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Abstract

Let G be a reductive group over an algebraically closed subfield k of C of characteristic
zero, H ⊆ G an observable subgroup normalised by a maximal torus of G and X an
affine k-variety acted on by G. Popov and Pommerening conjectured in the late 1970s
that the invariant algebra k[X]H is finitely generated. We prove the conjecture for:
(1) subgroups of SLn(k) closed under left (or right) Borel action and for: (2) a class of
Borel regular subgroups of classical groups. We give a partial affirmative answer to the
conjecture for general regular subgroups of SLn(k).

1. Introduction

Let k be an algebraically closed subfield of C of characteristic zero, G an affine algebraic group
over k, and X an affine k-variety on which G acts rationally. There is an induced action of G
on the coordinate ring k[X] given by (g · f)(x) = f(g−1x) for g ∈ G, f ∈ k[X] and x ∈ X. The
invariant subalgebra is k[X]G = {f ∈ k[X]|g · f = f for all g ∈ G}. Invariant theory studies the
structure of this algebra and one of its fundamental problems is to characterise those actions
where k[X]G is finitely generated.

When G is reductive k[X]G is finitely generated, due to Mumford [MFK94], Nagata [Nag65]
and Haboush [Hab75]. Since Nagata’s counterexample from 1958 [Nag65] we know that for
nonreductive groups the invariant algebra is not necessarily finitely generated. In fact Popov
[Pop79] proved that finite generation for arbitrary ring k[X]G implies that G is reductive.

Invariant rings for nonreductive group actions have been extensively studied over the
last 60 years. Finite generation has been proved in many interesting situations; however,
characterisation of those actions with finitely generated invariant rings is still seems to be
hopeless. Weitzenböck in [Wei32] (and later Seshadri [Ses61]) proved that finite generation holds
if G is the additive group k+ of an algebraically closed field k of characteristic 0, X is an
affine k-space and the action of k+ on X extends to SL(2, k). Later Hochschild, Mostow and
Grosshans generalised this result by showing that if G is reductive, H is the unipotent radical of
some parabolic subgroup of G and G acts rationally on X, then k[X]H is finitely generated (see
[HM73, Gro83]). Recently, Bérczi et al. [BDHK16b] showed finite generation for invariant rings
of certain C∗-extensions of unipotent groups. This rather general result follows from extension
of Mumford’s reductive geometric invariant theory to a wide class of nonreductive groups, see
[BDHK16a, BDHK] for details.
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On the Popov–Pommerening conjecture for linear algebraic groups

Natural generalisations of parabolic subgroups of the reductive group G are the subgroups
normalised by a maximal torus of G: these are generated by root subgroups corresponding to
a closed set of positive roots and we call them regular subgroups. The following conjecture was
formulated almost simultaneously in the late 1970s by Popov and Pommerening.

Conjecture 1.1 (Popov, Pommerening). Let G be a reductive group over k, and let H ⊂ G be
an observable subgroup normalised by a maximal torus of G. Then for any affine G-variety X
the algebra of invariants k[X]H is finitely generated.

Note that H = UoR can be written as the semidirect product of its unipotent radical U and
a reductive group R. Since U 6 H is a characteristic subgroup, if the maximal torus normalises
H then it normalises U as well. Moreover,

k[X]H = [k[X]U ]R

holds for any H-variety X, so we can restrict our study to the unipotent part U and the
corresponding invariant ring k[X]U . Furthermore, if G is any linear algebraic group and H ⊂ G
is a closed subgroup and X is an affine G-variety, then

k[X]H = (k[G]H ⊗ k[X])G

holds for the invariant rings. This is called the transfer principle, which goes back to the
nineteenth century. In its modern form, it appeared in Grosshans [Gro73] and Popov [Pop87].
In particular, if G is reductive, then finite generation of k[G]U implies finite generation of k[X]U

and k[X]H .
The question can be further reduced to connected, simply connected, simple reductive groups,

see [Tan89a, Gro97]. Unipotent subgroups of these normalised by a maximal torus T can be
parametrized by ‘(quasi-)closed’ subsets S ⊂ R+ of the set R+ of positive roots of G relative to
some Borel subgroup containing T . If char(k) = 0, then quasi-closed and closed subsets are the
same: a subset S ⊂ R+ is closed if the subgroup 〈Uα : α ∈ S〉 generated by the root subgroups
in S does not contain any Uβ with β ∈ R\S. Then the unipotent group

US = 〈Uα : α ∈ S〉

is normalised by the maximal torus T , and all unipotent subgroups of G with this property have
this form for some closed subset S (cf. [Tan88, Tan89a]).

When G = SLn(k) we can assume that US is unipotent upper triangular subgroup normalised
by the diagonal maximal torus. Let Bn ⊂ SLn(k) be the upper Borel subgroup; then the positive
roots are R+ = {αi − αj : i < j}, where αi : T → k∗ is the character of the maximal diagonal
torus T ⊂ SLn(k) sending a torus element to its (i, i) entry. Then S ⊂ R+ is closed if and only
if it is the incidence matrix of a strict ordering of the set {1, . . . , n}, that is,

(i, j), (j, k) ∈ S ⇒ (i, k) ∈ S. (1)

The corresponding unipotent subgroup US is upper triangular with ones on the diagonal and
zeros at the entries (i, j) where αi − αj /∈ S. For example, for S = {α1 − α3, α2 − α4}

US =

1 0 • 0

1 0 •
1 0

1

=




1 0 a 0

1 0 b

1 0

1

 : a, b ∈ k

 ⊂ SL4(k). (2)
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We will often refer to elements of S with pairs (i, j) instead of αi−αj . We introduce the following

special type of regular subgroups.

(i) A regular subgroup US ⊂ Bn is called left (respectively right) Borel-regular if its Lie

algebra uS ⊂ sln is closed under multiplication on the left (respectively right) by Bn. In a

left Borel-regular subgroup the nondiagonal elements of S form a vertical ‘barcode’, that is

(i, j) ∈ S ⇒ (i− 1, j) ∈ S holds and S can be parametrized by the sequence of positions of the

lowest free parameter in each column:

U0,0,2,1,4,2 =

1 0 • • • •
1 • 0 • •

1 0 • 0

1 • 0

1 0

1

.

