IDEALS IN DIRECT PRODUCTS OF COMMUTATIVE RINGS

D. D. ANDERSON[™] and JOHN KINTZINGER

(Received 22 August 2007)

Abstract

Let *R* and *S* be commutative rings, not necessarily with identity. We investigate the ideals, prime ideals, radical ideals, primary ideals, and maximal ideals of $R \times S$. Unlike the case where *R* and *S* have an identity, an ideal (or primary ideal, or maximal ideal) of $R \times S$ need not be a 'subproduct' $I \times J$ of ideals. We show that for a ring *R*, for each commutative ring *S* every ideal (or primary ideal, or maximal ideal) is a subproduct if and only if *R* is an *e*-ring (that is, for $r \in R$, there exists $e_r \in R$ with $e_r r = r$) (or *u*-ring (that is, for each proper ideal *A* of *R*, $\sqrt{A} \neq R$)), the Abelian group (R/R^2 , +) has no maximal subgroups).

2000 Mathematics subject classification: 13A15, 13C99.

Keywords and phrases: direct product of commutative rings, commutative ring, ideal, prime ideal, primary ideal, *e*-ring, *u*-ring.

Suppose that *R* and *S* are commutative rings with identity. It is well known that the ideals of $R \times S$ have the form $I \times J$ where *I* is an ideal of *R* and *J* is an ideal of *S*. It easily follows that the prime (primary, maximal) ideals of $R \times S$ have the form $P \times S$ or $R \times Q$ where *P* is a prime (primary, maximal) ideal of *R* or *Q* is a prime (primary, maximal) ideal of *R*.

Suppose that *R* and *S* are commutative rings not necessarily with identity. If *I* is an ideal of *R* and *J* is an ideal of *S*, then certainly $I \times J$ is an ideal of $R \times S$. (It is obvious that if $I \subseteq R$ and $J \subseteq S$ with $I \times J$ an ideal of $R \times S$, then *I* is an ideal of *R* and *J* is an ideal of *S*.) We call such an ideal $I \times J$ of $R \times S$, a *subproduct*. However, ideals of $R \times S$ need not be subproducts. For if *A* and *B* are non-zero Abelian groups, then $A \times B$ with the zero product is a commutative ring whose ideals are just the subgroups of $A \times B$. However, it is rare [2, Theorem 2] that every subgroup of $A \times B$ is a subproduct. For example, if $A = B = \mathbb{Z}_2$, then { $(\overline{0}, \overline{0}), (\overline{1}, \overline{1})$ } is an ideal of $\mathbb{Z}_2 \times \mathbb{Z}_2$ that is not a subproduct.

A commutative ring *R* is an *e*-ring [3] if for each $r \in R$, there exists an $e_r \in R$ with $e_r r = r$. We show (Theorem 2) that a commutative ring *R* is an *e*-ring if and only if, for each commutative ring *S*, every ideal of $R \times S$ is a subproduct. Now every prime

^{© 2008} Australian Mathematical Society 0004-9727/08 \$A2.00 + 0.00

ideal of $R \times S$ has the form $P \times S$ where P is a prime ideal of R or $R \times Q$ where Q is a prime ideal of S (Theorem 6). However, a commutative ring R is a *u*-ring (for each proper ideal A of R, $\sqrt{A} \neq R$) [3] if and only if, for each commutative ring S, every primary ideal of $R \times S$ has the form $Q \times S$ where Q is a primary ideal of R or $R \times Q$ where Q is a primary ideal of S, or equivalently, each primary ideal of $R \times S$ is a subproduct (Theorem 9). Finally, we determine (Theorem 12) the commutative rings R with the property that, for each commutative ring S, each maximal ideal of $R \times S$ is a subproduct.

We start with the following simple proposition whose proof is left to the reader.

PROPOSITION 1. Let R and S be commutative rings. Then the following conditions are equivalent (for an ideal A of $R \times S$).

