

DEFINITION. Let G Y G' be the object in Ç(2A, m) whose underlying group is the 
quotient 

( G x ? G , ) / { ( v - 1 , y y ' | l < / < 2 m } , 

with central element y « equal to the image of (jy, 1), and with homomorphism a « 
GYG' _ GYG' 

obtained by passing to the quotient with a. 
a 

Elements ofGYG' will be denoted by ordered pairs which represent them. The same 
symbols y and a will normally be used for the "add-on" components of several different 
objects in a discussion, as long as no ambiguity threatens. Thus we have 

°(g, g) = vg&og 

with three meanings for a, and 

y = (y,l) = (l,y) 

with three meanings for y. 

REMARK. The formula 

(g,g\h,ti) = (gh,&s'na°h\g'ti) 

will define a group Gx®Gf which in general is not isomorphic to G x£G'. It does however 
produce a quotient group as in the above definition which is naturally isomorphic to 

a 

GYG'. 

DEFINITION. lf9:G-+H and 0':G' —> H' are morphisms in Ç(2A, m) define 

0 Y 0': G Y G' -> # Y //r by (g, g') »-» (0g, #V). 

It is easy to check that this is well defined and behaves with respect to composition and 
identity maps, yielding the following. 
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a 

PROPOSITION 4.2. The above definitions give a functor Y: Ç(2A, m) x Q(2A, m)^ 
Q(2A,m\ 

Let "Tr" = (Tr, y, a) be the trivial object in which Tr is the cyclic group of order 2m 
a 

generated by y, and a is the trivial homomorphism. The following basic properties of Y 
are proved by straightforward calculation. 

PROPOSITION 4.3. There are natural isomorphisms: 

(i) (G Y H) Y K —>GY(HY K) 
\<&,h),k)^(g,(}i,k))\ 

(ii) t:GY H —>HY G 
(g,h)^z\°hna°*Kh,gY 

(Hi) G Y T r ^ - G ^ T r Y G 
( g , l ) - g ^ ( l , g ) . 

PROOF OF (ii). We shall do the calculation for this one in order to make a point below. 
The product of the images of (g, h) and (g', W) is zN(hh', ggf), where 

N = \ahnaag\ + \ah' H aagf\ + \crgn aah'\. 

The image of the product of (g, h) and (g', h') is similar, except that the exponent of z is 

\ah fl aagf\ + \a(hh') D aa(ggf)\ 

= \ahn aag'\ + |(ahAah') D (aagAaagf)\ 

= \ah PI ocag'\ + \ah D aag\ + \ah D aag\ + \ahf D aag\ + \oh! D acrg'| (mod 2). 

This agrees with N, since |crg H acr/z/| = |a7z' fl ocag\ using the fact that a is an involution. 

REMARK. The last little argument shows that it makes no difference if we alter the 
appearance of the exponent in the definition of the multiplication to \crhn otcrg'\, or of 
that in 4.3 (ii) to |erg Pi ocah\. Note that the power of z is definitely needed in 4.3 (ii). 

a . 

5. The operation XI Continue with A = 2A and the involution a on A. First we 
shall define a binary operation on the category T. 

DEFINITION. Given objects V and V' in ̂ (G) and ^(G1) respectively, define an object 
a a 

V (8) V in <T(G Y G') as follows. The underlying vector space is V (g) V. Grading is 
defined by 

(v®vf)B:= £ e(vc ® v;AC), 
CcA 

a 

identifying Vc ® V'D with a subspace of V (g) V. The action of G Y G' is defined by 

(£, g) ' (v ® v') = (-l)l^'naClgv 0 gV for v G VC-

PROPOSITION 5.1. V®V' is well defined. 
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PROOF. Evidently we have a well defined graded vector space. The right hand side 
of the action formula is v 0 v' when (g,gr) = (y~\yfy for any j , and is bilinear as a 

a 

function of (v, v') for each (g, g'). Thus each element of G Y G' gives a well defined 
linear endomorphism of V 0 V', which is multiplication by ein/m or by 1 when the 
element is Cy, 1) or (1,1) respectively. If v G Vc and v' G V'D, the right side is in 
VcAag ® V'DA , C ( V 0 OcADAcrC^g) a s required. It remains to check associativity of 
the action. We have, for v G Vc, 

(ft, A') • [(g, g') • (v 0 v')] = (-Ifhg • v 0 /*V • v' 

[(/i, h')(g, g)} • v 0 v' = (-l)M/z£ • v 0 /*V • v7 

where 

N = \cjg H aC| + |<T/I' PI a(CAag)| 

Af = |crA' PI aag| + \a(h'g') H aC|. 

These agree mod 2, which suffices by linearity. 

DEFINITION. Given morphisms y: V —> W in f (G) and (/: V —> W' in T(G'), define 
a a 

(p ® if' to be p ® tp':V <g)Vf —+ W<g)W'. (Recall that the underlying vector space of 0 
applied to two objects is simply the usual tensor product of the underlying vector spaces 
of the objects.) 

a a a 

It is easily checked that <p 0 (// is a morphism in T(G Y G') and that 0 behaves 
properly on compositions and identity morphisms, yielding the first part of the following. 

a 
PROPOSITION 5.2. The above definitions yield a functor 0 : T(G) x TCG')^ 

a 
T(G Y G'). The following are natural isomorphisms. 

(0) pB(V 0 W) = V 0 PBW —• (PBV) 0 W 
Forw G ^ D , V ® W M (-l)l f inDlv0w, 

(i) (V® HO 0 V < > (V 0 V) @ (W0 V) 
(v, w) 0 v7 < > (v 0 v', w 0 v') 

(ii) (V 0 V) 0 V" < > V 0 (V 0 V") 
(v 0 v;) 0 v" < • v 0 (V 0 v") 

w/zere V" is in <T(G") arcd w identify (G Y G') Y G" with G Y (G' Y G") wsmg f/w? 
isomorphism given in 4.3 (i). 

(Hi) r.V^V1 < > V 0 V 
v0v '< > ( - l ) l c n a Z V 0 v 

a a 
for v G Vc, v' G V'D, where we identify G Y G' with G7 Y G using the isomorphism t in 

a a 

4.3 (ii). [It is safer to write this V 0 V' = f(Vf 0 V); see the definition of restriction at 
the start of Section 6.] 
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PROOF OF (iii). The checks required are all mechanical, with (iii) being the most 
interesting in showing that the map commutes with the action: The image of (g, gf) • (v(g)v') 
on the right side is 

(_l^g'naC\(_^\(CAag)na(DAcTg')\g,vr ^ g^ 

whereas the action of z}ag'naag\g'^ g) on the given right side is 

The exponents agree (mod 2), as required, using twice that a is an involution. 
Now restrict the sets E and E' to be in 

2a :={Be2A | aB = B}. 

Our objective is to produce a more general operation 

M: <TE(G) x T £ ' (G ' )^ T£A£ '(G Y G') 

which is, among other things, functorial, associative, and bilinear with respect to the 
action of the ring 

Ka:={pCKF'-Fe2a,Ce2A}. 
a 

There will be some choices involved, since, given such an operation txi, taking {V, V) 
a 

to PEHE'V IX V can be seen to also have these properties. 
To begin, let E and E' be any subsets of A, not necessarily invariant under a. 
DEFINITION OF ^{R,R'). Given objects V = (V,/3) in <TE(G) and V = (V',/3') in 

1e{G'\ for all R C E and R' C £', define 

V w ( # , #') = W *') : V® V7 -+ V ® V 

by, for each subset D of E', 

iKR,^)\v^'D = (-D | / ?naD|/3W ® /?'(*'). 

PROPOSITION 5.3. The function ip(R,Rf) is an isomorphism in ̂ {G Y G') between 

V <g> V and pRAR, V d V. If also T CEandT' C £', f/œn 

I/J(RAT,R'AT') = (-l)\TnaR'\ilj(T,Tf)oil;(R,R') 

= (-l)lRnaT'^(R,Rf)oilj(T,T'). 

a 

COROLLARY 5.4. For R C E n £", f/ie automorphism ^(R, R)ofV® V' has the 
properties 

ijj(R, R) o i/;(r, T) = (-l)lRnaTlilj(RAT, RAT) \for TcEHEf] 

i/j(R,R)2 = (-lfnaR\id 

^(0,0) = id. 
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PROOF OF 5.4. The last equation is immediate from the definition, the first is a special 
case of 5.3, and the middle one is immediate from the other two. 

PROOF OF 5.3. Analogous properties of the maps /3(R) and (3f(Rf) give the last 
equation, the bijectivity of i/>(/?, Rf), and that it alters grading by RARf. To prove that it 
commutes with the action let v G Vc and v' EV'D. Then 

#K,/?')[(£,#') ' W v ' ) ] = (-l)l^ /na^(-l)l j«na<DA^l/J(i?)tev) 0/3/(/?')(sV) 

(g,g')W(R,R')(v 0 v')] = (-l)\R^D\(-lf^CAV\g • /J(tf)(v) 0g ' • ^ , ) ( v / ) . 

But /?(/?) and f5'(R') commute with the action, and the exponents agree (mod 2), as 
required. 

Now we shall be able to write V ^ V ' a s a direct sum of "2l£nE'l" subspaces, each of 
which is an intersection of eigenspaces for the operators i/;(/?, R). These operators have 
eigenvalues either ±1 or ±/, depending on R, by 5.4. To split V 0 V we just write down 
formulae for projectors 7r(C): V 0 V —> V 0 V, one for each C C EDE'. 

DEFINITION OF 7r(C). With the above notation, let 

7T(Q = 2-\EnE'\ £ (-1)I^I^^(D,D). 
DC£H£' 

PROPOSITION 5.6. The maps TT{C) are endomorphisms in <T(G Y G1) of V 0 V 

(i) ^(R,R) o 7r(0 = (-l)\Rnc^-i)\RnaR\7r(C) forR CEHEf; 
(ii) 7r(C) o 7T(fl) = bs,c^B) (using the Kronecker delta); 

(Hi) ECCEDE' n(Q = id 

a a 

COROLLARY 5.7. In T(G Y GO, the object V 0 V splits as (BCCEHE' Im7r(Q. Fur
thermore, 

Im7T(C) = p | [(-l)\Rnck-i)lRnaRl]-eigenspaceofilj(R,R). 
RcEHE' 

a 

PROOF OF 5.7. Being linear combinations of the T(G Y GO-morphisms i/>(D, Z)), the 
maps 7rc; are also morphisms, and so have images which are sub-objects of V 0 V. 
The splitting of V 0 V is then immediate from 5.6 (ii) and (iii). By 5.6 (i), Im7TCj is 
a subspace of the given intersection of eigenspaces. But these intersections are a family 
of linearly independent subspaces, whereas the family {Im7r(C) | C C EC\Ef} spans 
V 0 Vf, so we must have equality. 

In the Proof of 5.6 there are two identities which are needed later as well. If B and C 
are sets, then 

|£AC| = |#| + |C | -2 |#nC| . 

Thus 
^AC|=|.|n|.|q(_1) |/inc| ( 5 8 ) 
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If C C B, then, using the Kronecker delta, 

£ ( - l ) | t n D | = « 0 . c 2 | B | (5.9) 
DCB 

PROOF OF 5.6. (i) By 5.4 and the definition of 7r(C), 

_ 2~\EnE'\ y /_|y(/?Afl)rx:|£-|(/?Afl)na(/?AB)|/_1x|/fna(/?Afi)|^m g\ 

BcEHE' 

Iterating (5.8), the coefficient of i/>(2?, #) inside the summation is 

/ _ i \\RDC\+\BnC\ >\RnaR\ ARHaB] ABHaR\ :BHaB\/ i VV/_ i \\RC)aR\ ,_ i x\RHaB\ 

where 

AT = |fl n a/? n fl n aB\ +|# n a/? n B n a/?| + \R n a/? n # n aB\ 
+ \RnaBnBnaR\ + \RnaBnBnaB\ + \BnaRnBn aB\ 

= \RnaRnaB\ + \RnaRnB\ + \RnaBnB\ + \BnaRnaB\ (mod 2). 

Since a is an involution, we obtain 

\RHaRH aB\ = \RDaRnB\ and \RnBHaB\ = \BHaBH aR\ 

giving TV = 0 (mod 2), and we also obtain \RHaB\ = |Z?nor/?|, so the coefficient becomes 

( _ i \|/?nc| / _ j \|flnc| -|/?na/?|/_ j \|/*n<*fl| -|flnafi| / _ j\|/?na/?|/ j \|/?n<*#| 

= (_ 1 \l^nC! c_nl^na/îl/_ 1 \|finc| -\Br\aB\ 

Thus 

^ , / ? ) o ^ c = (-l)l / ?nCl(-/)l / ?n^l2-iEr^'l £ ( - l ) l f l n c l | l i l n a f l l ^ , f i ) 
BCEHE' 

= (-l)l*ncl(-/)!*na/?l7r (C), 

as required, 

(ii): 

TT(C) o TT^ = 2-l£nE 'l £ (~ l ) lD n c l | lD n a D^(D,D)o7r ( l , ) 

Dc£n£' 

Dc£n£' 

_ 2~\EnE'\ll
{B) V (—nK^n^^^nOI 

DcEHE' 

_ 2-|£n£'|7r(fl) y^ (_]\l^n(fiAQ| 

Dc£n£' 

= 2H^V<% f i A C2l^by(5.9) 
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(iii): 

£ n(Q = 2-\Bne\ £ ilBnaBli>(B,B) Y, (-D | B n C | 

CCEDE' BCEHE' CcEHE' 

= 2-\^e\ £ ilBnaB]ip(B,B)èB^EnE'\by(5.9) 
BCEHE' 

= /i0l^(070) = id. 

DEFINITION. Let C0 be the set of those elements in E n E' which are fixed by a. 
Abbreviate 7r(Co) to 7r, and let Uw := Im7r. 

a a 

The object U<w of rT(G Y G') will be the first coordinate of V \x\ V. The choice 
referred to earlier was just made when we chose the image of 7r(Co) rather than some 
other 7T(C). 

At this point we must take E and E' in 2a; that is, aE = E and aE' = E'. The 
subgroup 2a is isomorphic to (Z/2)il+i2, where A has "£i" fixed points under a, and 
"£2" doubletons interchanged by a (so that £ = t\ + 2li). 

PROPOSITION 5.10. (i) For S c EAE', let {(5 !> /?')(.$) = ^{S n £, 5 n J?). 77w?/i */w? 

pair (V <g) V7, /? <g> /?') w an ^ > c r m <TEAE'(G Y G'). 
fn'j /f S C EAEf, then ix commutes with ̂ (SHE^ SHE'). In particular, i[)(SP\E, SHE') 

maps Uw into itself. 

PROOF. The first part is immediate from 5.3. As for (ii), it suffices to prove, for each 
BCEDE', that xj;(S HE, S H E') commutes with T/>(£, B). Using 5.4, we need only note 
that 

\Bna(SnEf)\ + \SnEDaB\ = \aBnSHEf\ + \aBnSHE\ 

= \aBnSn(EAE')\ = \aBHS\ = |0| = 0 (mod 2), 

since aB C a(EHEf) = EH E' and S C EUÉ \ EH E'. 

DEFINITION OF V M V. Let V M V be the pair (Uw,l) where 7(5) is the 

restriction to Uvv, of (/? ® /3')(S) = V>(S H E, S H i?). 

THEOREM 5.11. (i) The object V^W of <TEAE\G Y G') is well defined, 

(ii) We have isomorphisms in ^^'(G Y G') 

(V®V',0®P')* 0 pdV^V') ^K2
EnE,(Vt^V'). 

CcEHE' 

PROOF, (i) The map 7(5) is a well defined linear map by 5.10. Since ^(SHE, SHE') is 
a a 

an isomorphism from V <g> Vf to P(snE)A(snE') V ® V by 5.3, and since (SH£) A(SnZs') = 5, 
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it follows that 7(5) is an isomorphism from Uw to psUw- It remains to prove that 
7(5)7(7) = 7(5AT) for subsets S and T of EAE'. But 

i)(s nE,sn É)i)(j n £, r n £') = (̂(SAr) n £, (SAT) n £') 

by 5.3, as suffices. 
a 

(ii) By using 5.7, this will follow if we can find an isomorphism between pcW M ^ ) 
and (Im7r(C°AaC), restriction of /3 (8) ft). The map i/;(C, 0) yields such an isomorphism. 

PROPOSITION 5.12. If<p: V —> <W and (/: V —> if" ^re ma/w m T£(G) ÛWd TE'{G'), 
respectively, then <̂  ® <// maps Uw into UMW- The resulting restriction is a morphism 

from V \X V to <W \X W in rTEAE'(G Y G'\ which we shall denote Lp M (/. 77ien we 
have a functor 

M: T£(G) x TE\G') —> T£A£ '(G Y Gf). 

The proof of each part is a short calculation. 
a 

Now we shall give a universal property which characterizes V M ^ up to a unique 
isomorphism. Consider the class of all pairs (T^, i/), where W = (W,8) is an object in 
<TEAE'(G Y G') and i/: V® V —• W is a morphism in T(G Y G') such that the following 
two diagrams commute: 

v < g > v - w 
i)(SHE,SnEf) | | 8{S) 

V®V —IT- W 

v®v 

for all S C EAE'. [The first is equivalent to the commuting of 

ip(B,B) 

v®vf 

foral l#C£n£' . ] 
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DEFINITION. Let p: V ® V —• U<vv be given by n essentially; i.e. p(x) = 7T(JC); i.e. TT 

factors a s V 0 V ' A JJvv, c_> V® V. 

a 

PROPOSITION 5.13. The pair (Vîx^V ,p)is a pair as above and is universal among 
such pairs in that, given (W, v) there is a unique linear map v\ Uvv —• W such that 

a A ' a 

v = v o p. Furthermore, v is a morphism V\xV -><Win TEAE (G Y G'). 
a 

PROOF. It is immediate from the construction that (V tx V ,/x) has the required 
properties. The existence of a linear map v with v - v o p is equivalent to having 
Ker7r C Kerz/, which is immediate from the first diagram which v satisfies. Since p is 

a 

surjective, v is unique, and is a morphism in T(G Y G'). Now consider the diagram 

v®y 

ip(snE,snE') 

V®Vf 

The triangles, the trapezoid and the entire diagram commute. Hence, so does the square, 
as required, since p is surjective. 

REMARK. One could alternatively formulate a universal property for pairs (TV, z/), 
for bilinear maps v_\ V x V —-> W satisfying certain properties. Take v_ to be V x V —-> 
V 0 V' -^ W to work out what these properties are. 

Next are the distributive, associative and "commutative" properties of the operation 
a 

X]. Properties (o), (i) and (iii) follow using the universal property, whereas a direct 
argument (surprisingly intricate, it seems) appears to be easier for proving associativity. 

THEOREM 5.14. There exist natural isomorphisms: 

(o) pD(V M V) = V txi pDV * (pD<V) M V; 

(i) W e ^ N / r f f i M V) e f t M V)for V\ and <V2 in <TE(G), and V in 
rTE'(Gf); 

(ii) {V M V) M ^ " ^ ^ M (^ ' M ^")/0r ^, ^' , < "̂ m <TE(G), T£'(G'), T£"(G"), 
respectively, [with E", E' and E all invariant under a, of course]; 
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(iii) V X V = pc0V X V where GYG' is identified with G'Y G by means of the 

isomorphism (g, gf) ^ z\°g'™*°g\(g', g) 0f4.3 (ii). 

[Recall that Co consists of those a in E H E' with aa = a. Referring forward to 

Section 6, it is better to write this V XI V1 = t*pCo V rx V.] 

PROOF, (O) This may be proved using the universal property, by considering maps 
which shift grading by D. Alternatively, the isomorphisms of 5.2 (o) preserve the direct 
sum decompositions of 5.7. 

(i) By abstract nonsense, taking V = V\ 0 Vi in the universal property, it suffices to 
find a map 

Ç: (Vi 0 V2) 0 V ' - ^ Un,xv 0 Uw 
a a 

such that the pair [(^i M ^ ) 0 ( ^ X V ), CI *s universal. Such a map is determined by 

C (vi, V2) ® v' \—> (7iy,y/(vi ® v'), nv2v(v2 ® v')), 

as may be readily checked. [We have subscripted the maps IT in the obvious way, to 
distinguish them.] 

(iii) The map [using r from 5.2 (iii)] 

\:V®V^*V®V ^ V'®V ^ [ V <V'V 

gives a pair (fpc0 V M ^ , A) which is universal in the same context that (V XI V , pvv>) 

is universal, as suffices. To check this, first note that À is a morphism in <r£A£ (G Y G') 
since it is a composite 

v®V -* t\V ® vo — P C / ( V ® v) -> rPCo^v 

of such morphisms. The commutativity of the first required diagram for A is, for B C 
EHE', 

v®v • V ® V-
^(Co.0) 

v'®y 

VVJ(BM) (-l)\BnaB^vlv(B,B) i>v>lB.B) Un» w 

V®V V ® V 
^'(Co,0) 

V ' ^ V 

The triangle commutes, being one of the diagrams in the universal property for 
a 

V X V'. The middle square commutes by 5.3. The left square commutes since both paths 
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sendv(g)v' E VC®V'D to(-lf(3'(B)(v')®P(B)(v) withN = \BnaB\ + \CnaB\ + \CDaD\, 
The commutativity of the second diagram is, for S C EAE', 

V®Vf^+Vfi y^m^U^^yJ^jj 

V -r~V®V • V'(Q,0) 
V'(g) V Uv>v 

where, from left to right, the vertical arrows are Vv.̂ 'OS H £, 5 D £')> VV'^(S H £', 5 D £) 
twice, and 7^^(S)- Verification from right-to-left is similar to the previous one: by a 

diagram for the universality of V M ̂ , by 5.3, and by a direct calculation, this time the 
answer being 

(__Y)\cnaD\As^naC\pf^s R £/ ) (v / ) 0 ^ n ^ ^ 

and depending on E and E' being invariant under a. Finally, we check that A is universal. 
Given ( ^ , v) consider the diagram 

V® V ' - 1 * V'®V *£**>—Yvv^u* 

Linear maps ip\, then </?2, then (/?, exist uniquely to make the triangles commute 
because the maps at the top are isomorphisms in the first two cases and universal in the 
case of (p. 

(ii) Rather than attempting to formulate a universal property which both ("tri") functors 
satisfy, we shall give some explicit formulae. First note that, by 5.4, for a, b in EH E' 
andRcEHE', 

ip(a, a) o \[)(b, b) = \p(b, b) o \j)(a, a) 

and 

aeR 

where fovb(R) is the number of two element sets {a, aa} contained in R. It follows that 

aeEHE' 
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where Ia(T) is the *lflnaal-eigenspace of 7. Given a third object V" = (V", (5") G TE" (G"), 
define endomorphisms ^n(a), feO?) and i)n(a) of V (g) V' (g) V" by 

^12^) = ipvv>(a,a)<g) id fora e EDEf 

^23(«) = id ®VVv"(tf? <z) for flGf'n Zs" 

and 

Wi3(fl)](v ® v' 0 v") = (-l)|fln(CAD)|/3(fl)(v) 0 v7 0 /3"(a)(v") 

for v G V, v' G V£, v" G V£ and A G £ H £ " . NOW 

l /txi1/",l/" ' 

= f| laty « (a,a)) 

•ûG£ , n£ / / \ £n£" 
n 

•a£EnE"\E'nE" 
n [ i v 

v . V'l 

n /fl(^23(a,fl))ln[ n /«(^i3(«,«))]n[ n / « O M * , * ) ) ] . 
a^EnE'nE" 

aeEHE' 
a^EHE'nE" 

aeEHE' 

Similarly, removing the condition a £ EDE' C\E" from the left term and placing it on 
the right term gives a formula for U « . Now let 

V= II (̂ l2(*) + fe(*)). 

fce£n£'n£" 

Using the following identities (readily verified using 5.4): 

and for a ± b, letting [S, 7] = S o 7 - 7 o 5, 

V23O) o Vi2(«); 

Wl2(a) ,^ l2(«] = [^23(û),^23W] = Wl2(a),^23(*)] 

= W>i3(<0, ^i2(*)] = [^i3(fl), feW] = 0; 

we see that p> is independent of the order in the product, that it maps £/^xivvi/" into 
Uvywv", and that 

(p2 = (-2yEnE,nE"\[d. 

It is clear that p preserves grading and commutes with the action since each of ̂ \i(b) and 
i>23(b) do. Thus it remains only to check that p commutes with the maps ^ ^ ^ « ( 5 ) 
and (5<vy^v"(S) for all S C EAE'AE". This follows using 5.3. 
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DEFINITION. The collection {TE(G) : E <E 2 a}, which we shall denote ra(G), is a 
group graded over 2a, and in fact is a graded module over the 2a-graded ring Ka defined 
after 5.2. 

a 
By 5.12, the isomorphism class of V M V depends only on the isomorphism classes 

a 

of V and of V. By 5.14 (i), the operation M, after passing to isomorphism classes, 
extends biadditively to all of TE(G) x TE (Gr), and so yields 

M: Ta(G) x J^iG') -> T'iG Y G') 

[which is ÀTa-bilinear as we see in Section 9]. It is immediate that the associative and 
a 

"commutative" laws of 5.14 (ii) and (iii) hold also for this version of M. Either the 
"commutativity", or a direct argument, proves the other distributive law (linearity in the 

a 
second variable), which is needed for the above extension of CX from T to T. 

6. Restricting and inducing. In this section, A will again be a general abelian 
group. Let 9: G —> H be a morphism in £(A, m). Let W be an object in T(//). Define 
9* W, the restriction of W along 9 , to be the following object in T(G): as a graded vector 
space, 9*W := W, and the action of G is g • w := 0(g) • w. 

It is immediate that 9*Wis in T(f/). Now suppose further that W = (W, /3) is an object 
in Tr(7/) for some subgroup T of A. Define 0*<^ to be (0* W, /?). Finally, if <p: Wi —• W2 

is a morphism in T r(i/) from ^ to 74 ,̂ let #*(v?) := V9- The following is then immediate. 
PROPOSITION 6.1. (i) Each 9 yields a functor 

0*: T r(//) -> Tr(G). 

(7/) Sending G to Tr(G), am/ 0 to 0*, gives a contravariant functor from Ç(A, m) to 
the category whose objects are categories and whose morphisms are covariant functors. 

The next proposition is proved directly from the definitions without difficulty. 

PROPOSITION 6.2. (i) IfW is also in Tr(//), then 

9*(<rt®<W') = (9*W) © (0*<JA 

(ii) When A = 2A and T = 2E, the functors 0* commute with both pc and KC for all 
CCA. 

PROPOSITION 6.3. Given morphisms 9: G —> H and 9\\G\ —> H\ in Ç(2A,m), an 
involution a on A, objects <W and *W\ in IE(H) and T£l(//i) respectively for subsets E 
and E\ invariant under a, we have 

(9 Y 9l)\
fW M Wi) = (9*<W) M (9\<Wi). 

a 
The proof is simply to observe that none of the ingredients in constructing \X differ 

a a 

when comparing <W XI <W\ to (0*W) \X (flf'Wi); the group action itself is not used 
directly in the construction. 

To define induced graded representations, assume 9: G —> H is an injective map in 
Ç(A, m). Let V = (V, f5) be an object in Tr(G). 
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DEFINITION. An inducing of V to H is a pair (0*1^, 0, where 0*1^ = (W,7) is an 
object in ^(H) and i\ V—> W is a Tr(G)-map from ^ to 0 * ^ which is universal among 
pairs ( r , 0 of objects y = (F, (5) in T r(//) and Tr(G)-maps 0 V —• 0* F. That is, there is 
a unique Tr//-map £: W —> F with ( = (o t . The object 0* ̂  is said to be induced from V. 

The usual abstract nonsense shows that, modulo the question of existence of 0* V, we 
have 

0*(^©^ ' ) = (0* 0^)0(0* <•), 

id* = id, 

and 
(0i o02)* = 0i,o02 , . 

The definition may be summarized by 

MapTr(//)(0*^, <W) ^ MapTr(G)(^, 0*W). 

This reciprocity relation is generalized in Proposition 7.8. 

THEOREM 6.4. (i) Each injective 0 defines a functor 

0*:Tr(G)-+<Tr(//). 

(ii) Sending G to Tr(G) and 0 to 0* gives a covariant functor to the category of 
categories from £!(A, m), £/ze category obtained by removing the non-injective maps 
from £(A, m). 

PROOF. It remains to construct an inducing (0*1^, i) of each ^ , and to define 0* on 
morphisms in Tr(G). The latter is done by the diagram 

where 0*^ = (Wb7i); 

V2 — - — - W2 where 0* V2 = (W2,72). 

A morphism 0*ip in T r(//) exists and is unique by the universal property for 0* 1^, which 
also easily yields functoriality of 0*. 

As for existence, given V - (V, /3) define 0*^ = (0* V, 0*/?)[= (W, 7) say] as follows. 
Let W := VH'9G as a vector space. To define the action of H and the grading, pick a cross 
section 

s:H/0G-+H, 

that is, s[k]6(G) = [k] := £0(G) for dike H Define the grading by having £ in W# if and 
only if £[fc] is in VBAa(s[k]) for all [k] . Define the action by 

(h • 0 W = 0-\s[k]-lhs[h-lk\) • £[fc_1ifc]. 
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It is straightforward to verify that we have a well-defined object in T(/ /) . Define 7 = #*/3 

by 

(7(S)(0)[*] = «($)(£[*]) for S e l \ 

Then (W, 7) is an object in Tr(H). Finally, define v. V —» W by 

, . , J v if* e 0(G); 
( t ( v ) ) [ t ] = I 0 otherwise. 

To prove universality, given J = (Y, 6) as in the definition, and given £: V —> #*F, define 
Cby 

[*]G///0(G) 

Checking that ( = C, • i and that £ is in T r(7/) are mechanical. Uniqueness of £ is also 

straightforward. 

PROPOSITION 6.5. Tafcmg A = 2A and T = 2E for E C A, we have natural isomor

phisms for all C and F: 

(i) 6*pc = pcO* 

(ii) e^F ? KFQ*. 

PROOF. The proof of (i) is easy. As for (ii), let V = (V, (5) G T£(G). Using the 

universal properties in 3.2 for KF and in the definition for 0*, let 

fl#^ = ( W , , 7 i ) G T £ ( H ) w i t h t i : V - > W 1 ; 

KF6*V = (Uuoc\) G rrEAF(H) w i t h a l WX^UX\ 

KFV = (W2,J2) G T r A F (G) with<S2: V - > W2; 

0*/cF^ = (£/2, a 2) G T £ A F ( / / ) with 62: W2 - » £/2. 

Then it is easy to check that both the pairs ( « ^ 1 ^ , V -̂ -J £/i) and (Q^KpV, V -̂ -> £/2) are 

universal in the class of pairs (Z, V ^> Z) for Z = (Z, TT) G T£Ajp(//) and T£\F(G)-maps 

^ , where ^ and Z are made into TE\F(G)-objects by forgetting (3(S) and TT(S) for any 5 

not in E \ F (that is, we are considering the objects KECWV and KF\EQ*Z). Universality 

means the existence of a unique T£ A F( / /)-map Cb from (/j or £/2 into Z which factors UJ. 

In each case, one applies the two universal properties, of KF and of inducing, to verify 

this. It follows that (ii) holds. 

Reverting to general A and T, the functoriality of 6* and 9* implies that they can 

operate on isomorphism classes. Since they commute with direct sums, we obtain group 

homomorphisms 

#*: Tr(H) - » TT(G) for all 0: G - • # ; 

and 

#*: Tr(G) -> Tr(H) for injective 0:G->H. 

When A = 2A and F = 2E, these maps commute with the module action of the ring K. 
a 

For each involution a on A, the maps #* commute with the biadditive maps XL 
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7. Infernal Horn. Again specialize A to 2A, where A has a given involution a, and 
specialize T to 2£, 2 F , . . . for a-invariant subsets F, F , . . . of A. Let ^(G) denote the 
disjoint union of the categories ^{G) for sets F invariant under a. The construction in 
this section will later be used to define a ^«-valued inner product on T a(G), where Ka 

is the subring of K defined after 5.2. Sooner than that, it will be used to prove the central 
a a 

result in Part I, which describes all objects of <Ta(G Y G) by using the operation DX. 
Suppose given V = (V, f3) G <TE(G) and W = (W, 7) G <TF(G Y L), where G and L 

are both objects in Ç(2A, m). We aim to define an object 

" # " = ^ ( ^ W/) G T£AF(L) 

in such a way that the relation of H to IX will be analogous to that of Horn to ®. 

DEFINITION. For B c A, let //# be the space of all linear maps (p: V —• W such that: 
( i )^(Vc)CWCA5foral lCcA; 
(ii) <£>(g • v) = (g, 1) • (/?(v) for all g G G and v G V; 
(iii) For all S C £ Pi F, the following commutes: 

(-l)lfina5|/3(5) i I 7(5). 

Thus, when a = id, the space HB consists of all T£nF(G)-maps from hiE\F^ t o 

KF\EpBi*<W, where t: G - • G Y L is the embedding, g ^ (g, 1), of 4.3. When EC\F=$, 
the space //# consists of all T(G)-maps from V to p# W. 

Let H be the subspace of Homc(V, W) spanned by UBHB. It becomes a graded vector 
space, since the HB are clearly linearly independent subspaces by (i). Define an action 
of L on H as follows. For l G L and v G Vc> let 

( £ . ^ ) ( v ) : = ( - l ) ^ n a C l ( l , 0 - ^ ( v ) . 

PROPOSITION 7.1. r/iw action is well-defined, making H into an object in T{L). 

PROOF. The map t • <p is certainly linear. Let <p £ HB and v G Vc- Then 

(£ • V?)(V) G WcABA^ = (PBAa<W)c, 

so that £ • 93 behaves with respect to the grading. Also 

(I • <p)(g • V) = (_l)l<Xna(CAa,)| (1? g) . ^{g . v ) 

= {_X)\alna(CAaS)\[z\alnaag\(g^ ()] . ^ 

- ( - D K n a C | ( g , 0 - ^ ( v ) 

= (g,l)-[(-lttnaC[(l,0-<p(g-v)] 

= (g, 1) • [(£ • v?)(v)], 
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verifying (ii) in the definition. As for (iii), 

[1(S) o (i • ^)}(v) = (-lfenaCh(S)[(l, I) • ̂ (v)] 

= (-DKnaC!(l,0-7(S)(^(v)), 
a 

since 7(5) commutes with the action of G Y L 

= (-iftncq^BnaS^ iM[3(s)(v)l by (iii) for p , 

whereas 
[(e • <p) o f3(S)](v) = (_i)Mna(CA5)|(l91). ^ (SXv) ] . 

The last two exponents differ (mod 2) by \(BAcrl) D aS\, as required. To complete the 
proof, (ti) - (p = I' • (£ • (f) is easy to verify, and 1 •(/? = (/> is obvious. 

To obtain an object H = (//, 6) in T£AF(L), let </? G #f i and /? C EAF, and define 

«(/*)(</>) = (-\)\EnBnaR\ i\EnRnaR\1{R nF)o^o{3(RnE). 

PROPOSITION 7.2. This defines an object in T£AF(L), whose full name will be 

PROOF. First we shall show that 6(R)(Lp) above is in HB/\R. For this the scalar factor 
±iN in the definition is irrelevant. We certainly have a linear map from V to W, taking 
Vc into WC&B&R, and commuting with the action of G (since each of the three factors 
do). To check (iii), use the diagram 

y 0(Rr£) . y 

(_1)|(BA*)naS|l(3(S) 

l)(RC£) 

w 1(RnF). w 

KRnF) 

7(5) 

The right and left squares commute by defining properties of 7 and /3, using also that 

R H aS C (EAF) na(EnF) = (EAF) n EH F = 0. 

The middle square is (iii) for (p. 
Next we check that <$(/?) commutes with the action of L. Let v G Vc- Then 

[6(R)(£ - ip)](v) 

= jEnRnaR^^ErVBAaiynaR^z n f ) o ( | ^ ) o p n £)](v) 

= ^n/^l^yEn^^^ n ^ { ^ t). [if Q p(R n£)]( v )} 

= ^n^n^l^^lEn^na^l+l^naC^^ ^ . [ 7 ( / ? n F ) 0 ̂  o f3(R HE)](v) 

= (-1)1^^1(1, 0-[«(/?)(^)](v) 
= (I • 0(*)(y>)])(v) 
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as required. 
Since <5(0) is the identity map, it remains only to check that 8(R) o8(T) = 6(RAT) for 

all subsets R and T of EAF. Let (f G HB. Then 

[6(R)o6(T)](tp) = (~lf^naT^\EnmaT^(R)[l(TnF)o^o(3(Tr]E)] 
_ / i x \EnBnaT\+\ED(BAT)naR\ -\EnTnaT\ -\EnRr]aR\ 

where 

T] = ^(RnF)o^(TnF)oifo[3(TnE)of3(RnE)=MRAT)nF]oipol3[(RAT)nE]. 

On the other hand, 

8(RAT)((f) = ^l^E^BnaiRA^^ETXR^TyiaiRAT)] 

These agree, as required, by the following calculation: 
j\ECXRAT)na(RAT)\ _ (__]\NAEnRC]aR\'\EDRC\aT\ AEDTDaRl-\EnTr\aT\ 

where N is a sum of six terms which are the cardinalities of the intersections of the four 
exponents of / in pairs [as in the proof of 5.6 (i)]. This yields zero (mod 2). Also, the 
middle two powers of / are equal, so their product is (—\)\EnTnaR\ as required. 

DEFINITION. Continue with the previous notation. Since EA(EAF) = F, we have, 
a a a a 

in r(G Y L), an object V (g> H = (V (g) //, (3 (g) 8) from section 5. It is a direct sum of 
a 

objects pc(^ X $T) as C ranges over subsets of E D (EAF) = E\F. Let the linear map 

i/: V(g)i/—> W 

be the evaluation map, determined by sending v <g> <p to ip(v). 
a a 

PROPOSITION 7.3. The map v is a morphism in r(G Y L)from 1/ & 9{ to<W. 
a 

COROLLARY 7.4. Let <Wbea non-zero object in ^(G Y L). Then there are objects V 
v (h /r a a a 

in Cr(G) and ^H in TW(L), and a non-zero T /(G Y L)-morphismfrom V \X\ tf[= V (g> #"] 

PROOF OF 7.4. In the previous discussion, let E = F. Let ^ be any object (for 
example, i*W itself) in TF(G) for which a non-zero ^(G) morphism (̂ : ^ —-* /*1V 

or 

exists. Such a (/? is in #0, and z/ is non-zero, and is in T^G Y L) by 7.3. 

PROOF OF 7.3. Let v e Vc and ^ G //#. Then i/(v (8) (p) = (p(v) is in W#AC, so i/ 

preserves the grading. It also commutes with the action of G Y L, since 

!/[(£, *) • (V ® if)] = v[(-\tlnaC\g • V) <g> (£ • (/?)] 

= (-Dk/naq(^^)te-v) 
= ( - l ) M n a C | ( s , 1) • [(* • <p)(v)] since £ • <p is in //* 

= (g, 1) • [(1, £) • (f(v)] by definition of I • y 

= (g, 0 • <?(v) 

= (g, £) • i/(v (8) <̂ ) 
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as required. It remains to prove that for S C F, the following diagram commutes 

((3®6)(S)=ip[SnE,SrtEAF)] 7(s) 

V®H—77— W 

Letting <p G //#, we have, since S H (FAF) = S\E, 

[1/ o (/? 0 6)(S)](v ®<p) = (-l)lsnEna%[f3(SHF)(v) 06(S \ E){<p)] 

= {-\fnEnaB^{S\E){^)[!5{SnE){y)} 

oifo /J[(5 \ £ ) n £ ] o / 3 ( S n F)(v) 
= (_i) l^nafi |7 ( 5 \E)oipoi3(Sn E)(v) 

_ r^\\sr^naB\/^\\Bna(snE)\^^ \ ^ 

o 7(5 H E) o <p(v) by (iii) for ip 

= 7(5) o (̂ ?(v) = 7(5)[i/(v 0 v?)], as required. 

PROPOSITION 7.5. The map v factors as 

a a a <£ 

where £ is a map in TF(L). 

PROOF. The last part of the previous proof checked the second diagram in the uni-
a 

versai property after 5.12 for ex, so it remains only to check the first. That is, for all 
ScEn(EAF) = E\F, 

V 0 # 

ipvx(S,S) V®H 

W 
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commutes. To see this, for v G V and p G HB we have, with 6 as defined before 7.2, 

[i/o^(S,S)](v®yO = i/[(-l) |5nafll/3(5)(v)0^(5)(^)] 

= (-l)l"nafi|^(5)(^)[/3(5)(v)] 

= (_i)|5rv*iï|(_1)|£rw^5:|IM£rwvJr5r|or(iS. n ^ 0 ^ 0 ^(.S n ,E)[/3(5 (̂v)] 

= i\snaS\ <p(v) since SHF =0 and SHE = 5 

as required. 

a a 

To describe an adjointness relating M to 9(a, it is convenient to first relate 0 to a 
larger object Horn", which decomposes as a direct sum over C C E H F of pc o !Ha [just 

a a 

as ® decomposed in terms of pc° IX]- This discussion below also makes condition (iii) 
in the definition of 9ia appear to arise more naturally. 

With V and <W as before, let Homa(^, W) be defined [as a graded L-representation] 
to have 5-th component equal to the subspace of Homc( V, W) defined by (i) and (ii) in 
the definition of Oia(V, W), i.e. 

(i) p{Vc) C WCAB for all C C A; 
(ii) ip(g • v) = (g, 1) • (p(v) for all g G G and v G V; 

and with the same formula for the action of L, i.e. 

(l-p)(v):=(-ltlnaC^\J)-p(v). 

lfRcEandTcF, let 
£(!?, 7): Hom°W <^)fî -> H o n W ^ ) f î A * A r 

be given by 
£(*, r)(^) = ( - i ) i f i n ^i 7 (D o ^ o /3(/?). 

It is easy to check that £(/?, 7) is well-defined, and, because of the sign (— \)\BnaR\9 it 
commutes with the action of L. Furthermore 

£(/?i, T\) o £(/?2, T2) = (-\)l(R2AT2)naR^(R]AR2, TXAT2). 

It follows that Homa(^, W) can be made into an object in (TEAF(L) by taking the structure 
maps, for R C EAF, to be i\EnRnaR\£(R nE.RHF). [The power of / is needed to make 
the maps compose correctly.] These maps commute with £(S, S) for each S C EH F, and 
£(S, S)2 = 1. Then (Ha{(]/^ W) is given from this point of view as the intersection over 
all S C EH F of the +l-eigenspace of £(S, S). [This is (iii) in the definition of 9ia'.] The 
appropriate projectors are 

2-|£TVl £ (_l)l<™l£(5,S), 
sc£nF 

https://doi.org/10.4153/CJM-1993-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-015-8


GRADED REPRESENTATIONS OF A TWISTED PRODUCT 329 

one for each C C F Pi F, the case C = 0 projecting onto Ha. For general C, the above 
projector maps onto the intersection over all B C F n F of the (—l)lfinc'-eigenspace of 
-0(5, #), giving an object isomorphic to p c ^ a W ^ ) - Thus 

Homa(<^<^)^ 0 pcrta(V,<W). 
CcEHF 

Now for adjointness, suppose given objects V in T£(G), ^ in T£ (G') and *W> in 
a a 

TF(G Y G' Y L), where, of course, each of F, F' and F is invariant under a. The 
following proposition will have its proof described rather than presented in detail, since 
we won't use it in Part I [and a less tedious proof may emerge]. 

PROPOSITION 7.6. There is a commutative diagram in which the horizontal maps 
are isomorphisms in <TEAE AF(L), and the vertical maps are given by using the above 

oc a 

projectors, and on the left, the inclusion ofVx^V into V §§ V : 

Hom a(^ 0 V, W) = Hom a [^ ,Hom a (^ , W)] 

a l 

One can see that the existence of an isomorphism on the bottom is not unreasonable, 
a 

given one on the top, as follows. Using the decompositions of ® and Homa in terms 
a 

of M and 9{a, both upper objects can be seen to be direct sums of pc applied to the 
corresponding lower object over all C C (F D E') U (F D F) U (Ef D F). This part of 
the proof is made precise by giving the upper isomorphism explicitly, and then proving 
that there are linear maps both ways at the bottom which make the diagram commute. 
Because the vertical maps are surjective, these lower maps are unique, are mutually 
inverse and are morphisms in fTEAEAF(L). 

Now it is easy to give isomorphisms at the top which are in T(L), using the usual 
adjointness, namely 

#(^)(V)0) = V?0 ® v') for (f on the left; 

#-1(V0(v ® v) = 0(v7)(v) for 0 on the right. 

Then <B and # - 1 are certainly mutually inverse if well defined, and checking well-
definition, and behaviour re grading and action of L, are straightforward. When one 
comes to check that (B commutes with the structure maps corresponding to S C FAF'AF, 
there is a scalar factor problem if S D F H E' D F ^ 0, and more seriously, initially a 
mystery if F D E' n F ^ 0. The following is the key point in the proof [and led to the 
alteration of the section title from "Internal Horn"]. On either upper object there is a map 
rj(S, S', F), for each S C F, S' C F', and T C F, defined using /3(S), ft(S') and 7(F), 
where V = ( V, /?), V = ( V, ft) and W = (W, 7). For example, on the left 

r/(S, S', T){<p)(y ® v') = (_i)|c'n^|+|iria(SAS')l7(:o {^(S)( v ) ® ft(S')(v')]} 
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for (f G HB, V' G V'C. This map commutes with the action and changes grading by 
SAS'AF. In particular, the intersections of eigenspaces of 77(5, S', SAS'), for S C F and 
Sf C F' such that SAS' C F, provide decompositions. Much of this information has 

a a 

already been used up in decomposing Homa and (8) in terms of 0ia and X. Essentially 
the extra information is contained in the operators rj(S,S', SAS') where both S and S' 
are subsets of F D E' D F. One can then define an adjointness isomorphism for the 
top line of the diagram in the proposition by using a different multiple of *B for each 
summand arising from these last operators. Once the appropriate multiples are chosen, 
the remainder of the proof is mechanical, but tedious. It is hoped that a more palatable 
proof will be found. 

A second result, not needed till Part II, with a similar proof, is "coadjointness". 
Suppose given objects: V = (V,/3) in T£(G); W = (W,7) in TF(G Y L); and W = 

(W, 70 in TF'(G'). Then there is a T(L Y G') isomorphism 

C: HonV*(^, (W)^(W'—^ HomaC*>, <W ® W) 

given by C(ip ® w')(v) = ^(v) ® wf. As with the adjointness, a problem arises with 
the structure maps for S C E H F H F', as well as a scalar factor problem for all S if 
EnFnF' ^ 0. The solution is exactly analogous to the case of adjointness. Both the 
domain and codomain of C admit self maps, indexed by (S C F, T C F, F' C F'), which 
preserve degree when S = TAT'. The extra information, beyond that used to decompose 

(g) in terms of X and Horn" in terms of (Ka, is essentially contained in the self maps 
when F, T and S = FAF' are subsets of FPiFPiF'. These define a decomposition of the 
domain and codomain of C. Multiplying C by a suitable scalar factor on each summand, 
the following result may be proved. 

PROPOSITION 7.7. There are <r£AFAF (£ Y G) isomorphisms giving a commutative 
diagram 

Homa(^, <W)®<Wf = Homa(^, W ê W) 

1 a l a 

Generalizing the formula before 6.4, essentially the definition of inducing, is the 
following reciprocity formula. 

PROPOSITION 7.8. Suppose that 6: G —> G' is an injective map in g(2A
1m)f and 

a 

that we have objects V in T£(G) and W in <TF(G' Y L). Then MiQ+V^W) and 

H(V, (9 Y id)*<JV) are isomorphic in <TEAF(L). 

PROOF. Let 

V = (V,/3); W = (W,7); (//,8) = ?{ = rt{$*V, <W)\ and 

(#',£') = # ' = #(<^, (0 Y id)*<JV). 
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Given <p in H'B, we use the construction in 6.4 of 6*V as V0'/00 to define (p+: 6*V —-> W 
by 

where s: G' /8G-* G' is a fixed section withal] = 1. Straightforward calculations show 
that 

(i) if £ is in (0* V)c, then <£+(£) is in WCAB; 

(ii) ^ + (^ .0 = ^ - ^ ( 0 ; 
(iii) f o r a l l S c ^ H F , 

7(5)o^+ = ( - l ) l f l n ^^o(^ /3 ) (5 ) . 

Thus (/?+ is in //#, as required. 

Conversely, given t/; in //#, define t/;_: V —• W by ^-(v) = t/>(£v)> where 

f v i f M = [l]; 
^vtyJ JO if not. 

It is easily seen that t/?_ is in //£,, and that 00-)+ = ^ anc^ (<£+)- = ^ f° r ^ ^ a n ^ </>• 
Thus we have a pair of mutually inverse, linear, gradation preserving maps. To check 
that t • C0-) = (£ • i/0-, evaluate both sides at v G Vc, yielding (-l)la£naCl(l, £) • ^_(v). 
It remains only to check that [£(/?)(</;)]_ = 6'(R)(i)-) for all /? C £AF. This reduces to 

^(RnE)(v)ly]=f3(RnE)(tv[y]) 

[which is immediate from the definition of £v], since the desired equality, when evaluated 
at v, then at [v], becomes 1(R Pi F) 0 1/; applied to the equation above. 

or 

8. Irreducibles for G Y G'. The elementary aspects of classical representation the
ory carry over to T r almost verbatim. Here T and A are general once again. The following 
could be deduced from the "real world" interpretation of Section 2, but deductions di
rectly analogous to the methods for ordinary representations are probably simplest. This 
has been delayed till now to emphasize the independence of all the previous machinery 
from decompositions into irreducibles, etc. 

A sub-object (W, 7) of (V, (3) G Tr(G) is a subspace W of V which is invariant under 
G [and with that restricted action]; such that W = E ® # f i H W ) [and with grading 
WB = VBnW]; such that, for S G T, (3(S)(W) C W [and with 7(S) equal to a restriction 
of /?(£)]. It follows that (W, 7) is also in Tr(G). An equivalent definition is essentially 
that the inclusion of W into V is a morphism in Tr(G). 

DEFINITION. An object (V, (3) is irreducible if and only if it has exactly two sub-
objects. It follows that they are the zero object and (V, /3) itself, and that V ^ {0}. 
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If (W, 7) is a sub-object of ( V, /?), then there is a quotient object ( V/ W, <5), with the 
following structure: 

(V/W)B = (VB + W)/W= image of Vfi/Wfi; 

g-(v+W) = (g-v) + W; 

and 
£(S)(v + W) = /?(S)(v) + W. 

Then (V/W, 6) G Tr(G), and the inclusion and projection 

W^V-^V/W 

are morphisms in ^(G). 
The usual averaging trick shows that, when G is finite, any Tr(G)-morphism V —+ U 

which is surjective has a right inverse U —•» V in T1 (G). To see this, one chooses any 
linear gradation-preserving right inverse //: £/ —> V, and then one sets 

^)= |G | - 1 E^-^" 1 -" ) -
#eG 

Since kernels and images of Tr(G)-morphisms are evidently sub-objects of the domains 
and codomains respectively, it follows that any sub-object ( W, 7) of (V, (3) has a comple
mentary sub-object (W\, 7i ): Let U =V/W with (/? being the projection, and then let Wi 
be the image of ip. Since all spaces are finite dimensional, it follows that every object is 
a direct sum of (finitely many) irreducible objects. 

By the remark above about kernels and images, the usual proof of Schur's lemma 
is valid in this context. Thus any non-zero Tr(G)-morphism between two irreducible 
objects is an isomorphism, and any f r(G)- endomorphism of an irreducible is a scalar 
multiple of an identity map. 

DEFINITION. Given two objects W,/3;) in Tr(G), let ((Vi,/3i), (V2,(32))z be the 
dimension of the vector space of all Tr(G)-morphisms between them; say, from V\ 
to V2. 

The notation (, ) will be reserved for a AT-bilinear inner product with values in K (to 
be defined later), which specializes to (, )z, at least when r = 2E, A = 2A, by composing 
with a map K —* Z. 

It is elementary to check that (, )z is bi-additive with respect to ®. If V and W are 
irreducible, the above analogue of Schur's lemma yields 

K ' / Z | 0 if not. 

In particular, (, )z is symmetric, and it follows that the irreducible summands V[ in a 
decomposition 

v * vx e v2 © • • • 
are unique up to order and isomorphism. Thus 
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PROPOSITION 8.1. The group Tr(G) is free abelian, a basis consisting of the isomor
phism classes of irreducibles in Tr(G) [of which there are finitely many], when G is 
finite. 

Now we can prove the initial version of the main result of this part. 

THEOREM 8.2. Let A = 2A, where A has a given involution a, let G and L be finite 
F a 

objects in Ç(2 , m), and let W be any irreducible in 1(G Y L) where E is a-invariant. 
Then there exist irreducibles V in T£(G) and V in ^(L) such that W occurs as a 

a 
summand in V XI V . 

a 

PROOF. Let V be any irreducible occurring in i*W, where i\ G —-> G Y L is the 
embedding g y—> (g, 1). Thus there is a non-zero T£(G)-morphism from V to t*W. By 
1A, there is an object H in TW(L) and a non-zero ^(G Y L)-morphism from V XI 9< to 

a 

<W. When restricted to the sub-object V XI V for at least one irreducible summand V 
oirt, it remains non-zero [indeed surjective] by Schur's lemma. By using a right inverse 

W-*1/\><eVin <TE(G Y L), the result follows. 

REMARK. Since 
(pFV) X3 (pFV) = p2

FV ex ^ = ^ M ^ ' , 

there are trivial reasons why ^ and V will not necessarily be unique when t > 0. We 
a 

shall see later that uniqueness does hold modulo this Âr-bilinearity of XI. Furthermore 

(KFV) X ( /CJV) ^ KF
2V ex ^ ^ 0 (pcV tx 1/), 

as we see in the next section, so a tx-product of irreducibles may not be irreducible. 
When £ = 1, this is essentially the only such annoyance, but, as we shall see in Part II, 
for £ > 1 there are also less obvious reasons for this to happen. 

a 

9. The AT-bilinearity of XL Recall Tr, the trivial object in Ç(2, , m). It is cyclic of 
order 2m, generated by v, and aTr is the trivial homomorphism. There is a unique object 
One e T(Tr) = 3^(Tr) for which 

O n e * = ( o if not. 

One may directly verify that the irreducible objects in TF(Tr) are PC^F One for CDF = 0. 
We have 

C i f f i C F ; ( K f O n e ) B ^ 1 0 . f n o t 

If \B is a chosen generator for (KFOm)B, the map (3(S) for the object KFOTIQ may be 
chosen to send 1# to l5As f° r a ^ S C F. 
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PROPOSITION 9.1. The map Ka —> Ta(Tr) sending X to X One is an isomorphism of 
graded Ka-modules. 

This is immediate from the statement above about the irreducibles. This holds for 
a 

any a. The involution a plays little role in this section, since with crTr trivial, Tr Y G is 
independent of a. 

Recall now, for any G in Ç(2A
1 m), the isomorphisms of 4.3: 

a Or 6c a 

T r Y G ^ G - ^ G Y T r 
(l,g) <- g H-+ (£,1) 

PROPOSITION 9.2. For a// F and all V in Ta(G), 

0*G(KF One M ^) ^ KFV * 0*G(<1/ M >cFOne). 

REMARK. The case F = 0 of this makes the name "One" seem reasonable. This 
proposition shows how the action of the ring Ka on TaG is essentially a special case of 

a 

the \x\ product. 

PROOF. If V = (V, /?), recall that KFV = (KFV, KF/3), with KFV a subspace of V2'. A 
map for the right-hand isomorphism is given by sending £ G V to £ C C F C ( 0 ® le £ 
V ® Kf One. This is evidently a linear isomorphism. It is readily checked that this map 
preserves grading and commutes with the action of G. An elementary calculation shows 
that the subspace KFV of V2 maps onto the subspace £/y,KFone of V <g> « F One. This uses 
example (c) of ZC,D before the definition of KF. The calculation of the righthand vertical 
arrow in the required commutative diagram, for S C EAF, 

KFV = Uv,nFOne 

(M)(S) I I 1(S) 

KFV = U<i/,KFOne 

a 

where 1(S) is the structure map for VIX KF One, may be taken as the motivation for the 
formula in the definition for {KF(3)(S)(Q(D). 

The other isomorphism may be proved similarly; alternatively it is deduced from the 
"commutative" law in 5.14 (iii) as follows: 

0£(«FOne >q V) * 0Gt*pco(V M ^FOne) 
a 

= OGPC0(VXKFOne), sime6G = toOG 

= PC0KFV 

= KFV, by 3.4 (ii) or (iv), since C0 C E D F C F. 
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REMARK. We have 

pcV = pc9G(Om M V) taking F = 0 in 9.2 

* BcpdOnt M 00 

^ ^( /o c One ixi 0̂ ) by 5.4(o). 

Similarly, • • • =" &Q{V XI pcOne). A second proof of this may be given which is 
analogous to, and easier than, the proof of 9.2. A third proof proceeds by induction on 
\C\, using 9.2, the relation KF

2 = ECCF PC> and decomposition into irreducibles. 

PROPOSITION 9.3. For all G, G', V E TE(G), V e ^ (G'\ F CA where E, E' and 
F are invariant under the involution a of A, we have 

V M KFl/ = KF{V tXJ V) = (KF^) M V. 

a 

PROOF. We shall use the associativity of M, that is, 5.14 (ii), to give an easy formal 
proof of this. Note that 

and 

Thus we have 

idG Y 0G, =6GY idG/: G Y G ' - ^ G Y T r Y G ' 

9G Y idtf = 0 a : G Y G' -+ Tr Y G Y G'. 
GYG' 

V tx KFV = V M 0£,(/cFOne M <W) 

= (idc Y 0G/)*[^ M (/c/rOne M ^ ) ] 

^ (0G Y idG0*[(^ M KF One) M ^ ' ] 

= (tG{V M «F One) M 1^ 

= (ACF^) M <Ï/ 

= ^ ( / c f O n e N ^ ) M ^ 

= (0G Y idG/)*[(/c/r One M ^) M ^ ' ] 

= (0 « ) * [ K f O n e M ( ^ M ^ ) ] 

GYG' 

= M^>W'). 
REMARK. This result is the analogue of 5.14 (o) with KF replacing pG- It can similarly 

be obtained by a direct proof, much more tedious than that for 5.14 (o). On the other 
a 

hand 5.14 (o) has a proof as above, based on the associativity of CX. It has a third proof 
by induction on \C\ from the relation KF

2 = ECCF PC» using 10.3 and decomposition into 
irreducibles. 
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COROLLARY 9.4. The map 

M: TaG x TaG' -* Ta(G Y G7) 

15 Ka-bilinear, and so it determines a morphism of 2a-graded Ka-modules 

T^G ®Ka T^G' -> T*{G Y G'). 

REMARK. When I = 1 = m (so a = id) one main theorem of Hoffman-Humphreys 
[H-Hl; Theorem 2.24] is that this last morphism is an isomorphism. This will follow 
from a later result which shows that in general the map is injective with finite cokernel. In 
part II we investigate its deviation from being an isomorphism. It will be an isomorphism 
whenever either TaG or TaG' is a free ÂVmodule. Freeness is automatic when I = 1 for 
any m, confirming the first sentence above. 

10. Summary of Parts II and III. Taking L = Tr in Section 7 yields a map 

(, ): TE(G) x TF(G) —• KEAF, 

by passing to isomorphism classes with the biadditive map 

<TE(G) x TF(G) ^ T£(G) x TF(G Y Tr) -^ T£AF(Tr) ^ KEAF = KEAF. 

By 9.4, (, ) is bilinear over Ka. Combining 7.7 and 7.6 gives the identity 

( * & y , y M / > « =(x, j )G(y,y)G / . 
GYG' G 

[By taking G' = Tr, part of the bilinearity is essentially a special case of this.] 
Reciprocity, 

(0*X,Z)H = {X,9*Z)G, 

for injective maps 6: G —-> / / in Ç, follows from 7.7. In part II, these laws and others 
satisfied by the modules T* G are studied abstractly. The main point will be that such a 
module with inner product and positivity is uniquely decomposable as a direct sum of 
indecomposable sub-objects. These are the submodules, one for each equivalence class 
of special irreducibles, generated by such special irreducibles. Here an irreducible x is 
special if it does not have the form Kpy for any F / 0. Two such elements x and x' are 
equivalent if and only if (x, xf) / 0. Attempted classification of such indécomposables is 
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likely to lead to a combinatorial morass, if attempted for general £ and a. But for small 
£ it is quite easy. For example, when £ = 1 [and so a = id], all such indécomposables are 
free on one generator* with (x, x) = 1 [and so T*G is always free over K, where a ̂ T-basis 
{xa} of special irreducibles leads to the canonical Z-basis {xai pxai Kxa} of triple the 
size]. There are two indécomposables up to isomorphism, depending on the two choices 
for the grading of the generator. When £ = 2 and a = id, there are six indécomposables, 
four of which are free on one generator, one for each of the four elements in the 
group 2A of grading parameters. Letting A = {/?, c}, the other two indécomposables 
are both generated by two special irreducibles, say x and y, in "antipodal" gradings 
[i.e. grxAgr_y = A], with two relations, K^X = ncy and ncx = / ^ j . Inner products are 
determined by 

(x,x) = l+pA = (y,y) and (x,y) = KA-

[See the remark below.] The Z-basis of irreducibles, in the four different gradings, is 

{*, pbx] U {y, pby] U {nbx} U {KCX}. 

Other relations are, for example, 

PAX = x and pbx = pcx\ 

and similarly for v. To deduce one of these, 

X + pbX = K\X - Kb^cy - Kc^by = ^ c * = X + Pcx-

REMARK. In general, for an irreducible JC, there is a subgroup F of 2A such that 

(x,x) = J2 Pc 
ccr 

For JC to be special, it is necessary and sufficient that 2B CT only for B = 0. In general, 
x - KB*' for a special irreducible x' and the maximal B with 2B C T. When x is special, 
it generates one of the indecomposable submodules [necessarily freely] if and only if 
r = {0}. The other indécomposables are neither cyclic over Ka, nor are they free over 
Ka. 

In part III, the application to projective representations of monomial groups will be 
given. For this we need an isomorphism, for n > 1, 

M(H I Sn) = M(Sn) 0 M(H) 0 Hom(//; Z/2) 0 A2 Hom(//; Z/2) 0 Hom(//; Z/2}1^2". 

The existence of such an isomorphism is due to Read [R], and also follows from the 
Lyndon spectral sequence [M]. We shall give a very explicit isomorphism: each element 
on the right-hand side above [where the first two components are given in terms of cyclic 
covers of Sn and H] will produce an explicit cyclic cover of HI Sn. Varying n, [including 
n = 0 and 1] will produce sequences of cyclic covers as discussed in the introduction. 
An abstraction of these sequences (which generalize the Young systems of [H-H2] ) 
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will consist, among other things, of a sequence of objects Yn in Ç(2A, m) together with 
a a 

embedding s Ya Y Yb —• Ya+b. Applying the functor Ta, using the operation X , and 
inducing along the above embedding gives a map 

(TaYa)®Ka(T
aYb)-^TaYa+b 

and thereby makes (&n>oTaYn into an algebra over Ka, graded over N, in which each 
homogeneous component is a module over Ka graded over 2a. Such algebras with inner 
product and positivity are likely to decompose uniquely into a tensor product of atoms, 
where an atom is an algebra whose component in lowest positive N-grading is one of 
the indecomposable modules discussed above. This should follow formally, imitating 
Zelevinski's argument [Z], which can be regarded as the case I = 0. The case 1=1 was 
done by the author and Michael Bean [B-H]. 

The other side of the coin is the classification of atoms. Here it seems likely that each 
indecomposable (occurring in lowest grading 1) will give rise to at most one (perhaps 
exactly one) such atomic algebra. Progress on this at the time of writing has concentrated 
on the example of HI Sn where H is cyclic of order 2 [i.e. the hyperoctahedral group]. 
Four of the eight sequences of covers are taken care of by the case I = 1 done in [H-H2]. 
[In fact, one of them is really the case t = 0.] The other four can be done with t = 2 and 
a ^ id, with £ = 4 if we prefer a = id. The main complication is the failure of 

M: (TaX) ®Ka (r*Y) —• Ta(X Y Y) 

to be an isomorphism, except when £ = 1 or, more generally, when TaX or TaY is free 
over Ka- This leads to the failure of the above algebra to be a Hopf algebra. However, by 

a a 

simultaneously and inductively working out all the groups TE(Yax Y Yai Y • • •), the core 
of the Hopfian methods can be extracted and used to make progress on the structure of 
these algebras. 
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