(ii) We call a subgroup US ⊂ Bn Borel-regular if it is left and right Borel-regular at the same

time. Equivalently, it is normalised by Bn. This means that (i, j) ∈ S ⇒ (i, j + 1), (i− 1, j) ∈ S,

and hence Borel-regular subgroups are those left Borel-regular subgroups which correspond to

some increasing sequence, e.g.

U0,0,1,1,3,4 =

1 0 • • • •
1 0 0 • •

1 0 • •
1 0 •

1 0

1

.

Unipotent radicals of parabolic subgroups are special Borel-regular subgroups where all blocks

‘touch’ the main diagonal.

Borel-regular subgroups can be defined in any linear algebraic group G: these are the regular

subgroups normalised by some Borel subgroup of G. These are subgroups of the form US ⊂ G

where S ⊂ R+ is closed under shifting by elements of R+, i.e. S + r ⊆ S for any r ∈ R+.

(iii) In particular, the symplectic group Spn(k) and orthogonal group SOn(k) have Borel-

compatible embeddings into SLn(k), that is, a choice of Borel subgroups BSpn
and BSOn whose

image sit in the upper Borel Bn of SLn(k). The image of the maximal torus in Spn(k) and SOn(k)

consists of diagonal matrices diag(t1, . . . , tn) satisfying ti = t−1
n+1−i, see §§ 5.2, 5.3 for the details.

The positive roots are

R+ =


{αi − αj}16i<j6l ∪ {αi + αj}16i6j6l for Sp2l,

{αi − αj}16i<j6l ∪ {αi + αj}16i<j6l for SO2l,

{αi − αj}16i<j6l ∪ {αi + αj}16i<j6l ∪ {αi}16i6l for SO2l+1.

We call the Borel-regular subgroup US ⊂ Spn(k) fat Borel-regular if {αi + αj : 1 6 i 6
j 6 l} ⊆ S. Similarly, US ⊂ SOn(k) is fat if {αi + αj : 1 6 i < j 6 l} ⊆ S when n = 2l and

{αi + αj , αi : 1 6 i < j 6 l} ⊆ S when n = 2l + 1. We will see that if SSL ⊂ {1, . . . , n}2 collects

the possible nonzero entries of a fat Borel-regular subgroup US ⊂ Spn(k), SOn(k) ⊂ SLn(k), then

US is Borel regular in SLn(k) such that S is a ‘fat’ domain in the sense that it contains the top

38

https://doi.org/10.1112/S0010437X17007473 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007473


On the Popov–Pommerening conjecture for linear algebraic groups

right quarter of SLn:

U0,0,1,3,3,4 =

1 0 • • • •
1 0 • • •

1 • • •
1 0 •

1 0

1

.

Machinery for proving finite generation for algebra of invariants is quite limited. However,

there exists a standard criterion, called the Grosshans criterion [Gro73, Gro97] for proving the

finite generation of k[G]H , where H ⊂ G is observable in the sense that

H = {g ∈ G : f(xg) = f(x) for all x ∈ G and f ∈ k[G]H}.

Note that the action of H on G is by right translation. In this case the finite generation of k[G]H

is equivalent to the existence of a finite-dimensional affine (left) G-module W and some w ∈ W
such that H = Gw is the stabiliser of w and dim(G · w\G ·w) 6 dim(G ·w)− 2. Such subgroups

H are called Grosshans subgroups of G and we call the pair (W, w) a Grosshans pair for H.

The main results of this paper are the following two theorems.

Theorem 1.2. If US ⊂ SLn(k) is a left (respectively right) Borel-regular subgroup, then US is

a Grosshans subgroup of SLn(k). Therefore every linear action of US on an affine or projective

variety which extends to a linear action of G has a finitely generated algebra of invariants.

In particular this gives an affirmative answer to the Popov–Pommerening conjecture for left

(respectively right) Borel-regular subgroups of SLn(k).

Theorem 1.3. Let G be a linear reductive group over k of type B or D and US ⊂ G a fat

Borel-regular subgroup. Then US is a Grosshans subgroup of G. In particular this gives an

affirmative answer to the Popov–Pommerening conjecture for fat Borel-regular subgroups of

symplectic and orthogonal Lie groups.

The Popov–Pommerening conjecture was known before in a few special cases. In a series of

papers Tan [Tan88, Tan89a, Tan89b] proved it for all simple groups of Dynkin type An with

n 6 4, and for groups of type B2 and G2. Grosshans in [Gro97] confirmed the conjecture for

unipotent radicals of parabolic subgroups and in [Gro86] for those S ⊂ R+ where R+\S is

a linearly independent set over Q. Pommerening [Pom87b] proved the conjecture for a large

class of subgroups of GLn(k) by giving a generating set of the invariant ring k[GLn(k)]US , but

these cases only cover very special block regular subgroups. For more details on the history of

the problem see [Gro97] and the survey papers [Tan89a, Pom87a, Gro10]. After finishing the

first version of this paper, Popov kindly drew my attention to the unpublished PhD thesis of

A’Campo-Neuen [A’Ca94] where the Popov–Pomerening conjecture is proved for Borel-regular

subgroups of SLn(k); this is a special case of our Theorem 1.3.

