IDEALS IN DIRECT PRODUCTS OF COMMUTATIVE RINGS

D. D. ANDERSON ${ }^{\boxtimes}$ and JOHN KINTZINGER

(Received 22 August 2007)

Abstract

Let R and S be commutative rings, not necessarily with identity. We investigate the ideals, prime ideals, radical ideals, primary ideals, and maximal ideals of $R \times S$. Unlike the case where R and S have an identity, an ideal (or primary ideal, or maximal ideal) of $R \times S$ need not be a 'subproduct' $I \times J$ of ideals. We show that for a ring R, for each commutative ring S every ideal (or primary ideal, or maximal ideal) is a subproduct if and only if R is an e-ring (that is, for $r \in R$, there exists $e_{r} \in R$ with $e_{r} r=r$) (or u-ring (that is, for each proper ideal A of $R, \sqrt{A} \neq R$), the Abelian group $\left(R / R^{2},+\right.$) has no maximal subgroups).

2000 Mathematics subject classification: 13A15, 13C99.
Keywords and phrases: direct product of commutative rings, commutative ring, ideal, prime ideal, primary ideal, e-ring, u-ring.

Suppose that R and S are commutative rings with identity. It is well known that the ideals of $R \times S$ have the form $I \times J$ where I is an ideal of R and J is an ideal of S. It easily follows that the prime (primary, maximal) ideals of $R \times S$ have the form $P \times S$ or $R \times Q$ where P is a prime (primary, maximal) ideal of R or Q is a prime (primary, maximal) ideal of S.

Suppose that R and S are commutative rings not necessarily with identity. If I is an ideal of R and J is an ideal of S, then certainly $I \times J$ is an ideal of $R \times S$. (It is obvious that if $I \subseteq R$ and $J \subseteq S$ with $I \times J$ an ideal of $R \times S$, then I is an ideal of R and J is an ideal of S.) We call such an ideal $I \times J$ of $R \times S$, a subproduct. However, ideals of $R \times S$ need not be subproducts. For if A and B are non-zero Abelian groups, then $A \times B$ with the zero product is a commutative ring whose ideals are just the subgroups of $A \times B$. However, it is rare [2, Theorem 2] that every subgroup of $A \times B$ is a subproduct. For example, if $A=B=\mathbb{Z}_{2}$, then $\{(\overline{0}, \overline{0}),(\overline{1}, \overline{1})\}$ is an ideal of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ that is not a subproduct.

A commutative ring R is an e-ring [3] if for each $r \in R$, there exists an $e_{r} \in R$ with $e_{r} r=r$. We show (Theorem 2) that a commutative ring R is an e-ring if and only if, for each commutative ring S, every ideal of $R \times S$ is a subproduct. Now every prime

[^0]ideal of $R \times S$ has the form $P \times S$ where P is a prime ideal of R or $R \times Q$ where Q is a prime ideal of S (Theorem 6). However, a commutative ring R is a u-ring (for each proper ideal A of $R, \sqrt{A} \neq R$ [3] if and only if, for each commutative ring S, every primary ideal of $R \times S$ has the form $Q \times S$ where Q is a primary ideal of R or $R \times Q$ where Q is a primary ideal of S, or equivalently, each primary ideal of $R \times S$ is a subproduct (Theorem 9). Finally, we determine (Theorem 12) the commutative rings R with the property that, for each commutative ring S, each maximal ideal of $R \times S$ is a subproduct.

We start with the following simple proposition whose proof is left to the reader.
Proposition 1. Let R and S be commutative rings. Then the following conditions are equivalent (for an ideal A of $R \times S$).
(1) Every ideal of $R \times S$ (The ideal A of $R \times S$) is a subproduct.
(2) For each $r \in R$ and $s \in S$ (with $(r, s) \in A),((r, s))=(r) \times(s)$.
(3) For each $r \in R$ and $s \in S$ (with $(r, s) \in A),(r, 0) \in((r, s))((r, 0) \in A)$.
(4) For each $r \in R$ and $s \in S$ (with $(r, s) \in A$), there exist $a \in R, b \in S$, and $n \in \mathbb{Z}$ with $r=a r+n r$ and $0=b s+n s$.

Of course, (3) of Proposition 1 is equivalent to $(0, s) \in((r, s))$. Note that (4) is equivalent to $0=(-a) r+(1-n) r$ and $s=(-b) s+(1-n) s$. Also note that if an ideal A of $R \times S$ is a subproduct, then $A=I \times J$ where $I=\{r \in R \mid(r, 0) \in A\}$ $(=\{r \in R \mid(r, s) \in A$ for some $s \in S\})$ and $J=\{s \in S \mid(0, s) \in A\}(=\{s \in S \mid(r, s)$ $\in A$ for some $r \in R\}$).

We next characterize the commutative rings R with the property that for each commutative ring S, every ideal of $R \times S$ is a subproduct. Most of Theorem 2 appears in [1, Proposition 3.1].

THEOREM 2. For a commutative ring R the following conditions are equivalent.
(1) R is an e-ring (that is, for each $r \in R$, there exists an $e_{r} \in R$ with $e_{r} r=r$).
(2) For each commutative ring S, each ideal of $R \times S$ is a subproduct.
(3) For all $n \geq 2$, each ideal of R^{n} has the form $I_{1} \times \cdots \times I_{n}$ where I_{i} is an ideal of R.
(4) For some $n \geq 2$, each ideal of R^{n} is a subproduct as in (3).
(5) Every ideal of $R \times R$ is a subproduct.

Proof. (1) \Rightarrow (2). Suppose that R is an e-ring. Let $r \in R$ and $s \in S$. Choose $e_{r} \in R$ with $e_{r} r=r$. Then $(r, 0)=\left(e_{r}, 0\right)(r, s) \in((r, s))$. By Proposition 1, every ideal of $R \times S$ is a subproduct.
(2) \Rightarrow (3). Assume the result for $n-1$ and then take $S=R^{n-1}$.
$(3) \Rightarrow(4) \Rightarrow(5)$ is clear.
(5) \Rightarrow (1). By Proposition 1(4) with $R=S$ and $r=s \in R$, there exist $a, b \in R$ and $n \in \mathbb{Z}$ with $r=a r+n r$ and $0=b r+n r$. Hence $r=a r-b r=(a-b) r$. So R is an e-ring.

We next give a 'local' alternative approach to $(1) \Rightarrow(2)$ of the previous theorem.

Proposition 3. Let R and S be commutative rings and let I be an ideal of $R \times S$. Let $\varphi: R \rightarrow R \times S / I(\varphi(r)=(r, 0)+I)$ be the natural map. If $\varphi(R)$ is an e-ring, then I is a subproduct.

Proof. Now $\varphi(R)$ an e-ring says that, for $\overline{(r, 0)} \in R \times S / I$, there exists $\overline{(e, 0)}$ $\in R \times S / I$ with $\overline{(e, 0)} \overline{(r, 0)}=\overline{(r, 0)}$, or $(r-e r, 0) \in I$. Let $(x, y) \in I$. So there exists $e \in R$ with $(x-e x, 0) \in I$. Then $(x, 0)=(x-e x, 0)+(e, 0)(x, y) \in I$. So by Proposition $1, I$ is a subproduct.

Corollary 4. Let R and S be commutative rings and I an ideal of $R \times S$. If $R \times S / I$ is an e-ring, then I is a subproduct.

Proof. If $R \times S / I$ is an e-ring, then so is its subring $\varphi(R)$ where $\varphi(R)$ is as defined in Proposition 3. Indeed, if $\left(e_{1}, e_{2}\right)(r, 0)=(r, 0)$, then $\left(e_{1}, 0\right)(r, 0)=(r, 0)$.

Corollary 5. Let R be an e-ring. Then for any commutative ring S, every ideal of $R \times S$ is a subproduct.

Proof. Let I be an ideal of $R \times S$. If R is an e-ring, then so is its homomorphic image $\varphi(R)$ in $R \times S / I$. By Proposition 3, I is a subproduct.

We next determine the prime ideals of $R \times S$. Here the situation is the same as in the case where the rings have an identity.

Theorem 6. Let R and S be commutative rings. Then an ideal \mathcal{P} of $R \times S$ is prime if and only if \mathcal{P} has the form $P \times S$ where P is a prime ideal of R or $R \times Q$ where Q is a prime ideal of S.

Proof. (\Leftarrow) Clear. (\Rightarrow) Suppose that \mathcal{P} is a prime ideal of $R \times S$. Now $(0 \times S)(R \times 0) \subseteq \mathcal{P}$, so either $0 \times S \subseteq \mathcal{P}$ or $R \times 0 \subseteq \mathcal{P}$. Suppose that $R \times 0 \subseteq \mathcal{P}$. It follows from Proposition 1 that $\mathcal{P}=R \times Q$ for some ideal Q of S. It is easily checked that Q must be prime. The case where $0 \times S \subseteq \mathcal{P}$ is similar.

Corollary 7. Let R and S be commutative rings. The radical ideals of $R \times S$ have the form $I \times J$ where I is a radical ideal of R and J is a radical ideal of S.

Proof. Let I be a radical ideal of $R \times S$. We may assume that $I \neq R \times S$. So I is an intersection of prime ideals, each of which is a subproduct. So $I=I_{1} \times I_{2}$ is a subproduct where I_{i} is either the whole ring or an intersection of prime ideals. In either case I_{i} is a radical ideal.

Our next goal is to characterize the commutative rings R with the property that for each commutative ring S, every primary ideal of $R \times S$ is a subproduct. We need the following lemma.

Lemma 8. Let R and S be commutative rings.
(1) If $A \neq R$ is an ideal with $\sqrt{A}=R$, then A is primary.
(2) If Q is a primary ideal of $R \times S$ with $\sqrt{Q} \neq R \times S$, then either $Q=Q_{1} \times S$ where Q_{1} is a primary ideal of R or $Q=R \times Q_{2}$ where Q_{2} is a primary ideal of S.

Proof. (1) Suppose that $a b \in A$ where $a, b \in R$. Then $\sqrt{A}=R$ gives $b^{n} \in A$ for some $n \geq 1$ regardless of whether $a \in A$ or not. (2) Now \sqrt{Q} is a prime ideal of $R \times S$, so by Theorem 6 either $\sqrt{Q}=P \times S$ where P is a prime ideal of R or $\sqrt{Q}=R \times P$ where P is a prime ideal of S. Without loss of generality we may assume that $\sqrt{Q}=P \times S$. Let $x \in R-P$; so $(x, 0) \notin \sqrt{Q}$. Let $s \in S$. Then $(0, s)(x, 0)=(0,0) \in Q$ and $(x, 0) \notin \sqrt{Q}$, so $(0, s) \in Q$ since Q is primary. Hence $0 \times S \subseteq Q$. So by Proposition 1, $Q=Q_{1} \times S$ for some ideal Q_{1} of R which is easily seen to be primary.

Concerning the condition in Lemma 8(2) that $\sqrt{Q} \neq R \times S$, a primary ideal A of $R \times S$ with $\sqrt{A}=R \times S$ may or may not be a subproduct. For example, $\{(\overline{0}, \overline{0})\}$ and $\{(\overline{0}, \overline{0}),(\overline{1}, \overline{1})\}$ are both primary ideals of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ with radical $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, but the first is a subproduct (but not of the form given in Lemma 8(2)), while the second is not.

THEOREM 9. For a commutative ring R the following conditions are equivalent.
(1) R is a u-ring (that is, if $A \neq R$ is an ideal of R, then $\sqrt{A} \neq R$).
(2) For each commutative ring S, each primary ideal of $R \times S$ has the form $Q_{1} \times S$ where Q_{1} is a primary ideal of R or $R \times Q_{2}$ where Q_{2} is a primary ideal of S.
(3) For each commutative ring S, each primary ideal of $R \times S$ is a subproduct.
(4) Each primary ideal of $R \times R$ has the form $Q \times R$ or $R \times Q$ where Q is a primary ideal of R.
(5) Each primary ideal of $R \times R$ is a subproduct.

Proof. (1) \Rightarrow (2). Let Q be a primary ideal of $R \times S$. If $\sqrt{Q} \neq R \times S$, the result follows from Lemma 8(2). So suppose that $\sqrt{Q}=R \times S$. Let A $=\{a \in R \mid(a, 0) \in Q\}$, an ideal of R. For $r \in R,(r, 0) \in R \times S=\sqrt{Q}$, so $\left(r^{n}, 0\right) \in$ Q for some $n \geq 1$, and hence $r^{n} \in A$. So $\sqrt{A}=R$. Since R is a u-ring, $A=R$. So $R \times 0 \subseteq Q$. By Proposition $1 Q=R \times Q_{2}$ for some ideal Q_{2} of S, necessarily primary.
$(2) \Rightarrow(3) \Rightarrow(5)$ and $(2) \Rightarrow(4) \Rightarrow(5)$ are clear.
(5) \Rightarrow (1), Suppose that R is not a u-ring, so there is an ideal $A \subsetneq R$ with $\sqrt{A}=R$. So for each ideal $B \supseteq A \times A$ of $R \times R, \sqrt{B}=R \times R$. So by Lemma 8(1), B is primary. So by hypothesis, B is a subproduct. So each ideal of $R / A \times R / A$ is a subproduct. By Theorem $2, R / A$ is an e-ring. Let $0 \neq x \in R / A$. Then there is an $e \in R / A$ with $e x=x$. Since $\sqrt{A}=R$, there is an $n \geq 1$ with $e^{n}=0$. But then $x=e x=e^{2} x=\cdots=e^{n} x=0$, a contradiction.

We next characterize the commutative rings R with the property that, for each commutative ring S, the maximal ideals of $R \times S$ are subproducts. Of course a
subproduct of $R \times S$ is a maximal ideal if and only if it has the form $M \times S$ where M is a maximal ideal of R or $R \times N$ where N is a maximal ideal of S.

Lemma 10. Let R be a commutative ring. If M is a maximal ideal of R that is not prime, then $R^{2} \subseteq M$. Thus $\bar{M}=M / R^{2}$ is a maximal subgroup of $\left(R / R^{2},+\right)$. Conversely, if $R \neq R^{2}$ and $\bar{M}=M / R^{2}$ is a maximal subgroup of R / R^{2} where R^{2} $\subseteq M \subsetneq R$ with M a (maximal) subgroup of $(R,+)$, then M is a maximal ideal of R that is not prime.

Proof. Suppose that M is a maximal ideal of R that is not prime. Choose $a, b \in R$ with $a b \in M$ but $a \notin M$ and $b \notin M$. Then since M is maximal, $(M, a)=R=(M, b)$. So $R^{2}=(M, a)(M, b) \subseteq M$. Since the ring R / R^{2} has the zero product, additive subgroups are the same thing as ideals. Thus M / R^{2} is a maximal subgroup of R / R^{2}. The converse is immediate.

Lemma 11. Let R and S be commutative rings with $R=R^{2}$. Then every maximal ideal of $R \times S$ has the form $N_{1} \times S$ or $R \times N_{2}$ where $N_{1}\left(N_{2}\right)$ is a maximal ideal of $R(S)$.

Proof. Let M be a maximal ideal of $R \times S$. If M is prime, then M has the desired form by Theorem 6 and the remarks preceding Lemma 10 . So we may suppose that M is not prime. Then by Lemma $10,(R \times S)^{2} \subseteq M$. But since $R^{2}=R$, $R \times S^{2}=(R \times S)^{2} \subseteq M$. Hence by Proposition $1, M$ is a subproduct necessarily of the form $R \times N_{2}$ where N_{2} is a maximal ideal of S.

THEOREM 12. For a commutative ring R the following conditions are equivalent.
(1) The Abelian group $\left(R / R^{2},+\right)$ has no maximal subgroups.
(2) For each commutative ring S, every maximal ideal of $R \times S$ has the form $M \times S$ or $R \times N$ where $M(N)$ is a maximal ideal of $R(S)$.
(3) For each commutative ring S, every maximal ideal of $R \times S$ is a subproduct.
(4) Every maximal ideal of $R \times R$ has the form $M \times R$ or $R \times M$ where M is a maximal ideal of R.
(5) Every maximal ideal of $R \times R$ is a subproduct.
(6) Every maximal ideal of R is prime.
(7) Every maximal ideal of $R \times R$ is prime.

Proof. We have already remarked that (2) $\Leftrightarrow(3)$ and (4) \Leftrightarrow (5).
(1) \Rightarrow (2). Suppose that $R \times S$ has a maximal ideal \mathcal{M} not of the form $M \times S$ or $R \times N$ where M is a maximal ideal of R and N is a maximal ideal of S. So $R^{2} \neq R$ and $S^{2} \neq S$ by Lemma 11 and $R^{2} \times S^{2}=(R \times S)^{2} \subseteq \mathcal{M}$ by Lemma 10 since \mathcal{M} cannot be prime by Theorem 6. Hence $T=(R \times S) / \mathcal{M}$ is a simple Abelian group. Now the natural map $R / R^{2} \times S / S^{2} \rightarrow T$ is an epimorphism. Since T is a simple Abelian group, the natural map $R / R^{2} \rightarrow R / R^{2} \times S / S^{2} \rightarrow T$ is either onto or the zero map. Since $\left(R / R^{2},+\right)$ has no maximal subgroups, the map must be the zero map.

Hence $R \times 0 \subseteq \mathcal{M}$. So by Proposition $1, \mathcal{M}$ is a subproduct and hence has the form $R \times N$ for some maximal ideal N of S.
(2) \Rightarrow (4) and (3) \Rightarrow (5) are clear.
(4) \Rightarrow (1). Suppose that $\left(R / R^{2},+\right.$) has a maximal subgroup N, so $\left(R / R^{2}\right) / N$ $\approx \mathbb{Z}_{p}$ for some prime p. Then $\left(\left(R / R^{2}\right) \times\left(R / R^{2}\right)\right) / N \times N \approx\left(\left(R / R^{2}\right) / N\right)$ $\times\left(\left(R / R^{2}\right) / N\right) \approx \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Now $\langle(\overline{1}, \overline{1})\rangle$ is a maximal subgroup of $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Hence, by the correspondence theorem, $\left(R / R^{2}\right) \times\left(R / R^{2}\right) \approx(R \times R) / R^{2} \times R^{2}$ has a maximal subgroup not of the form $\left(R / R^{2}\right) \times N^{\prime}$ or $N^{\prime} \times\left(R / R^{2}\right)$ for some maximal subgroup N^{\prime} of R / R^{2}. Hence $R \times R$ has a maximal ideal that is not of the form $R \times M$ or $M \times R$ for some maximal ideal M of R, a contradiction.
(1) \Leftrightarrow (6) by Lemma 10 .
(7) \Rightarrow (5) by Theorem 6 .
(6) \Rightarrow (7). Let \mathcal{M} be a maximal ideal of $R \times R$. By (6) \Rightarrow (1) \Rightarrow (4) $\mathcal{M}=M \times R$ or $R \times M$ where M is a maximal ideal of R. But by hypothesis M is prime and hence so are $M \times R$ and $R \times M$.

REMARK 13. Observe that the proof of Theorem 12 shows that a non-zero Abelian group $A\left(R / R^{2}\right.$ in Theorem 12) has a maximal subgroup if and only if $A \times A$ has a maximal subgroup and then $A \times A$ has a maximal subgroup that is not a subproduct.

However, we cannot conclude from Theorem 12 that if R is a ring for which $\left(R / R^{2},+\right)$ has no maximal subgroups, then every ideal of $R \times R$ is contained in a maximal ideal of the form $M \times R$ or $R \times M$ for some maximal ideal M of R. For if $R^{2} \subsetneq R$, then $R^{2} \times R$ is a proper ideal of $R \times R$ that is not contained in a maximal ideal of the form $M \times R$ (and hence is contained in no maximal ideal). For example, if we take $R=\mathbb{Z}_{p^{\infty}}$ with the zero product, then $R^{2}=0$ and $R \times R$ has no maximal ideals. Hence $\mathbb{Z}_{p} \infty \times \mathbb{Z}_{p^{\infty}}$ vacuously satisfies the condition that each maximal ideal has the form $M \times \mathbb{Z}_{p^{\infty}}$ or $\mathbb{Z}_{p^{\infty}} \times M$. One implication of the following result follows from Theorem 12 and the preceding remarks.

THEOREM 14. Let R be a commutative ring. Then each proper ideal of $R \times R$ is contained in a maximal ideal of the form $M \times R$ or $R \times M$ for some maximal ideal of M of R if and only if $R=R^{2}$ and each proper ideal of R is contained in a maximal ideal of R.

Proof. (\Rightarrow) Suppose that each proper ideal of $R \times R$ is contained in a maximal ideal of the form $M \times R$ or $R \times M$ for some maximal ideal M of R. By the above remarks, $R=R^{2}$. If A is a proper ideal of R, then $A \times R$ is contained in a maximal ideal of $R \times R$ of the form $M \times R$ where M is a maximal ideal of R. Then M is a maximal ideal of R containing A.
(\Leftarrow) Let A be a proper ideal of $R \times R$. Let $A_{1}=\{r \in R \mid(r, 0) \in A\}$. Suppose that $\sqrt{A}=R \times R$. Then for $r \in R,\left(r^{n}, 0\right) \in A$ for some $n \geq 1$, so $r^{n} \in A_{1}$. Thus $\sqrt{A_{1}}=R$. Thus $A_{1}=R$. For if not, then $A_{1} \subseteq M$ for some maximal ideal M of R. Then $R=R^{2}$ gives that M is prime (see the proof of Lemma 10).

So $\sqrt{A_{1}} \subseteq \sqrt{M}=M \subsetneq R$, a contradiction. Likewise $A_{2}=\{r \in R \mid(0, r) \in A\}=R$. So $A=R \times R$, a contradiction. Thus $\sqrt{A} \neq R \times R$. Hence $A \subseteq \mathcal{P}$ for some prime ideal \mathcal{P} of $R \times R$. Without loss of generality, we can assume that $\mathcal{P}=P \times R$ where P is a prime ideal of R. By hypothesis $P \subseteq M$ for some maximal ideal M of R. But then $A \subseteq M \times R$, a maximal ideal of $R \times R$.

References

[1] D. D. Anderson, 'Commutative rings', in: Multiplicative Ideal Theory in Commutative Algebra, a Tribute to Robert Gilmer (Springer, New York, 2006), pp. 1-20.
[2] D. D. Anderson and V. Camillo, 'Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma', Preprint.
[3] R. Gilmer, 'Eleven non-equivalent conditions on a commutative ring', Nagoya J. Math. 26 (1966), 174-183.
D. D. ANDERSON, Department of Mathematics, The University of Iowa, Iowa City, IA, USA
e-mail: dan-anderson@uiowa.edu
JOHN KINTZINGER, Department of Mathematics, The University of Iowa, Iowa City, IA, USA
e-mail: johnskintzinger@netscape.net

[^0]: (C) 2008 Australian Mathematical Society 0004-9727/08 \$A2.00 +0.00