- (1) Every ideal of $R \times S$ (The ideal A of $R \times S$) is a subproduct.
- (2) For each $r \in R$ and $s \in S$ (with $(r, s) \in A$), $((r, s)) = (r) \times (s)$.
- (3) For each $r \in R$ and $s \in S$ (with $(r, s) \in A$), $(r, 0) \in ((r, s))$ $((r, 0) \in A)$.
- (4) For each $r \in R$ and $s \in S$ (with $(r, s) \in A$), there exist $a \in R$, $b \in S$, and $n \in \mathbb{Z}$ with r = ar + nr and 0 = bs + ns.

Of course, (3) of Proposition 1 is equivalent to $(0, s) \in ((r, s))$. Note that (4) is equivalent to 0 = (-a) r + (1 - n) r and s = (-b) s + (1 - n) s. Also note that if an ideal *A* of $R \times S$ is a subproduct, then $A = I \times J$ where $I = \{r \in R \mid (r, 0) \in A\}$ $(=\{r \in R \mid (r, s) \in A \text{ for some } s \in S\})$ and $J = \{s \in S \mid (0, s) \in A\}$ $(=\{s \in S \mid (r, s) \in A \text{ for some } r \in R\})$.

We next characterize the commutative rings R with the property that for each commutative ring S, every ideal of $R \times S$ is a subproduct. Most of Theorem 2 appears in [1, Proposition 3.1].

THEOREM 2. For a commutative ring R the following conditions are equivalent.

- (1) *R* is an *e*-ring (that is, for each $r \in R$, there exists an $e_r \in R$ with $e_r r = r$).
- (2) For each commutative ring S, each ideal of $R \times S$ is a subproduct.
- (3) For all $n \ge 2$, each ideal of \mathbb{R}^n has the form $I_1 \times \cdots \times I_n$ where I_i is an ideal of \mathbb{R} .
- (4) For some $n \ge 2$, each ideal of \mathbb{R}^n is a subproduct as in (3).
- (5) Every ideal of $R \times R$ is a subproduct.

PROOF. (1) \Rightarrow (2). Suppose that *R* is an *e*-ring. Let $r \in R$ and $s \in S$. Choose $e_r \in R$ with $e_r r = r$. Then $(r, 0) = (e_r, 0)$ $(r, s) \in ((r, s))$. By Proposition 1, every ideal of $R \times S$ is a subproduct.

(2) \Rightarrow (3). Assume the result for n-1 and then take $S = R^{n-1}$.

 $(3) \Rightarrow (4) \Rightarrow (5)$ is clear.

 $(5) \Rightarrow (1)$. By Proposition 1(4) with R = S and $r = s \in R$, there exist $a, b \in R$ and $n \in \mathbb{Z}$ with r = ar + nr and 0 = br + nr. Hence r = ar - br = (a - b)r. So R is an *e*-ring.

We next give a 'local' alternative approach to $(1) \Rightarrow (2)$ of the previous theorem.

PROPOSITION 3. Let *R* and *S* be commutative rings and let *I* be an ideal of $R \times S$. Let $\varphi : R \to R \times S / I$ (φ (r) = (r, 0) + *I*) be the natural map. If φ (R) is an e-ring, then *I* is a subproduct.

PROOF. Now $\varphi(R)$ an *e*-ring says that, for $(r, 0) \in R \times S / I$, there exists $(e, 0) \in R \times S / I$ with (e, 0) (r, 0) = (r, 0), or $(r - er, 0) \in I$. Let $(x, y) \in I$. So there exists $e \in R$ with $(x - ex, 0) \in I$. Then $(x, 0) = (x - ex, 0) + (e, 0) (x, y) \in I$. So by Proposition 1, *I* is a subproduct.

COROLLARY 4. Let R and S be commutative rings and I an ideal of $R \times S$. If $R \times S / I$ is an e-ring, then I is a subproduct.