The layout of this paper is the following. We will work with k = C, but all arguments work

for any algebraically closed field k of characteristic zero which is a subfield of C. We start with

a short introduction of Grosshans subgroups in § 2. In § 3 we construct for any regular subgroup

US ⊂ SLn(k) corresponding to the closed subset S ⊆ R+ a subset family S̃ ⊂ 2{1,...,n} and an

affine SLn(k)-module WS̃ with a point pS̃ ∈ WS̃ whose stabiliser is isomorphic to US .
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In § 4 we prove that the constructed pair (WS̃ , pS̃) is a Grosshans pair if US is left
Borel-regular. An outline of the proof is as follows. When the field of definition is C, the
Zariski-closure of an orbit is the Euclidean closure, see [Bor91]. Therefore every boundary
point in SLn · pS̃\SLn · pS̃ can be written as a limit p∞ = limm→∞ g

(m) · pS̃ for some sequence

(g(m)) ⊂ SLn. When k = C, however, SLn · pS̃ = SLn · Bn · pS̃ holds because SLn · pS̃ =
SLn×Bn(Bn·pS̃) fibres over SLn /Bn = Flagn, the complete flag variety, which is closed. Therefore
we can study the boundary of the Borel orbit instead. We construct a cover Bn · pS̃\Bn · pS̃ =⋃

u,r Bru with Borel-invariant boundary subsets Bru indexed by an array u ⊂ {1, . . . , n} and an
integer 1 6 r 6 n. We prove that for all u, r either: (1) dim(Bru) 6 dim(Bn · pS̃)− 2; or (2) every
point of Bru is fixed by a one-dimensional subgroup of the opposite Borel Bop. In both cases we
can easily deduce that dim(SLn · Bru) 6 dim(SLn · pS̃)− 2.

In § 5 we study Borel regular subgroup of classical groups. In particular, in § 5.2 we define
a Borel-compatible embedding of Spn(k) into SLn(k) and using this embedding we parametrize
Borel regular subgroups of Spn(k) with root subsets S ⊂ {1, . . . , n}2 again. We define the
symplectic fundamental domain F ⊂ {1, . . . , n}2 corresponding to S and define the pair (WF̃ , pF̃ )
where the stabiliser of pF̃ in Spn(k) is US . Finally, we prove Theorem 1.3 for symplectic groups.
Section 5.3 follows the same line for the orthogonal groups SOn for odd and even n and proves
Theorem 1.3 for orthogonal groups.

We conjecture that (WS̃ , pS̃) is a Grosshans pair for arbitrary regular subgroup US ⊂ SLn(k),
not just for left Borel-regular subgroups. Unfortunately we cannot prove this in full generality.
What we conjecture is that all boundary components of SLn(k)·pS̃ have codimension at least two
in its closure in WS̃ . In § 6 we prove this for a special class of boundary components. We define
the toric closure of the orbit SLn(k) · pS̃ as SLn(k) · (T · pS̃) and prove that the toric boundary
components are small.

Theorem 1.4 (Partial answer to the Popov–Pommerening conjecture for general S). Let US ⊂
SLn(k) be a regular subgroup corresponding to the closed subset S ⊂ R+. Then the toric
boundary components of the orbit SLn(k) · pS̃ have codimension at least 2 in the orbit closure,
that is

dim(SLn(k) · (T · pS̃)\ SLn(k) · pS̃) 6 dim(SLn(k) · pS̃)− 2.

We finish the paper with some remarks in § 7 on the relation of our approach to configuration
varieties and Bott–Samelson varieties.

2. Grosshans subgroups

Let G be reductive algebraic group over an algebraically closed field k.

Definition 2.1. A subgroup H ⊂ G is called Grosshans subgroup if k[X]H finitely generated
for any affine variety X endowed with a linear action of G.

Theorem 2.2 (Grosshans criterion [Gro97]). Let G be a reductive group over an algebraically
closed field, and H an observable subgroup, that is, H = {g ∈ G|f(xg) = f(x)} for all x ∈ G
and f ∈ k[X]H . Then the following conditions are equivalent:

(i) H is a Grosshans subgroup of G;

(ii) k[G]H is a finitely generated k-algebra, where H acts via right translations;
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(iii) there is a finite-dimensional left G-module W and some w ∈ W such that H = Gw is the
stabiliser of w (and therefore G/H is a homogeneous space G · w) and dim(G · w\G · w) 6
dim(G · w)− 2.

Definition 2.3. A pair (W, w) whereW is a finite-dimensional G-module and w ∈ W is a point
satisfying the Grosshans criterion is called a Grosshans pair.

3. Construction of Grosshans pairs for G = SLn(k)

For the rest of the paper we restrict our attention to the k = C case, but all arguments work for
any algebraically closed field k of characteristic zero which is a subfield of C. We will often use
the shorthand notation SLn for SLn(C).

In this section we assume that G = SLn(C) and let T ⊂ SLn(C) be the diagonal maximal
torus and t ⊂ sln(C) the Cartan subalgebra of diagonal matrices. Let αi ∈ t∗ be the dual of
Eii ∈ t where Eii is the matrix of the endomorphism which fixes the ith basis vector and kills all
other basis vectors. Let R+ = {αi − αj : i < j} be the set of positive roots and Bn ⊂ SLn(C) be
the corresponding upper Borel subgroup. The one-dimensional root subgroup Uαi−αj consists of
unipotent matrices with the only nonzero off-diagonal entry sitting at (i, j).

A subset S ⊂ R+ of the root system is closed if and only if the following transitivity conditions
hold for all 1 6 i < j < k 6 n:

αi − αj , αj − αk ∈ S ⇒ αi − αk ∈ S. (3)

Define the unipotent subgroup

US = 〈Uαi−αj : αi − αj ∈ S〉 ⊂ SLn(C) (4)

generated by the root subgroups Uαi−αj . Then US is unipotent with independent parameters at
the entries indexed by S and it is normalised by the maximal diagonal torus in SLn(C), and all
unipotent subgroups normalised by this torus have this form.

For 1 6 j 6 n let Sj = {j}∪{i : (i, j) ∈ S} ⊂ {1, . . . , n} collect the positions of the (possibly)
nonzero entries in the jth column of US . In the example (2) of the Introduction

S1 = {1}, S2 = {2}, S3 = {1, 3}, S4 = {2, 4}.

Fix a basis {e1, . . . en} of Cn compatible with Bn, that is, Bn preserves the subspace Span(e1,
. . . , ei) for 1 6 i 6 n. For a subset Z ⊂ {1, . . . , n} we set

pZ = ∧z∈Zez ∈ ∧|Z|Cn

where |Z| is the cardinality of Z. Define the point

pS =

n⊕
j=1

pSj =
n⊕
j=1

∧i∈Sjei ∈ WS

where

WS =

n⊕
j=1

∧|Sj |Cn.

In the example (2)

pS = e1 ⊕ e2 ⊕ (e1 ∧ e3)⊕ (e2 ∧ e4) ∈ CS = C4 ⊕ C4 ⊕ ∧2C4 ⊕ ∧2C4.
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Theorem 3.1. The stabiliser of pS in SLn is US .

Proof. Let TSj ⊂ SLn(C) denote the diagonal torus

TSj = {diag(a1, . . . , an) : Πi∈Sjai = Πi/∈Sj
ai = 1}.

The stabiliser of pS is the intersection of the stabilisers of its direct summands. The stabiliser in
SLn(C) of the direct summand ∧i∈Sjei is the semidirect product

U jS = 〈Uαa−αb
: (a 6= b, a, b ∈ Sj) or (a 6= b, b /∈ Sj)〉o TSj .

Now j ∈ Sj for 1 6 j 6 n and by (3) the intersection is

n⋂
j=1

U jS = 〈Uαa−αb
: a < b, a ∈ Sb〉o

( n⋂
j=1

TSj

)
.

Since j ∈ Sj and Sj ⊂ {1, . . . , j} for all 1 6 j 6 n we have by induction on n that

n⋂
j=1

TSj = {diag(a1, . . . , an) : a1 = 1,Πi∈S2ai = 1, . . . ,Πi∈Snai = 1} = 1,

and therefore
n⋂
j=1

U jS = 〈Uαa−αb
: b < a, b ∈ Sa〉 = US

by definition. 2

Corollary 3.2. The map ρS : SLn(C) → WS defined as (v1, . . . , vn) 7→
⊕n

j=1 ∧i∈Sjvi on a
matrix with column vectors v1, . . . , vn is invariant under the right multiplication action of US on
SLn(C) and the induced map

SLn(C)/US ↪→WS

on the set of US-orbits is injective and SLn(C)-equivariant with respect to the left multiplication
action of SLn(C) on SLn(C)/US .

Example 3.3. This example shows that ρS(SLn(C)) = SLn(C) · pS might have codimension 1
boundary components in WS . Take

pS = e1 ⊕ (e1 ∧ e2)⊕ (e1 ∧ e3)⊕ (e1 ∧ e2 ∧ e3 ∧ e4) ∈ C4 ⊕ ∧2C4 ⊕ ∧2C4 ⊕ ∧4C4

corresponding to the group

US =

1 • • •
1 0 •

1 •
1

.

Then

lim
t→0


t 0 0 0

0 t−1 0 0

0 0 t−1 0

0 0 0 t

 · pS = 0⊕ (e1 ∧ e2)⊕ (e1 ∧ e3)⊕ (e1 ∧ e2 ∧ e3 ∧ e4),
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whose stabiliser in SLn(C) is

a b c d

0 a−1 0 e

0 0 a−1 f

0 0 0 a

 : a ∈ C∗, b, c, d, e, f ∈ C


which has dimension one plus the dimension of US , and therefore this boundary orbit has
codimension 1 in SLn(C) · pS ⊂ WS .

To make things even worse, in this example we have infinitely many boundary orbits, which
means that it is not enough to study the boundary orbits and their stabilisers to prove the
Grosshans property. Indeed,

lim
t→0


1 0 0 0

0 1 α 0

0 0 t 0

0 0 0 t−1

 · pS = e1 ⊕ (e1 ∧ e2)⊕ α(e1 ∧ e2)⊕ (e1 ∧ e2 ∧ e3 ∧ e4),

and for different α values these boundary points sit in different SLn(k) orbits.

Let S̃ = {Si1 ∪ · · ·∪Sir : 1 6 i1 < · · · < ir 6 n} ⊂ 2{1,...,n} be the family of all possible unions
of the Sj . Recall from (1) that the stars in the box form of US form an incidence matrix of a
partial order of {1, 2, . . . , n}, that is,

i ∈ Sj , j ∈ Sk ⇒ i ∈ Sk (5)

holds for 1 6 i < j < k 6 n and therefore for i < j,

Si ∩ Sj =
⋃

k∈Si∩Sj

Sk.

Hence S̃ is a so-called ring family, that is, closed under intersections and finite unions: U, V ∈ S̃
implies U ∩ V , U ∪ V ∈ S̃. The point

pS̃ =
⊕
U∈S̃

∧i∈Uei ∈ WS̃

where
WS̃ =

⊕
U∈S̃

∧|U |Cn

has the same stabiliser as pS , that is, Theorem 3.1 implies the following.

Corollary 3.4. The stabiliser of pS̃ in SLn is US .

In our example (2) we have

S̃ = {{1}, {2}, {1, 3}, {2, 4}, {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}}

and

pS̃ = e1⊕ e2⊕ (e1 ∧ e3)⊕ (e2 ∧ e4)⊕ (e1 ∧ e2)⊕ (e1 ∧ e2 ∧ e3)⊕ (e1 ∧ e2 ∧ e4)⊕ (e1 ∧ e2 ∧ e3 ∧ e4).

Conjecture 3.5. The pair (WS̃ , pS̃) is a Grosshans pair for the group US ⊂ SLn(C), that is,
the boundary components of the orbit SLn(C) · pS̃ have codimension at least 2 in its closure:

dim(SLn(C) · pS̃\ SLn(C) · pS̃) 6 dim(SLn(C) · pS̃)− 2.
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Figure 1. The group corresponding to the sequence θ = (0, 0, 1, 3, 2). Elements of S̃ are S1 = {1},
S2 = {2}, S3 = {1, 3}, S4 = {1, 2, 3, 4}, S5 = {1, 2, 5}, S1 ∪ S2 = {1, 2}, S2 ∪ S3 = {1, 2, 3},
S3 ∪ S5 = {1, 2, 3, 5} and S4 ∪ S5 = {1, 2, 3, 4, 5}.

4. Left Borel-regular subgroups of SLn(k)

In this section we prove Theorem 1.2. As we already mentioned in the introduction of § 3, we
only consider the k = C case but the arguments work for any algebraically closed field k of
characteristic zero which is a subfield of C.

Recall from the Introduction that a left Borel-regular subgroup US ⊂ SLn(C) is determined
by a sequence θ = (θ1, . . . , θn) such that 0 6 θi < i and the corresponding closed root subset
S = (S1, . . . , Sn) ⊆ R+ has the form

Si =

{
{1, . . . θi, i} when θi > 0,

{i} when θi = 0.

For a subset Z ⊂ {1, . . . , n} we define max(Z) = maxz∈Z z to be its maximal element and we let

θZ := max
z∈Z

θz.

Elements of the generated ring family S̃ are formed by unions of the Si and for a subset
Z ⊂ {1, . . . , n} the corresponding element of S̃ is

SZ =
⋃
z∈Z

Sz = {1, . . . , θZ} ∪ {z ∈ Z : z > θZ}. (6)

That is, (6) tells us that SZ contains all integers between 1 and θZ along with those elements of
Z which are bigger than θZ . In other words, if Z ∈ S̃ with max(Z) = l, then there exist integers
θZ < j1 < j2 < · · · < js = l such that

Z = {1, . . . , θZ , j1, . . . , js = l}, (7)

see Figure 1 for an example.

Remark 4.1. Borel-regular subgroups are by definition left and right Borel-regular and they
correspond to monotone increasing sequences 0 6 θ1 6 · · · 6 θn 6 n− 1, therefore θZ = θmax(Z)

holds.

The boundary points in Bn · pS̃ are limits of the form

p∞ = lim
m→∞


b
(m)
11 b

(m)
12 · · · b

(m)
1n

0 b
(m)
22

. . .

0 b
(m)
nn

 · pS̃ . (8)
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The sequence (b(m)) in (8) is not unique: different sequences can define the same limit point p∞.
However, any sequence (b(m)) has a (not unique) subsequence (b(ms))∞s=1 such that for all 1 6 i,

j 6 n either lims→∞ b
(ms)
ij exists or the modulus |(b(ms)

ij )| tends to infinity. Then we can use this
subsequence in (8) to define p∞, see Definition 4.2 below.

Next observe that if i ∈ Sj = {1, . . . , θj , j} for some 1 6 i < j 6 n, then b(m)pS̃ is independent

of the value of b
(m)
ij . Indeed, for a Z ∈ S̃ of the form (7) the expression for b(m) · pZ contains b

(m)
ij

only if j ∈ Z. However, if j ∈ Z then Sj = {1, . . . , θj , j} ⊂ Z and since i 6 θj we have i ∈ Z.
Therefore

b(m) · pZ = · · · ∧ (b
(m)
jj ej + · · ·+ b

(m)
ij ei + · · ·)︸ ︷︷ ︸

b(m)·ej

∧ · · · ∧ (b
(m)
ii ei + b

(m)
i−1iei−1 + · · ·)︸ ︷︷ ︸
b(m)·ei

∧ · · ·

and b
(m)
ij vanishes by taking the wedge product.

This means that changing the value of b
(m)
ij will not change the point b(m)pS̃ so we may

assume without loss of generality that

b
(m)
ij = 0 holds for all m and 1 6 i < j 6 n such that i ∈ Sj . (9)

Definition 4.2. We call a sequence (b(m)) of matrices normalised if it satisfies (9) and for all

1 6 i, j 6 n either b∞ij = limm→∞ b
(m)
ij ∈ C exists or |(b(m)

ij )|→∞ as m →∞. In the latter case

we write b∞ij =∞. The vanishing spectrum of the normalised sequence (b(m)) is defined as

VSpec(b(m)) =
{
i : lim

m→∞
b
(m)
ii = 0

}
.

In short, the proof of Theorem 1.2 will follow an induction argument on the size of the
vanishing rank of the normalised sequence in (8) which defines p∞.

Definition 4.3. Let Bu denote the set of boundary points in Bn · pS̃ which are limits of the
form (8) with vanishing diagonal entries indexed by the array u = (u1, . . . , us), that is,

Bu =
{
p∞ ∈Bn · pS̃ : ∃ normalised sequence (b(m)) s.t. p∞= lim

m→∞
b(m) · pS̃ and VSpec(b(m)) = u

}
.

As we noted above, every boundary point p∞ ∈ Bn · pS̃ is the limit of the form (8) for a

normalised (b(m)) and therefore

Bn · pS̃ =
⋃

u∈2{1,...,n}

Bu.

According to the next Lemma B∅ = B · pS̃ is the Borel orbit.

Lemma 4.4. B∅ = B · pS̃ is equal to the Borel orbit of pS̃ in WS̃ .

First proof. We use the following fact about solvable groups.
Let H ⊂ GL(V ) be a solvable algebraic group and let v ∈ V . Then there is an f ∈ k[V ]

and a character χ : H → k∗ such that f(h · w) = χ(h)f(w) holds for all b ∈ B, w ∈ V and
H · v\H · v = {w ∈ H · v : f(w) = 0}.

We apply this result with the Borel H = Bn ⊂ SL(n). Let (b(m)) be a sequence such that

p∞ = lim
m→∞

b(m)pS̃ ∈ Bn · pS̃\Bn · pS̃ .
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Let f be as above, vanishing on Bn · pS̃\Bn · pS̃ . Then

0 = f(p∞) = lim
m→∞

f(b(m) · pS̃) = lim
m→∞

χ(b(m))f(pS̃).

Since f(pS̃) 6= 0, we must have limm→∞ χ(b(m)) = 0 so limm→∞ χii(b
(m)) = 0 for some

1 6 i 6 n. 2

We give a second, longer proof because its main idea will turn up in the proof of Theorem 1.4
in § 6 again.

Second proof. Let p∞ = limm→∞ b
(m)pS̃ ∈ B∅ be defined by the normalised sequence (b(m)) such

that VSpec(b(m)) = ∅. By definition for all 1 6 i 6 n either b∞ii = limm→∞ b
(m)
ii ∈ C exists or

limm→∞ |b(m)
ii | =∞. Since

b
(m)
11 · . . . · b

(m)
nn = 1 holds for all m,

if b
(m)
ii → ∞ for some 1 6 i 6 n, then for some j 6= i limm→∞ b

(m)
jj = 0 so j ∈ VSpec(b(m)), a

contradiction. This proves that

b∞ii = lim
m→∞

b
(m)
ii ∈ C\{0} for 1 6 i 6 n.

Assume that some off-diagonal entries of the normalised sequence (b(m)) are not convergent
and let

v = min{j : ∃i /∈ Sj such that i < j and b∞ij =∞}

be the leftmost column containing such entries and choose a u < v, u /∈ Sv such that b∞uv =∞.
Then due to (9) the coefficient of eu ∧ (∧i∈Sv\{v}ei) in p∞Sv

= limm→∞ ∧i∈Svb
(m)ei would be

lim
m→∞

b(m)
uv ·

∏
i∈Sv\{v}

b∞ii =∞,

a contradiction. Hence b∞ij := limm→∞ b
(m)
ij ∈ C exists for all 1 6 i 6 j 6 n and b∞ii 6= 0 so

b∞ = limm→∞ b
(m) ∈ Bn exists and

p∞ = lim
m→∞

b(m) · pS̃ = b∞ · pS̃ ∈ Bn · pS̃ . 2

When u is nonempty, the corresponding set Bu is algebraic and Bn-invariant as the following
lemma shows.

Lemma 4.5. If u 6= ∅, then Bu is a Bn-invariant subvariety of Bn · pS̃ ⊂ WS̃ .

Proof. Let ŴS̃ =WS̃ ×
∏
u∈u P1

u denote the product of the affine ambient space WS̃ with a copy
of P1 for every element of u. We endow P1

u with a Bn action as follows: for b = bij ∈ Bn we let
b · [x : y] = [x : buuy] for [x : y] ∈ P1

u. Define the point

p̂S̃ = pS̃ ×
∏
u∈u

[1 : 1] ∈ ŴS̃
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and take the orbit closure Bn · p̂S̃ in ŴS̃ . If πu : ŴS̃ →
∏
u∈u P1

u denotes the projection, then

B̂u = π−1
u

(∏
u∈u

[1 : 0]

)

is a Zariski closed subset of ŴS̃ and by definition its image under the projection π : ŴS̃ →WS̃ is

equal to Bu. This image is, however, constructible as the image of a closed set. Even more, since

the projection is a closed morphism, it takes Zariski closed subsets onto Zariski closed sets.

The Bn-invariance of Bu = π(π−1
u (
∏
u∈u[1 : 0])) follows from Bn-equivariance of the projections

and Bn-invariance of the point
∏
u∈u[1 : 0] (that is, this is a Bn-fixed point). 2

Definition 4.6. Let US = U θ ⊂ SLn be a left Borel-regular subgroup and Z ⊂ {1, . . . , n}. We say

that the integer 1 6 u < n is covered by Z if u6 θZ . We say that u is covered by S if it is covered by

at least one of S1, . . . , Sn, that is, u 6 max16i6n θi. The subset u = {u1 < · · · < us} ⊂ {1, . . . , n}
is covered by S if all elements of it are covered by S.

Example 4.7. In Figure 1, S4 covers 1, 2, 3 and S5 covers 1 and 2. Moreover, u = 1, 2, 3 are

covered by S, but u = 4 is not covered. Therefore any subset u of {1, 2, 3} is covered by S and

the subsets containing 4 are not covered by S.

Let Z ∈ S̃ and let b(m) be a normalised sequence. In what follows we will work with subspaces

of Cn determined by b(m) · pZ and the limit of these subspaces.

Definition 4.8. For the nonzero vectors v1, . . . , vs ∈ Cn let

[v1 ∧ · · · ∧ vs] ∈ Grs(Cn)

denote the subspace spanned by them. In particular, for a subset Z ∈ S̃ we let

[pZ ] = [∧z∈Zez] ∈ Gr|Z|Cn

and

[p∞Z ] = lim
m→∞

[b(m) · pZ ] (10)

denotes the limit in Gr|Z|(Cn).

Remark 4.9. If p∞Z = limm→∞ b
(m) · pZ ∈ ∧|Z|Cn exists, then either p∞Z = 0 or it is a decomposable

vector, i.e. p∞Z = w1 ∧ · · · ∧w|Z| for some nonzero vectors w1, . . . , w|Z|. To see this, note that the

Veronese map

µ : Gr|Z|(Cn) ↪→ P(∧|Z|Cn)

is a closed embedding and the set of decomposable vectors in ∧|Z|Cn forms the affine cone over

the image of µ and therefore this set is closed. Hence the limit of decomposable elements in

∧nCn is either decomposable or zero. Moreover, if 0 6= p∞Z = w1 ∧ · · · ∧ w|Z|, then the subspace

[w1 ∧ · · · ∧ w|Z|] is equal to the limit defined in (10).

The following technical lemma will be used repeatedly in this section.
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Lemma 4.10. Let u = {u1 < · · · < us} ⊂ {1, . . . , n} be an arbitrary subset. Let

p∞ = lim
m→∞

b(m)pS̃ =
⊕
U∈S̃

p∞U ∈ Bu

be a limit point defined by the normalised sequence (b(m)) such that VSpec(b(m)) = u. If θi < u1

for some 1 6 i 6 n, then limm→∞ b
(m)ei ∈ Cn exists.

Proof. Assume θi < u1 but limm→∞ |b(m)ei|→∞ and i is the smallest index with this property.
Then e∞j = limm→∞ b

(m)ej ∈ Cn for 1 6 j 6 θi, because in this case j 6 θi < i so θj < j 6 θi < u1

and the limit exists by the minimality of i. Then

p∞Si
= ∧θij=1e

∞
j ∧ lim

m→∞
b(m)ei

does not exist, a contradiction. 2

Remark 4.11. Note that p∞ =
⊕

V ∈S̃ p
∞
V = limm→∞ b

(m)pS̃ can be an element of several different
Bu, that is, u = {u1 < · · · < us} is not uniquely determined by p∞. However, Lemma 4.10 implies
that p∞ determines u1 at least: u1 signs the first diagonal entry of b(m) which tends to 0 asm→∞
and all previous diagonal entries tend to a nonzero constant. Therefore

u1 = min{j : p∞{1,...,j} = 0}

is the common minimal element of the vanishing spectra which define p∞.

Lemma 4.12. Let u ⊂ {1, . . . , n} be a subset and assume Bu is nonempty. Then u is covered
by S.

Proof. Let p∞ = limm→∞ b
(m)pS̃ ∈ Bu be a point defined by a normalised sequence (b(m)) with

VSpec(b(m)) = {u1 < · · · < us}. Assume that us > max16i6n θi. Then

V = {1, . . . , n}\{us} =
⋃

i∈{1,...,n}\{us}

Si ∈ S̃

and the coefficient of ∧i∈V ei in p∞V is

p∞V [∧i∈V ei] = lim
m→∞

∏
i∈V

b
(m)
ii = lim

m→∞

1

b
(m)
usus

=∞,

a contradiction. Here we used that b(m) ∈ SLn and hence
∏n
i=1 b

(m)
ii = 1 for all m. 2

Definition 4.13. Let u ⊂ {1, . . . , n} be a subset covered by S and let p∞ = limm→∞ b
(m)pS̃ =⊕

U∈S̃ p
∞
U ∈ Bu be a boundary point defined by the normalised sequence (b(m)) with

VSpec(b(m)) = u. Let V(p∞) denote the set of those elements in S̃ which cover u1 and the
corresponding term of p∞ is nonzero, that is

V(p∞) = {U ∈ S̃ : p∞U 6= 0, θU > u1}.

According to Remark 4.11 this set is determined by p∞. It is nonempty: indeed, u is covered by
assumption and therefore {1, . . . , n} covers it. Moreover

p∞{1,...,n} = lim
m→∞

det(b(m))e1 ∧ · · · ∧ en = e1 ∧ · · · ∧ en 6= 0,
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so {1, . . . , n} ∈ V(p∞). Now define the partial order � on the elements of V(p∞) as follows. For
U , V ∈ V(p∞) we write U � V if θU < θV or θU = θV but U ⊆ V . Let V(p∞)min denote the set
of minimal elements of V(p∞) with respect to �. We call elements of V(p∞)min minimal for p∞.

A central part of our argument is the following technical proposition.

Proposition 4.14. Let u ⊂ {1, . . . , n} be a subset covered by S and p∞ ∈ Bu. If Z ∈ V(p∞)min,
then

[p∞Z ] ⊂
⋂

V ∈V(p∞)

[p∞V ]. (11)

Proof. By definition we can write p∞ = limm→∞ b
(m)pS̃ =

⊕
U∈S̃ p

∞
U ∈ Bu as a limit point where

(b(m)) is normalised and VSpec(b(m)) = u. By definition Z ∈ V(p∞)min satisfies the following
properties:

(i) Z ∈ V(p∞), that is, p∞Z 6= 0 and θZ > u1;

(ii) if p∞U 6= 0 and θU > u1 for some U ∈ S̃, then θU > θZ holds;

(iii) if U ∈ S̃, θU > u1 and U $ Z, then p∞U = 0.

Here (ii) and (iii) together say that Z ∈ V(p∞)min. Assume there is a V ∈ V(p∞) such that
[p∞Z ] * [p∞V ]. By definition

p∞Z = lim
m→∞

∧z∈Zb(m)ez and p∞V = lim
m→∞

∧v∈V b(m)ev,

therefore Z ⊂ V would imply that [p∞Z ] ⊆ [p∞V ]. So Z\V must be nonempty.
Fix a hermitian form (·, ·) on Cn and let πV : Cn → [p∞V ] denote the projection to the subspace

[p∞V ]. For w ∈ Cn let w⊥ = w − πV (w) denote the orthogonal component.
In Corollary 4.17 below we show that if we drop any subset ∅ 6= Γ ⊆ Z\V from Z, then the

smaller subset Z\Γ is still in S̃. We claim that

p∞Z\Γ = 0 for all ∅ 6= Γ ⊆ Z\V. (12)

Indeed, if θZ\Γ > u1, then this is property (iii) above. If θZ\Γ < u1, then, by Lemma 4.10,

e∞z = lim
m→∞

b(m)ez ∈ Cn exists for all z ∈ Z\Γ. (13)

Moreover, θZ > u1 and hence {1, 2, . . . , u1} ⊂ {1, 2, . . . , θZ} ⊂ Z. On the other hand
property (ii) tells us that θV > θZ and therefore

{1, 2, . . . , θZ} ⊆ {1, 2, . . . , θV } ⊂ V

which implies that
{1, 2, . . . , u1} ⊂ Z\Γ

and therefore

p∞Z\Γ = e∞u1 ∧ (∧z∈Z\{Γ∪{u1}}e
∞
z ) = b∞u1u1eu1 ∧ b

∞
u1−1u1−1eu1−1∧· · ·∧ b∞11e1∧ (∧z∈Z\{Γ∪{1,...,u1}}e

∞
z ).

But b∞u1u1 = 0 and by (13) all other terms are finite so this wedge product is 0 and (12) is proved.
Then (12) implies that

0 = πV (p∞Z\Γ) = lim
m→∞

∧j∈Z\ΓπV (b(m) · ej) for all ∅ 6= Γ ⊆ Z\V. (14)
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Hence

p∞Z = lim
m→∞

⊕
Γ⊆Z\V

∧
j∈Γ

b(m)e⊥j ∧
∧

j∈Z\Γ

πV (b(m) · ej)

= πV (p∞Z )⊕ lim
m→∞

⊕
∅6=Γ⊆Z\V

∧
j∈Γ

b(m)e⊥j ∧
∧

j∈Z\Γ

πV (b(m) · ej).

By (14) all terms corresponding to nonempty Γ vanish and therefore [p∞Z ] ⊆ [p∞V ] unless there is
a z ∈ Z\V such that the limit norm limm→∞ |b(m)e⊥z | =∞.

However, V ∪ {z} = V ∪ Sz because z ∈ Z and Sz = {1, . . . , θz, z} ⊆ {1, . . . , θZ , z} ⊆ {1, . . . ,
θV , z} since θZ 6 θV by property (ii). Therefore V ∪ {z} ∈ S̃ and then

p∞V ∪{z} = lim
m→∞

b(m)e⊥z ∧ p∞V

does not exist (the limit is not finite), which is a contradiction. So [p∞Z ] ⊆ [p∞V ] holds, and
Proposition 4.14 is proved. 2

Corollary 4.15. Assume Z1, Z2 ∈ V(p∞)min are minimal subsets for p∞. Then [p∞Z1
] = [p∞Z2

].

Proof. As Z1 and Z2 are both in V(p∞), by Proposition 4.14 we have [p∞Z1
] ⊆ [p∞Z2

] and
[p∞Z2

] ⊆ [p∞Z1
]. 2

Here are the small technical statements on S̃ we used in the proof of Proposition 4.14.

Lemma 4.16. Let Z ∈ S̃ and let z ∈ Z be an element such that z > θZ . Then Z\{z} ∈ S̃.

Proof. It suffices to show that Z\{z} =
⋃
i∈Z\{z} Si. The direction ⊆ is clear as i ∈ Si for all i.

For ⊇ note that if i ∈ Z\{z} and z > θZ , then

Si = {1, 2, . . . , θi} ∪ {i} ⊂ {1, 2, . . . , θZ} ∪ {i} ⊆ Z\{z}. 2

Corollary 4.17. If Z, V ∈ S̃ such that θV > θZ , then for any Γ ⊆ Z\V we have Z\Γ ∈ S̃.

Proof. Since θV > θZ , any z ∈ Z\V must satisfy z > θZ and the statement follows from
Lemma 4.16. 2

Definition 4.18. Let Z ∈ V(p∞)min be a minimal subset for p∞. By Corollary 4.15 the subspace
[p∞Z ] is independent of the choice of Z and depends only on p∞. Assume that [p∞Z ] ⊂ Span(e1,
. . . , er) but [p∞Z ] 6⊂ Span(e1, . . . , er−1) for some r. We call this r the width of p∞ and denote it
by ω(p∞). We will also say that [p∞Z ] has width r. Note that {1, . . . , θZ} ( Z and hence [p∞Z ] *
Span(e1, . . . , eθZ ), which by definition means that θZ < ω(p∞). We get that u1 6 θZ < ω(p∞).
Let

Bru = {p∞ ∈ Bu : ω(p∞) = r}

denote the set of points in Bu of width r.

Remark 4.19. Since the property [p∞Z ] ⊂ Span(e1, . . . , er) is closed and Bn-invariant, the set
B6ru =

⋃
i6r Biu is closed and Bn-invariant and therefore Bru = B6ru \B6r−1

u is quasi-affine and
Bn-invariant.
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We have then a (not necessarily disjoint) finite decomposition

Bu =
⋃
u1<r

Bru.

Remark 4.20. Points of the boundary sets Bru are defined as limits of normalised sequences and

hence the stratification Bu =
⋃
u1<r

Bru a priori depends on the choice of the basis {e1, . . . , en}
of Cn. Let us indicate this dependence temporarily as Bru(e1, . . . , en). We show that changing

this basis with a unipotent element of the Borel Bn leaves all Bru unchanged. More precisely, let

A ∈ Bn define the new basis

ēi = A · ei for i = 1, . . . , n.

Let pS̃(ē1, . . . , ēn) denote the base point pS̃ written in the new basis. Then

p∞ = lim
m→∞

b(m)pS̃ = lim
m→∞

(Ab(m)A−1)pS̃(ē1, . . . , ēn).

If A is unipotent, then the new sequence b̄(m) = Ab(m)A−1 has the same vanishing spectrum u.

Moreover, since

Span(e1, . . . , ei) = Span(ē1, . . . , ēi) for 1 6 i 6 n,

the width of [p∞Z ] in this new basis is r again. Therefore

Bru(e1, . . . en) = Bru(ē1, . . . , ēn) for all u, r.

In short, changing the basis with a unipotent element of the Borel will leave the subsets Bru
unchanged.

Remark 4.21. Let p∞ ∈ Bru and Z ∈ V(p∞)min. By definition this means that [p∞Z ] ⊂ Span(e1,

. . . , er) but [p∞Z ] 6⊂ Span(e1, . . . , er−1) so there is a vector

w = er + wr−1er−1 + · · ·+ w1e1 ∈ [p∞Z ].

This w is not necessarily unique, we fix one. The base change

ei =

{
ei if i 6= r,

er + wr−1er−1 + · · ·+ w1e1 if i = r,

is defined by a unipotent element of Bn. According to Remark 4.20 changing {e1, . . . , en} to the

new basis {e1, . . . , en} leaves the boundary sets Bru unchanged for all u and r but in this new

basis ēr = w ∈ [p∞Z ] holds.

Proposition 4.22. Let s > 2 and u = {u1 < · · · < us} be a subset covered by S. Then we have

the following.

(a) If r /∈ u and θr < u1, then there is a continuous injection ρ : Bru ↪→ B{u2,...,us}∪{r} and

therefore dimBru 6 dimB{u2,...,us}∪{r}.
(b) If r ∈ u, then Bru ