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On modular inverses of cyclotomic polynomials and
the magnitude of their coefficients

Clément Dunand

Abstract

Let p and r be two primes, and let n and m be two distinct divisors of pr. Consider Φn and
Φm, the nth and mth cyclotomic polynomials. In this paper, we present lower and upper bounds
for the coefficients of the inverse of Φn modulo Φm and discuss an application to torus-based
cryptography.

1. Introduction

The magnitude of coefficients of polynomials derived from cyclotomic polynomials has attracted
attention since the 19th century. If ϕ denotes the Euler totient function, the nth cyclotomic
polynomial Φn is a monic polynomial of degree ϕ(n) whose roots are the primitive nth roots
of unity. In the following, we denote its coefficients by (ai)06i6ϕ(n).

Many results dealing with Φn have been published so far. On the one hand, we have
asymptotic results saying that these coefficients may exhibit exponential behaviour for infinitely
many n (see, for instance, Erdös [13] or Bateman [4]). On the other hand, there exist
numerous studies for integers n having only a small number of prime factors. Along these
lines, Migotti [17] showed in 1883 that if n is composed of at most two primes p and r, the
coefficients of Φpr can only be −1, 0 or 1. Later, around 1965, Beiter [5] and Carlitz [8] found
more precise criteria for these coefficients to be 0 or ±1. More recently, in 1996, Lam and
Leung [15] presented these coefficients in an explicit way.

The first example of a cyclotomic polynomial with a coefficient of magnitude 2 is Φ105, whose
7th and 41st coefficients are −2. Yet, when n is the product of a small number of primes, we can
still find interesting bounds on the coefficients of Φn. For n being a product of three distinct
primes p < q < r, Bang [3] showed in 1895 that |ai|6 p− 1. Later, in 1968, Beiter [5] and
Bloom [7] gave a better bound for when q or r equals ±1 modulo p, that is, |ai|6 (p+ 1)/2.
The conjecture that this bound could hold for all prime numbers p, q and r has recently been
proved false by Gallot and Moree in [14]. Bachman [2] gave a better bound in 2003: for any
distinct primes p < q < r, |ai|6 p− dp/4e. In 1968, Bloom [7] even gave a bound for a product
of four distinct primes: for n= pqrs with p < q < r < s, we have |ai|6 p(p− 1)(pq − 1).

Moree has recently studied cofactors of cyclotomic polynomials, that is, polynomials of the
form (xn − 1)/Φn(x). It appears that their coefficients tend to be small in absolute value. These
results can be extended to the Taylor expansion about 0 of 1/Φn (see [18]).

This paper deals with modular inverses of cyclotomic polynomials. If Φm and Φn are coprime
(that is, if gcd(Φm, Φn) = 1), then Φm is invertible modulo Φn and, following the example of
Φn, we may ask whether the coefficients of Φ−1

m mod Φn are of a special form. In particular,
we have noticed that the magnitudes of these coefficients take a very special form when n is
composed of a few prime factors, and we thoroughly prove lower and upper bounds for them
in the case where m and n are two distinct divisors of pr, the product of two primes. For the
product of three primes pqr, the peculiar structure of Φpqr may also yield interesting results,
but this is beyond the scope of the present work.
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Our main motivation is the computation of a convenient morphism between the multiplicative
group of a finite field Fqn and products of some of its subgroups. Such calculations typically
occur in torus-based cryptographic schemes, as developed by Silverberg and Rubin [19, 20].
The bounds presented in Theorem 1 lead to improvements in the running times of algorithms
in this field (see [11, 12]). Such schemes are discrete log-based cryptosystems and make use of
a subgroup of F×qn in which the communication cost is reduced; that is to say, elements can be
represented by fewer than the usual n coordinates in Fq.

In Section 2 we explain more precisely the geometric structure of algebraic tori, which is the
mathematical context of torus-based cryptography. A cryptographic application of the results
presented in this paper will be sketched in Section 4.

In Section 3 we come to the main theorem of this paper. First, we recall a useful result
from Apostol [1] on the resultant of two cyclotomic polynomials. Then, in the case of two
coprime cyclotomic polynomials, we consider the inverse of Φm modulo Φn. Most of Section 3
is dedicated to an exhaustive study of the case where n and m are divisors of the product of
two primes, and we prove the following theorem.

Theorem 1. For all distinct prime numbers p and r:
(i) Φ−1

p mod Φ1 = 1/p and Φ−1
1 mod Φp = (−1/p)(Xp−2 + 2Xp−3 + . . .+ p− 1);

(ii) Φ−1
pr mod Φ1 = 1 and Φ−1

1 mod Φpr =
∑ϕ(pr)−1
i=0 viX

i with vi ∈ {−1, 0};
(iii) Φ−1

pr mod Φp = (1/r)
∑d
i=0 X

i with d= r − 1 mod p and

Φ−1
p mod Φpr = (1/r)

∑ϕ(pr)−1
i=0 viX

i with |vi|< r;

(iv) Φ−1
p mod Φr =

∑ϕ(r)−1
i=0 viX

i with vi ∈ {0,−1,+1}.