PROOF. If $R \times S / I$ is an *e*-ring, then so is its subring $\varphi(R)$ where $\varphi(R)$ is as defined in Proposition 3. Indeed, if $(e_1, e_2)(r, 0) = (r, 0)$, then $(e_1, 0)(r, 0) = (r, 0)$.

COROLLARY 5. Let R be an e-ring. Then for any commutative ring S, every ideal of $R \times S$ is a subproduct.

PROOF. Let *I* be an ideal of $R \times S$. If *R* is an *e*-ring, then so is its homomorphic image $\varphi(R)$ in $R \times S / I$. By Proposition 3, *I* is a subproduct.

We next determine the prime ideals of $R \times S$. Here the situation is the same as in the case where the rings have an identity.

THEOREM 6. Let R and S be commutative rings. Then an ideal \mathcal{P} of $R \times S$ is prime if and only if \mathcal{P} has the form $P \times S$ where P is a prime ideal of R or $R \times Q$ where Q is a prime ideal of S.

PROOF. (\Leftarrow) Clear. (\Rightarrow) Suppose that \mathcal{P} is a prime ideal of $R \times S$. Now $(0 \times S)$ $(R \times 0) \subseteq \mathcal{P}$, so either $0 \times S \subseteq \mathcal{P}$ or $R \times 0 \subseteq \mathcal{P}$. Suppose that $R \times 0 \subseteq \mathcal{P}$. It follows from Proposition 1 that $\mathcal{P} = R \times Q$ for some ideal Q of S. It is easily checked that Q must be prime. The case where $0 \times S \subseteq \mathcal{P}$ is similar.

COROLLARY 7. Let R and S be commutative rings. The radical ideals of $R \times S$ have the form $I \times J$ where I is a radical ideal of R and J is a radical ideal of S.

PROOF. Let *I* be a radical ideal of $R \times S$. We may assume that $I \neq R \times S$. So *I* is an intersection of prime ideals, each of which is a subproduct. So $I = I_1 \times I_2$ is a subproduct where I_i is either the whole ring or an intersection of prime ideals. In either case I_i is a radical ideal.

Our next goal is to characterize the commutative rings R with the property that for each commutative ring S, every primary ideal of $R \times S$ is a subproduct. We need the following lemma.

LEMMA 8. Let R and S be commutative rings.

- (1) If $A \neq R$ is an ideal with $\sqrt{A} = R$, then A is primary.
- (2) If Q is a primary ideal of $R \times S$ with $\sqrt{Q} \neq R \times S$, then either $Q = Q_1 \times S$ where Q_1 is a primary ideal of R or $Q = R \times Q_2$ where Q_2 is a primary ideal of S.

PROOF. (1) Suppose that $ab \in A$ where $a, b \in R$. Then $\sqrt{A} = R$ gives $b^n \in A$ for some $n \ge 1$ regardless of whether $a \in A$ or not. (2) Now \sqrt{Q} is a prime ideal of $R \times S$, so by Theorem 6 either $\sqrt{Q} = P \times S$ where P is a prime ideal of R or $\sqrt{Q} = R \times P$ where P is a prime ideal of S. Without loss of generality we may assume that $\sqrt{Q} = P \times S$. Let $x \in R - P$; so $(x, 0) \notin \sqrt{Q}$. Let $s \in S$. Then $(0, s) (x, 0) = (0, 0) \in Q$ and $(x, 0) \notin \sqrt{Q}$, so $(0, s) \in Q$ since Q is primary. Hence $0 \times S \subseteq Q$. So by Proposition 1, $Q = Q_1 \times S$ for some ideal Q_1 of R which is easily seen to be primary.

Concerning the condition in Lemma 8(2) that $\sqrt{Q} \neq R \times S$, a primary ideal A of $R \times S$ with $\sqrt{A} = R \times S$ may or may not be a subproduct. For example, $\{(\overline{0}, \overline{0})\}$ and $\{(\overline{0}, \overline{0}), (\overline{1}, \overline{1})\}$ are both primary ideals of $\mathbb{Z}_2 \times \mathbb{Z}_2$ with radical $\mathbb{Z}_2 \times \mathbb{Z}_2$, but the first is a subproduct (but not of the form given in Lemma 8(2)), while the second is not.

THEOREM 9. For a commutative ring R the following conditions are equivalent.

- (1) *R* is a *u*-ring (that is, if $A \neq R$ is an ideal of *R*, then $\sqrt{A \neq R}$).
- (2) For each commutative ring S, each primary ideal of $R \times S$ has the form $Q_1 \times S$ where Q_1 is a primary ideal of R or $R \times Q_2$ where Q_2 is a primary ideal of S.
- (3) For each commutative ring S, each primary ideal of $R \times S$ is a subproduct.
- (4) Each primary ideal of $R \times R$ has the form $Q \times R$ or $R \times Q$ where Q is a primary ideal of R.
- (5) Each primary ideal of $R \times R$ is a subproduct.

PROOF. (1) \Rightarrow (2). Let Q be a primary ideal of $R \times S$. If $\sqrt{Q} \neq R \times S$, the result follows from Lemma 8(2). So suppose that $\sqrt{Q} = R \times S$. Let $A = \{a \in R \mid (a, 0) \in Q\}$, an ideal of R. For $r \in R$, $(r, 0) \in R \times S = \sqrt{Q}$, so $(r^n, 0) \in Q$ for some $n \ge 1$, and hence $r^n \in A$. So $\sqrt{A} = R$. Since R is a *u*-ring, A = R. So $R \times 0 \subseteq Q$. By Proposition 1 $Q = R \times Q_2$ for some ideal Q_2 of S, necessarily primary.

 $(2) \Rightarrow (3) \Rightarrow (5)$ and $(2) \Rightarrow (4) \Rightarrow (5)$ are clear.

 $(5) \Rightarrow (1)$, Suppose that *R* is not a *u*-ring, so there is an ideal $A \subsetneq R$ with $\sqrt{A} = R$. So for each ideal $B \supseteq A \times A$ of $R \times R$, $\sqrt{B} = R \times R$. So by Lemma 8(1), *B* is primary. So by hypothesis, *B* is a subproduct. So each ideal of $R/A \times R/A$ is a subproduct. By Theorem 2, R/A is an *e*-ring. Let $0 \neq x \in R/A$. Then there is an $e \in R/A$ with ex = x. Since $\sqrt{A} = R$, there is an $n \ge 1$ with $e^n = 0$. But then $x = ex = e^2x = \cdots = e^nx = 0$, a contradiction.

We next characterize the commutative rings R with the property that, for each commutative ring S, the maximal ideals of $R \times S$ are subproducts. Of course a

480

481

subproduct of $R \times S$ is a maximal ideal if and only if it has the form $M \times S$ where M is a maximal ideal of R or $R \times N$ where N is a maximal ideal of S.

LEMMA 10. Let R be a commutative ring. If M is a maximal ideal of R that is not prime, then $R^2 \subseteq M$. Thus $\overline{M} = M/R^2$ is a maximal subgroup of $(R/R^2, +)$. Conversely, if $R \neq R^2$ and $\overline{M} = M/R^2$ is a maximal subgroup of R/R^2 where R^2 $\subseteq M \subsetneq R$ with M a (maximal) subgroup of (R, +), then M is a maximal ideal of Rthat is not prime.

PROOF. Suppose that *M* is a maximal ideal of *R* that is not prime. Choose $a, b \in R$ with $ab \in M$ but $a \notin M$ and $b \notin M$. Then since *M* is maximal, (M, a) = R = (M, b). So $R^2 = (M, a) (M, b) \subseteq M$. Since the ring R/R^2 has the zero product, additive subgroups are the same thing as ideals. Thus M/R^2 is a maximal subgroup of R/R^2 . The converse is immediate.

LEMMA 11. Let R and S be commutative rings with $R = R^2$. Then every maximal ideal of $R \times S$ has the form $N_1 \times S$ or $R \times N_2$ where N_1 (N_2) is a maximal ideal of R (S).

PROOF. Let *M* be a maximal ideal of $R \times S$. If *M* is prime, then *M* has the desired form by Theorem 6 and the remarks preceding Lemma 10. So we may suppose that *M* is not prime. Then by Lemma 10, $(R \times S)^2 \subseteq M$. But since $R^2 = R$, $R \times S^2 = (R \times S)^2 \subseteq M$. Hence by Proposition 1, *M* is a subproduct necessarily of the form $R \times N_2$ where N_2 is a maximal ideal of *S*.

THEOREM 12. For a commutative ring *R* the following conditions are equivalent.

- (1) The Abelian group $(R/R^2, +)$ has no maximal subgroups.
- (2) For each commutative ring S, every maximal ideal of $R \times S$ has the form $M \times S$ or $R \times N$ where M(N) is a maximal ideal of R(S).
- (3) For each commutative ring S, every maximal ideal of $R \times S$ is a subproduct.
- (4) Every maximal ideal of $R \times R$ has the form $M \times R$ or $R \times M$ where M is a maximal ideal of R.
- (5) Every maximal ideal of $R \times R$ is a subproduct.
- (6) *Every maximal ideal of R is prime.*
- (7) Every maximal ideal of $R \times R$ is prime.

PROOF. We have already remarked that $(2) \Leftrightarrow (3)$ and $(4) \Leftrightarrow (5)$.

 $(1) \Rightarrow (2)$. Suppose that $R \times S$ has a maximal ideal \mathcal{M} not of the form $M \times S$ or $R \times N$ where M is a maximal ideal of R and N is a maximal ideal of S. So $R^2 \neq R$ and $S^2 \neq S$ by Lemma 11 and $R^2 \times S^2 = (R \times S)^2 \subseteq \mathcal{M}$ by Lemma 10 since \mathcal{M} cannot be prime by Theorem 6. Hence $T = (R \times S)/\mathcal{M}$ is a simple Abelian group. Now the natural map $R/R^2 \times S/S^2 \to T$ is an epimorphism. Since T is a simple Abelian group, the natural map $R/R^2 \to R/R^2 \times S/S^2 \to T$ is either onto or the zero map. Since $(R/R^2, +)$ has no maximal subgroups, the map must be the zero map.

Hence $R \times 0 \subseteq M$. So by Proposition 1, M is a subproduct and hence has the form $R \times N$ for some maximal ideal N of S.

 $(2) \Rightarrow (4)$ and $(3) \Rightarrow (5)$ are clear.

 $(4) \Rightarrow (1)$. Suppose that $(R/R^2, +)$ has a maximal subgroup N, so $(R/R^2)/N \approx \mathbb{Z}_p$ for some prime p. Then $((R/R^2) \times (R/R^2))/N \times N \approx ((R/R^2)/N) \times ((R/R^2)/N) \approx \mathbb{Z}_p \times \mathbb{Z}_p$. Now $\langle (\overline{1}, \overline{1}) \rangle$ is a maximal subgroup of $\mathbb{Z}_p \times \mathbb{Z}_p$. Hence, by the correspondence theorem, $(R/R^2) \times (R/R^2) \approx (R \times R)/R^2 \times R^2$ has a maximal subgroup not of the form $(R/R^2) \times N'$ or $N' \times (R/R^2)$ for some maximal subgroup N' of R/R^2 . Hence $R \times R$ has a maximal ideal that is not of the form $R \times M$ or $M \times R$ for some maximal ideal M of R, a contradiction.

- (1) \Leftrightarrow (6) by Lemma 10.
- $(7) \Rightarrow (5)$ by Theorem 6.

(6) \Rightarrow (7). Let \mathcal{M} be a maximal ideal of $R \times R$. By (6) \Rightarrow (1) \Rightarrow (4) $\mathcal{M} = M \times R$ or $R \times M$ where M is a maximal ideal of R. But by hypothesis M is prime and hence so are $M \times R$ and $R \times M$.

REMARK 13. Observe that the proof of Theorem 12 shows that a non-zero Abelian group A (R/R^2 in Theorem 12) has a maximal subgroup if and only if $A \times A$ has a maximal subgroup and then $A \times A$ has a maximal subgroup that is not a subproduct.

However, we cannot conclude from Theorem 12 that if R is a ring for which $(R/R^2, +)$ has no maximal subgroups, then every ideal of $R \times R$ is contained in a maximal ideal of the form $M \times R$ or $R \times M$ for some maximal ideal M of R. For if $R^2 \subsetneq R$, then $R^2 \times R$ is a proper ideal of $R \times R$ that is not contained in a maximal ideal of the form $M \times R$ (and hence is contained in no maximal ideal). For example, if we take $R = \mathbb{Z}_{p^{\infty}}$ with the zero product, then $R^2 = 0$ and $R \times R$ has no maximal ideal has the form $M \times \mathbb{Z}_{p^{\infty}}$ or $\mathbb{Z}_{p^{\infty}} \times M$. One implication of the following result follows from Theorem 12 and the preceding remarks.

THEOREM 14. Let R be a commutative ring. Then each proper ideal of $R \times R$ is contained in a maximal ideal of the form $M \times R$ or $R \times M$ for some maximal ideal of M of R if and only if $R = R^2$ and each proper ideal of R is contained in a maximal ideal of R.

PROOF. (\Rightarrow) Suppose that each proper ideal of $R \times R$ is contained in a maximal ideal of the form $M \times R$ or $R \times M$ for some maximal ideal M of R. By the above remarks, $R = R^2$. If A is a proper ideal of R, then $A \times R$ is contained in a maximal ideal of $R \times R$ of the form $M \times R$ where M is a maximal ideal of R. Then M is a maximal ideal of R containing A.

(\Leftarrow) Let A be a proper ideal of $R \times R$. Let $A_1 = \{r \in R \mid (r, 0) \in A\}$. Suppose that $\sqrt{A} = R \times R$. Then for $r \in R$, $(r^n, 0) \in A$ for some $n \ge 1$, so $r^n \in A_1$. Thus $\sqrt{A_1} = R$. Thus $A_1 = R$. For if not, then $A_1 \subseteq M$ for some maximal ideal M of R. Then $R = R^2$ gives that M is prime (see the proof of Lemma 10).

So $\sqrt{A_1} \subseteq \sqrt{M} = M \subsetneq R$, a contradiction. Likewise $A_2 = \{r \in R \mid (0, r) \in A\} = R$. So $A = R \times R$, a contradiction. Thus $\sqrt{A} \neq R \times R$. Hence $A \subseteq \mathcal{P}$ for some prime ideal \mathcal{P} of $R \times R$. Without loss of generality, we can assume that $\mathcal{P} = P \times R$ where *P* is a prime ideal of *R*. By hypothesis $P \subseteq M$ for some maximal ideal *M* of *R*. But then $A \subseteq M \times R$, a maximal ideal of $R \times R$.

References

- D. D. Anderson, 'Commutative rings', in: *Multiplicative Ideal Theory in Commutative Algebra, a Tribute to Robert Gilmer* (Springer, New York, 2006), pp. 1–20.
- [2] D. D. Anderson and V. Camillo, 'Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma', Preprint.
- [3] R. Gilmer, 'Eleven non-equivalent conditions on a commutative ring', *Nagoya J. Math.* 26 (1966), 174–183.

D. D. ANDERSON, Department of Mathematics, The University of Iowa, Iowa City, IA, USA

e-mail: dan-anderson@uiowa.edu

JOHN KINTZINGER, Department of Mathematics, The University of Iowa, Iowa City, IA, USA e-mail: johnskintzinger@netscape.net