2. Geometry of algebraic tori

Many protocols and cryptosystems make use of the subgroup of order Φn(q) in the
multiplicative group F×qn . It is interesting to see it as the set of rational points over Fq of
an algebraic torus. We refer to [9, 20] for more details.

2.1. Structure of algebraic tori

For a given field K, let K̄ be a separable closure of K. Let Gm denote the multiplicative group.
This is an affine absolutely connected algebraic group of dimension one. An algebraic torus
over K is an algebraic group T that is isomorphic to Gs

m over K̄ for some s> 1. By a splitting
field of T we shall mean any subfield L of K̄ such that T is isomorphic to Gs

m over L.
From now on we consider finite extensions of finite fields. Let L= Fqn be a field extension

of K = Fq, and let G denote Gal(L/K). Let ResL/K denote the functor of Weil restriction of
scalars from L to K. Its basic properties are given in [22, 23]. What we need, essentially, is
that for a given variety V , there are |G| functorial projection L-morphisms ResL/K V → V
such that their direct sum gives an L-isomorphism

ι : ResL/K V
∼−−→ V |G|.

In the case of V = Gm, this isomorphism allows us to represent an L-point of ResL/K Gm by
|G| coordinates taking values in Gm ⊂ A1. We can define norm and trace maps by computing,
respectively, the product and the sum of these coordinates. Let n= |G|; then we have the
following explicit definition of the norm map:

NL/K : ResL/K Gm
ι−−→ Gn

m −→ Gm

α 7−→ (αg)g∈G 7−→
∏
g∈G αg,

which happens to be defined over K.
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More generally, for any intermediate extension K ⊆ F ⊆ L we can construct partial norms
NL/F,K : ResL/K Gm→ ResF/K Gm. These norms correspond to the usual ones on L×, the set
of K-rational points of ResL/K Gm.

Definition 1. The torus TL is defined as the intersection of the kernels of the norm maps
NL/F,K for all subfields K ⊆ F ( L:

TL =
⋂

K⊆F(L
Ker[ResL/K Gm

NL/F,K−−−−−−→ ResF/K Gm].

With the usual norms over fields, we recover the elementary definition of the K-points of TL:

TL(K)' {α ∈ L×| NL/F (α) = 1 ∀K ⊂ F ( L}.

Moreover, this torus is L-isomorphic to Gd
m with d= ϕ(n); we refer to [20, Proposition 2.6],

where Rubin and Silverberg give a detailed proof of this result.

2.2. Endomorphisms of algebraic tori

Any algebraic torus T of dimension s is by definition isomorphic to Gs
m over a splitting

field. This means that it is actually a twist over Fq of Gs
m. So there exists a K̄-isomorphism

I : T →Gs
m.

We call σ : K̄→ K̄ the Frobenius automorphism. Let σI : T →Gs
m be the conjugate of I by σ.

The composition σII−1 is an endomorphism of Gs
m. Arguments from Galois cohomology [9]

show that there is a bijective correspondence which associates each twist of Gs
m with the

conjugacy classes of σII−1 inside the endomorphism ring of Gs
m.

An endomorphism of Gs
m is given by

a : (g1, . . . , gs) 7→
( ∏

16j6s

g
ai,j

j

)
16i6s

.

Such a map in characterized by the matrix of the exponents (ai,j)16i,j6s. This is an
s-dimensional square matrix with integer coefficients, which actually corresponds to an
endomorphism of the Z-module of characters of Gs

m. The morphism a is invertible if and
only if the matrix (ai,j)16i,j6s is invertible. So the automorphism group of Gs

m is equal to
GLs(Z).

In the case of the Weil restriction ResFqn/Fq
Gm, we obtain σII−1 = ω, where ω denotes the

following permutation of the coordinates:

ω(g1, g2, . . . , gn) = (gn, g1, . . . , gn−1).

Let us compute the ring of Fq-endomorphisms of this torus. With every endomorphism ε of
Gn
m we associate an endomorphism of ResFqn/Fq

Gm, and the following diagram commutes.

ResFqn/Fq
Gm

I ∼
��

I−1εI // ResFqn/Fq
Gm

∼I

��
Gn
m

ε // Gn
m

The endomorphism I−1εI is defined over Fq if and only if it is invariant under the action of
σ, that is, σI−1εσI = I−1εI. So ε yields an Fq-endomorphism of ResFqn/Fq

Gm if and only if
ωε= εω.
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2.3. Decomposition of Gn
m

Subsection 2.2 shows that there is a functorial correspondence between the category of algebraic
tori over finite fields and the category of Z-modules with an automorphism. For instance,
the torus ResF

qd/Fq
Gm corresponds to Z[X]/(Xq − 1), with the automorphism ω given by

multiplication by X.
The identity Xn − 1 =

∏
d|n Φd(X) gives rise to the isomorphism Q[X]/(Xn − 1)'

∏
d|n

Q[X]/Φd(X). However, we do not necessarily have an isomorphism between Z[X]/(Xn − 1)
and

∏
d|n Z[X]/Φd(X). Still, we can write (Z[1/n])[X]/(Xn − 1)'

∏
d|n(Z[1/n])[X]/Φd(X).

Consequently, there exist two isogenies between the two algebraic groups ResFqn/Fq
Gm and∏

d|n TF
qd

such that their composition is multiplication by a power of n.
Section 4 sketches how torus-based cryptography makes use of this decomposition up to

isogeny. We will explain how the results in Section 3 on the coefficients of some specific
polynomials allow us to compute these isogenies more efficiently.

3. Inversion of Φm mod Φn

We will describe in Section 4 how the arithmetic of cyclotomic polynomials can be used
to compute parts of these isogenies. Notably, the expression for the resultant of cyclotomic
polynomials turns out to be of great interest. Its computation goes back to Apostol [1], who
gave the following formulae.

Theorem 2 (Apostol [1]). Let m> 1; then

Res(Φ1, Φm) =

{
p if m= pa for p prime and a> 1,
1 otherwise.

Moreover, if m> n> 1, then

Res(Φm, Φn) =
∏
d|n

p∈P such that m/(m,d)=pa

pµ(n/d)ϕ(m)/ϕ(pa) (1)

where µ is the Möbius function and ϕ the Euler totient function. This product is taken over
all divisors d of n such that m/(m, d) is a prime power pa.

Corollary 1 (Apostol [1]). For all integers m> n> 1,

Res(Φm, Φn) 6= 1 ⇐⇒ m= npα with p prime and α> 1.

As a result, we can show the following condition for coprimality.

Corollary 2. For any integer q and integers m> n> 1, Φm(q) and Φn(q) are coprime if
m does not divide n.

Proof. If m does not divide n, we know from Lemma 1 that Res(Φm, Φn) = 1, which is true
in Z, and also in Z/`Z for any ` ∈ Z, since 1 is unchanged. Now suppose that Φm(q) and Φn(q)
have a common factor, say `. Then Φm and Φn have a common root, q, in Z/`Z and therefore
their resultant is zero, which is false. 2

It will be shown in Section 4 that knowledge of Φm(q)−1 mod Φn(q) can be useful in
cryptography, particularly information on the magnitude of its coefficients as a polynomial
in q. The main theorem of this paper is dedicated to this question.
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Consider m and n such that the cyclotomic polynomials Φm and Φn are coprime. Then Φm
is invertible modulo Φn, and we want to compute Φm−1 modulo Φn; more precisely, we would
like to know the magnitude of its coefficients.

Since Φm and Φn are coprime, we have the Bézout relation

ΦmU + ΦnV = 1. (2)

Our goal is to study U = Φm−1 mod Φn.

In this section we shall prove the four assertions of Theorem 1 in turn. Recall that Φn(1) = p
if n= pα is a prime power; otherwise Φn(1) = 1 for n > 1.

3.1. The m= p and n= 1 case and its converse

The cyclotomic polynomials Φp and Φ1 are both easy to write down, and it is not difficult to
obtain explicit expressions for their inverses.

Proposition 1. For any prime number p:
• Φ−1

p mod Φ1 = 1/p;
• Φ−1

1 mod Φp =−(Xp−2 + 2Xp−3 + . . .+ p− 1)/p.

Proof. We simply check that the Bézout relation between Φp and Φ1 is valid:

−Φ1(X)(Xp−2 + 2Xp−3 + . . .+ p− 1) + Φp(X)

= (X − 1)
p−2∑
k=0

(k + 1− p)Xk + Φp(X),

=
p−1∑
k=1

(k − p)Xk −
p−2∑
k=0

(k + 1− p)Xk +
p−1∑
k=0

Xk = p. 2

3.2. The m= pr and n= 1 case and its converse

The explicit expression of Φpr is less convenient than that of Φp, but we nonetheless have useful
information, thanks to Lam and Leung [15].

Proposition 2. For all distinct prime numbers p and r:
• Φ−1

pr mod Φ1 = 1;

• Φ−1
1 mod Φpr =

∑(p−1)(r−1)−1
i=0 viX

i with vi ∈ {−1, 0}.

Proof. We first look for U in the Bézout relation ΦprU + Φ1V = 1, and we know that it has
degree zero. So a simple evaluation of this relation at 1 gives U(1) = 1, because Φpr(1) = 1.
Therefore Φpr−1 mod Φ1 = 1.

Note that a similar technique would allow us to compute Φ−1
n modulo Φ1 for any n, since it

is simply Φn(1)−1, which we know explicitly.
Now V is characterized by (X − 1)V (X) = 1− Φpr(X). Let V (X) =

∑d
i=0 viX

i and
Φpr(X) =

∑d+1
i=0 aiX

i with d= (p− 1)(r − 1)− 1. Then we can write the equation as a linear
system,

−1 0 . . . 0

1 −1
. . .

...
...

. . . . . . 0
0 . . . 1 −1



v0

v1

...
vd

=


1− a0

−a1

...
−ad

 ⇔

v0

v1

...
vd

=


1 0

. . . 0

1 1
. . .

...
...

. . . . . . 0
1 . . . 1 1



a0 − 1
a1

...
ad

 .
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We know from [15] that a0 = 1 and ai ∈ {0,±1} for all i. Moreover, the signs (+1 or −1)
are alternating. So each vi is necessarily 0 or ±1. Furthermore, a0 = +1, so the next non-zero
coefficient equals −1. Thus, the alternating sum that defines each vi starts with a −1, and
consequently vi ∈ {−1, 0} for all i. 2

3.3. The m= pr and n= p case

This time we will need the explicit expression for Φpr.

Proposition 3. For all distinct prime numbers p and r,

Φ−1
pr mod Φp =

1
r

d∑
i=0

Xi with d= r − 1 mod p.

Proof. Let us directly show that (1/r)(
∑d
i=0 X

i)Φpr ≡ 1 mod Φp. For this purpose, we need
to use the expression of Φpr given in [15]. Let s and t be two positive integers such that
(p− 1)(r − 1) = ϕ(pr) = sp+ tr. Then

Φpr(X) =
( s∑
i=0

Xip

)( t∑
j=0

Xjr

)
−
( r−1∑
i=s+1

Xip

)( p−1∑
j=t+1

Xjr

)
X−pr.

Thus,

Φpr(X)
d∑
i=0

Xi mod Φp =
(

(s+ 1)
t∑

j=0

Xjr − (r − 1− s)
p−1∑
j=t+1

Xjr

) d∑
i=0

Xi,

=
(

(s+ 1)
p−1∑
j=0

Xjr − r
p−1∑
j=t+1

Xjr

) d∑
i=0

Xi.

But Φp(Xr) =
∑p−1
j=0 X

jr and, since r is coprime with p, we have

Φpr(X)
d∑
i=0

Xi mod Φp = −r
p−1∑
j=t+1

Xjr
d∑
i=0

Xi

= r
X(t+1)r − 1
Xr − 1

Xd+1 − 1
X − 1

.

An explicit computation shows that (t+ 1)r = 1 + pr − p(s+ 1). So X(t+1)r ≡X mod Φp.
Also, d+ 1≡ r mod p and hence Xd+1 ≡Xr mod Φp, which leads to the result. Only r remains
in the computed product. 2

3.4. The m= p and n= pr case

Proposition 4. For all distinct prime numbers p and r,

Φ−1
p mod Φpr =

1
r

∑
i

viX
i with |vi|< r.

Proof. We are looking for V in the Bézout relation ΦprU + ΦpV = 1 To that end, we first
compute rV (X). We have

rV (X) =
r − rU(X)Φpr(X)

Φp(X)
= (−rU(X)Φpr(X))÷ Φp(X).

Here, the operator ÷ evaluates the quotient in the Euclidean division of the left-hand side by
the right-hand side. Note that removing the constant coefficient r only alters the remainder in
this division.

https://doi.org/10.1112/S1461157012000034 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012000034


50 C. DUNAND

It is well known that Φpr(X) = Φr(Xp)/Φr(X); we will now rewrite Φr(Xp) using the
following equality:

(Xp − 1)
r−2∑
j=0

(r − 1− j)Xpj =
r−2∑
j=0

(r − 1− j)Xp(j+1) −
r−2∑
j=0

(r − 1− j)Xpj = Φr(Xp)− r.

We recall from Proposition 3 that rU(X) =
∑d−1
i=0 X

i = (Xd − 1)/(X − 1) with d ∈ [0, p[ such
that r ≡ d mod p. Moreover, Xr − 1 = (X − 1)Φr(X), which finally leads to

rV (X) =
(
−(X − 1)(Xd − 1)

r−2∑
j=0

(r − 1− j)Xpj

)
÷ (Xr − 1).

In the simple case where r < p, we have d= r. Thus, after simplifying by (Xr − 1), we obtain
rV (X) =−(X − 1)

∑r−2
j=0(r − 1− j)Xpj as the quotient of the division. Since the powers of

the monomials in the sum increase by p, multiplying by (X − 1) leads to no collision. So the
coefficients of rV do not exceed r in absolute value.

Let us now come to the case where r > p. First, we compute the Euclidean division of∑r−2
j=0(r − 1− j)Xpj by Xr − 1. Let Q denote the quotient and R the remainder. For all

0 6 j < r − 2, we can check that

Xpj =Xpj mod r + (Xr − 1)
∑

06k<pj
k≡pj mod r

Xk

by recognizing a geometric sum in the right-hand side. Hence

Q(X) =
r−2∑
j=0

(r − 1− j)
∑

06k<pj
k≡pj mod r

Xk and R(X) =
r−1∑
j=0

((−1− j/p) mod r)Xj . (3)

We eventually find that

rV (X) =−(X − 1)(Xd − 1)Q(X)− ((X − 1)(Xd − 1)R(X))÷ (Xr − 1).

Since (X − 1)(Xd − 1)R(X) has degree less than 2r, its quotient by (Xr − 1) has degree less
than r; therefore it is equal to the quotient by Xr. So it simply comes from the monomials of
highest degree in (X − 1)(Xd − 1)R(X). More precisely, let Q′ denote this quotient; then it
comes from the monomials of degree at least r in (Xd+1 −Xd −X)R(X). Write a= 1/p mod r,
that is, the representative of the class of 1/p modulo r (in what follows, a quantity mod r will
always mean its representative modulo r). We then have the first and last coefficients of Q′:

Q′(X) = (a− 1)Xd + . . .− (r − 1).

Indeed, the leading coefficient of R is Rr−1 = a− 1. The constant coefficient of Q′ is the sum
of coefficients of R, that is,

Rr−d−1 −Rr−d −Rr−1 = (da+ a− 1) mod r − (da− 1) mod r − (a− 1).

Now we need the value (da+ a− 1) mod r in order to compute the difference from (da− 1)
mod r. If we let d= r − ep with e= br/pc, then (da− 1) mod r =−(e+ 1) mod r = r − e− 1.
Let us now compare it with a. We know that p(a mod r) = 1 + kr with k > 1 an integer.
• If k = 1, then a= (r + 1)/p= e+ 1 by definition of the floor function.
• If k > 2, then p(a) > r + p and thus a> e+ 1.

So, in any case, (da− 1) mod r + a> r and therefore

Rr−d−1 −Rr−d −Rr−1 = 1− a+ a− r = 1− r.

Moreover, for all 1 6 k < d, the coefficient of the monomial Xk in Q′ is

((−1− (r − d− 1 + k)/p) mod r)− ((−1− (r − d+ k)/p) mod r) ∈ {a, a− r}.
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Similarly, we can show that the d+ 1 coefficients of lowest degree in (X − 1)(Xd − 1)Q(X)
(except the first one, which is zero) are given by the difference of two consecutive coefficients
in Q(X), that is, −a or r − a. More precisely, we obtain

((X − 1)(Xd − 1)Q(X) mod Xd+1) + ((X − 1)(Xd − 1)R(X))÷ (Xr − 1)
=−Xd + (r − 1)X − (r − 1).

Now we must find a bound for the coefficients of the monomials with degree greater than d
in (Xd − 1)(X − 1)Q(X).

First, note that each monomial of (X − 1)Q(X) is the difference of two consecutive
monomials of Q, and is therefore an integer in [a− r, a].

Similarly, any monomial of (Xd − 1)(X − 1)Q(X) is the difference of monomials of
(X − 1)Q(X) that are d steps away from each other. So none of these coefficients can exceed
r in absolute value.

Now, in order to show that we can obtain neither r nor −r, we are going to show that two
coefficients of (X − 1)Q(X) cannot be equal to a− r and a if they are d steps away from each
other.

From now on, for the sake of simplicity, values taken modulo r will be written in brackets.
We start by rewriting equation (3):

Q(X) =
p(r−2)∑
k=0

[ka]p>k+1

(r − 1− [ka])Xk =
p(r−2)∑
k=0

[ka]p>k+1

qkX
k.

Next, following the example of the Kronecker delta, we will use δ to denote the Boolean
evaluation of the assertion in the subscript; so its value equals +1 if the latter is true and 0
otherwise. Then the coefficient of Xk in (X − 1)Q(X) is given by

∆k = qk−1 − qk = (r − 1− [(k − 1)a])δ[(k−1)a]p>k − (r − 1− [ka])δ[ka]p>k+1.

But [(k − 1)a] = [ka]− a if [ak] > a, and [ka]− a+ r otherwise; so we have the following cases.

Case 1: 0 6 [ak]< a.
We have ∆k = (−1− [ka] + a)δ(r−a)p+[ka]p>k − (r − 1− [ka])δ[ka]p−1>k.
• If k > [ka]p+ (r − a)p, then ∆k = 0.
• If [ka]p+ (r − a)p> k > [ka]p− 1, then 0 6 ∆k = a− 1− [ka]< a.
• If [ka]p− 1 > k, then ∆k = (−1− [ka] + a)− (r − 1− [ka]) = a− r.

Case 2: a6 [ak]< r.
We have ∆k = (r − 1− [ka] + a)δ[ka]p>k+ap − (r − 1− [ka])δ[ka]p>k+1.
• If [ka]p < k + 1, then ∆k = 0.
• If k + 1 6 [ka]p < k + ap, then 0 > ∆k =−r + 1 + [ka]>−r + a.
• If k + ap6 [ka]p, then ∆k = (r − 1− [ka] + a)− (r − 1− [ka]) = a.
Now the coefficient of Xk in (Xd − 1)(X − 1)Q(X) is the difference ∆k−d −∆k. The bounds

above show that it is always smaller than r in absolute value, except when one of the terms
equals a− r and the other equals a.

Case 1: ∆k = a− r and ∆k−d = a.
We have 0 6 [ak]< a, [ka]p− 1 > k, a6 [a(k − d)]< r and k − d+ ap6 [(k − d)a]p.
• If [ak]> [ad], then [a(k − d)] = [ak]− [ad] and so a > [ak] > a+ [ad], which is impossible.
• If [ak]< [ad], then [a(k − d)] = [ak]− [ad] + r and so [ak]− [ad] + r > a. Putting η = [ad],

we finally obtain

a+ η − r 6 [ak]< a.

https://doi.org/10.1112/S1461157012000034 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012000034


52 C. DUNAND

Note that if k′ = k + p, then [ak′] = [ak] + 1, which leads to k ∈ {k1, k1 + p, . . . , k2},
with bounds such that [ak1] = a− (r − η) and [ak2] = a− 1. Since [a(d+ 1)] = [a+ η] =
[a+ η − r], we have [k1] = d+ 1 and thus k2 = d+ 1 + (r − η − 1)p. The possible values
for k are k = d+ 1 + xp where x ∈ {0, 1, . . . , r − η − 1}, with 0 6 d+ 1< r being the first
one.
The inequality k − d+ ap6 [(k − d)a]p leads to 1 + (a+ x)p6 [a+ x]p. On the one hand,
this is possible only if (a+ x) exceeds r. But, on the other hand, this would also imply
1 + (a+ x)p < rp and thus a+ x < r, which is a contradiction.

Case 2: ∆k = a and ∆k−d = a− r.
We have 0 6 [a(k − d)]< a, [(k − d)a]p− 1 > k − d, a6 [ak]< r and k + ap6 [ka]p.
• If [ak]< [ad], then [ak]− [ad] + r < a6 [ak], which is impossible.
• If [ak]> [ad], then [a(k − d)] = [ak]− [ad]. As before, the inequalities give bounds for [ak]:

a6 [ak]< a+ η.

This corresponds to η values for k consisting of an arithmetic progression with common
difference p and starting at k1 = 1, such that [ak1] = a. So we can write k = 1 + xp with
x ∈ {0, . . . , η − 1}. Then the inequality k + ap6 [ka]p becomes 1 + (x+ a)p6 [a+ x]p,
which gives the same contradiction as in the previous case.

Therefore, we have finally shown that no coefficient of (Xd − 1)(X − 1)Q(X) is equal to r
or −r, which completes the proof. 2

3.5. The case of m= p and n= r where p and r are two distinct primes

Before giving a proof of the last assertion in Theorem 1, we need to work on the general
problem. The idea is to evaluate our Bézout relation at the roots of Φn and to interpolate U
from the values found at these points. We are going to slightly modify the equation to obtain
a more convenient linear system.

Recall that ΦpU + ΦrV = 1; see equation (2). If we multiply both sides by X − 1, we obtain
ΦpŨ + (Xr − 1)V =X − 1, with Ũ = (X − 1)U .

The roots of Xr − 1 are the rth roots of 1, {ξj : 0 6 j 6 r − 1}. The evaluation of our Bézout
relation at these points gives

Φp(ξj)Ũ(ξj) = ξj − 1 for all 0 6 j 6 r − 1.

If we write Ũ =
∑r
i=1 ũiX

i−1, then the equation can be expressed as
r∑
i=1

ũi(ξj)i−1 = (ξj − 1)(Φp(ξj))−1 for all 0 6 j 6 r − 1.

We first work on Ũ and its coefficients.

Lemma 1. For 1 6 i6 r,

ũi ∈ {0,+1,−1}.

Proof. The coefficients (ũi)16i6r are the solutions of a system of linear equations, the matrix
version of which is AŨ =W where W =

[
(ξj − 1)Φp(ξj)−1

]
06j6r−1

and

A=


1 1 . . . 1
1 ξ . . . ξr−1

...
...

...
...

1 ξr−1 . . . (ξr−1)r−1

= VdM(1, ξ, . . . , ξr−1).
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Here VdM denotes the Vandermonde matrix. The matrix A is invertible, since all of
the (ξi)i∈{0,...,r−1} are distinct. Thus we can give an explicit resolution of the system:
Ũ =A−1W . It is proven in [24] that the inverse of such a Vandermonde matrix (where
ξ is a primitive root of unity of order r) is still a Vandermonde matrix, with inverse
coefficients. Here A−1 = (1/r) VdM(1, ξ−1, . . . , ξ−r+1), that is, its explicit coefficients are
A−1 = (1/r)[(ξ−(i−1))j−1] 16i6r

06j6r−1
.

Thus, the solutions of the linear system are given by

ũi =
1
r

r−1∑
j=0

(ξ−(i−1))j(ξj − 1)Φp(ξj)−1, 1 6 i6 r.

Now, using Φp(X) = (1−Xp)/(1−X), we find that

ũi =
1
r

r−1∑
j=0

(ξ1−i)j(ξj − 1)
1− ξj

1− ξjp
, 1 6 i6 r.

We can improve this expression by using the relation
1

1− ξjp
=

1
r

(ξjp(r−2) + 2ξjp(r−3) + . . .+ (r − 1)).

Indeed, it is easy to show that

(1− ξjp)
r−2∑
k=0

(r − 1− k)ξjpk = r.

So the final expression, for all 1 6 i6 r, is

ũi =
1
r2

r−2∑
k=0

(r − k − 1)
r−1∑
j=0

ξj(1−i)(ξj − 1)(1− ξj)ξjpk.

After expanding and collecting terms, we will work on the following form for any given i:

ũi = − 1
r2

r−2∑
k=0

(r − k − 1)
r−1∑
j=0

(ξj(pk+1−i) − 2ξj(pk+2−i) + ξj(pk+3−i))

= − 1
r2

r−2∑
k=0

(r − k − 1)(S1(k)− 2S2(k) + S3(k))

where Sl(k) =
∑r−1
j=0 ξ

j(pk+l−i).
The sums Sl =

∑r−1
j=0(ξA)j are actually sums of all the powers of an rth root of 1. So if ξA

is a prime root of 1, the sum simply equals 0. And if ξA is not a prime root of 1, the only
possibility is ξA = 1 (that is, A≡ 0 mod r), and in this case the sum equals r. Therefore

Sl(k) =

{
0 if pk + l − i 6≡ 0 mod r,
r if pk + l − i≡ 0 mod r.

With the notation of Section 3.4, a= p−1 mod r, put kl = a(i− l) mod r such that Sl(kl) = r.
Then

∑r−2
k=0(r − k − 1)Sl(k) = (r − kl − 1)r. Note that this formula holds even when kl = r − 1:

in this case the contribution of the sums Sl(k) is zero. Putting the three sums together leaves
us with

ũi = −1
r

[−k1 + 2k2 − k3],

=
1
r

[a(i− 1) mod r − 2(a(i− 2) mod r) + (a(i− 3) mod r)]. (4)
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Writing Ai = a(i− 1) mod r, we can split this expression into

ũi =
1
r

(
[Ai −Ai−1︸ ︷︷ ︸

Di

]− [Ai−1 −Ai−2︸ ︷︷ ︸
Di−1

]
)
,

which leads to the following four cases.
• If Di = a and Di−1 = a, then ũi = 0.
• If Di = a and Di−1 = a− r, then ũi = 1.
• If Di = a− r and Di−1 = a, then ũi =−1.
• If Di = a− r and Di−1 = a− r, then ũi = 0.

So ũi ∈ {−1, 0,+1}. 2

Proposition 5. For all distinct prime numbers p and r,

Φ−1
p mod Φr =

r−1∑
j=1

ujX
j−1 with uj ∈ {−1, 0,+1}.

Proof. Now we can compute the coefficients of U such that Ũ = (X − 1)U . A similar
calculation has been performed for the proof of Proposition 2, which leads to the following
matrix formulation: 

u1

u2

...
ur−1

=−


1 0 . . . 0

1 1
. . .

...
...

. . . . . . 0
1 . . . 1 1



ũ1

ũ2

...
ũr−1

 .
Since uj is a sum of consecutive coefficients ũi, all we need to prove is that +1 and −1

alternate in (ũi)16i6r−1 (among possible zeros). With the notation above, recall from the proof
of Lemma 1 that for all 1 6 i6 r,

ũi =

 1 if Di = a and Di−1 = a− r,
−1 if Di = a− r and Di−1 = a,

0 if Di =Di−1.
(5)

Given ũi for any 1 6 i6 r − 1, we want to show that the next non-zero coefficient differs
from ũi. In other words, letting j be the smallest integer greater than i such that ũj 6= 0, we
aim to show that ũj 6= ũi.

If ũi = 0, this is obvious. Now suppose that ũi = 1. Then we know from equation (5) that
Di = a and Di−1 = a− r. By the definition of j, we have ũi+1 = . . .= ũj−1 = 0; hence, thanks
to equation (5) again, Di =Di+ 1 = . . .=Dj−1. So Dj−1 = a, and thus ũj =−1 6= ũi. Note
that this still holds if j = i+ 1, since we would then simply have Di =Dj−1. And, of course,
the argument works in exactly the same way for ũi =−1.

This completes the proof, since the alternation of +1 and −1 in (ũi)16i6r shows that
uj ∈ {−1, 0,+1} for all 1 6 j 6 r − 1. 2

4. A cryptographic application

Beyond the simple arithmetic context of our computation, we have found a direct application
in torus-based cryptography. In this section we will briefly describe how Theorem 1 has been
used in [12]. We refer to the latter paper for more details and further references.

Over the past twenty years, practical torus-based cryptosystems have been constructed
for different extension degrees such as 2, 3 and 6 (see, for instance, luc[21], xtr[16] or
ceileidh[19]). Yet the search for rational parametrizations of algebraic tori has raised several
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unsolved questions. Following the ideas of van Dijk and Woodruff [11], we construct a map θ
whose kernel is annihilated by a power of n, so that θ is not far from being a bijection:

θ : Tn(Fq)×
∏
d|n

µ(n/d)=−1

F×
qd →

∏
d|n

µ(n/d)=+1

F×
qd . (6)

This kind of parametrization has applications in such cryptosystems as Diffie–Hellman
multiple key exchange. In [12] we present a practical implementation of this map, whose
efficiency relies on the use of a certain class of normal bases (see [10]) in the representation of
field extensions.

We suppose that the dimension n is the product of two distinct primes p and r, and we now
give explicit details concerning the computation of θ.

In what follows, we shall use several times the following principle. Given the resultant of two
polynomials P and Q, we know that there exist U and V such that

U(X)P (X) + V (X)Q(X) = Res(P, Q).

Evaluating this relation at some integer yields a Bézout-like relation showing that
pgcd(P (q), Q(q)) divides Res(P, Q). In particular, if we use Theorem 2, we get a relation
between the evaluations of two cyclotomic polynomials:

U(q)Φn(q) + V (q)Φm(q) = Res(Φn, Φm).

Let us first consider the simple example of F×qp . Let T1 and Tp denote its subgroups of order
q − 1 and Φp(q), respectively. Then we have the following two norm maps:

F×qp → T1 and F×qp → Tp

xp 7→ x
Φp(q)
p xp 7→ xq−1

p .

Furthermore, since Res(Φ1, Φp) = p, we can obtain an equation linking q − 1 and Φp(q),

Φp(q)u1 + (q − 1)up = p

where u1 and up are integers. Thus we also have the following reverse map:

T1 × Tp → F×qp

(t1, tp) 7→ tu1
1 t

up
p .

This map is such that its composition with the product of the two norm maps above results
in multiplication by p.

We have a similar construction for F×pr , where Tr denotes its subgroup of order Φr(q):

F×qr → T1 × Tr
xr 7→ (xΦr(q)

r , xq−1
r )

tv11 t
vr
r ←[ (t1, tr)

with the relation Φr(q)v1 + (q − 1)vr = r.
Now, in the case of F×qpr , we consider the four subgroups of order q − 1, Φp(q), Φr(q) and

Φpr(q), which we call T1, Tp, Tr and Tpr, respectively. Of course, T1 = F×q , Tp ⊂ F×qp and
Tr ⊂ F×qr .

We have the following map whose components are the four natural norms:

F×qpr → T1 × Tp × Tr × Tpr
xpr 7→ (xU1(q)

pr , x
Up(q)
pr , x

Ur(q)
pr , x

Upr(q)
pr ),

where Uk(X) = (Xpr − 1)/Φk(X).
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×

×

××(T1

(t1

t1

 tpr)

 tpr

Tpr( )q ( ))q ( )q(Tp Tr pr( ))q q
×

, , (tp  tr),

G1 G2

y1
u1

upr tp  try2

y1 y
2

up ur

xpr
υ1 υ2

Figure 1. Reconstruction step in the case n = pr.

Now we look for an inverse of this map. Following the previous example, for any Bézout-like
relation

U1V1 + UpVp + UrVr + UprVpr = pr,

we can construct a map

T1 × Tp × Tr × Tpr → F×qpr

(t1, tp, tr, tpr) 7→ t
V1(q)
1 t

Vp(q)
p t

Vr(q)
r t

Vpr(q)
pr

such that the composition of the two maps yields multiplication by pr on F×qpr .
In practice, we obtain such a relation in two steps. First we write two Bézout relations,

between Φpr and Φ1 on the one hand and between Φp and Φr on the other hand. So the first
step consists of two mappings,

T1 × Tpr
∼−−→ G1 ⊂ F×qpr

(t1, tpr) 7→ y1 = tu1
1 t

upr
pr

where Φpr(q)u1 + Φ1(q)upr = 1

and

Tp × Tr
∼−−→ G2 ⊂ F×qpr

(tp, tr) 7→ y2 = t
up
p tur

r

where Φr(q)up + Φp(q)ur = 1.

Then we write a Bézout-like relation linking ΦpΦr and Φ1Φpr. Theorem 1 ensures that
(ΦpΦr)−1 yields a factor 1/pr both modulo Φ1 and modulo Φpr. After recombination, this
results in the following relation: there exist polynomials V1 and V2 with integer coefficients
such that

(ΦpΦr)V1 + (Φ1Φpr)V2 = pr.

Thus, we combine the images y1 ∈G1 and y2 ∈G2 to form the element of Fqpr ,

G1 ×G2 → F×qpr

(y1, y2) 7→ y
V1(q)
1 y

V2(q)
2 .

We set v1 = V1(q) and v2 = V2(q); this process is summarized in Figure 1.
All in all, by composing the different decompositions and recombinations presented here, we

manage to provide an explicit way of computing the map θ (see Figure 2).
We note that the computation of this isogeny involves peculiar powers, which are based on

evaluations in q of modular inverses of cyclotomic polynomials. The values of their coefficients
and the bounds of Theorem 1 proved in Section 3 ensure the low cost of this computation.
We make use of a certain class of normal bases [10], which allows efficient arithmetic in Fqn .
See [12] for more details.
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Tpr ( )q × ×

× ×

× × × ×
pq

p

rq
θ ×q qpr

x

x

x rx

T1 Tp

xp px
Φp (q) , q – 1 xr xr

Φr (q) , q – 1

T1 Tr

xp
Φp (q)

x1 xpr

×T1 Tp ×× TprTr

xr xp
Φr (q) , ,q – 1 xxr ,q – 1

Figure 2. Parametrization of Tpr.

For instance, if we consider the example of n= 15 = 3× 5, then an explicit computation
gives the following values, with the notation of Figure 1:

u1 = 1 and u15 =−q7 − q4 − q2 − q,
u3 =−q and u5 = q3 + 1,
v1 = 2q8 − 2q7 − 3q6 + 8q5 − 10q4 + 6q3 + 7q2 − 16q + 9,
v2 =−2q5 − 6q4 − 9q3 − 12q2 − 10q − 6.
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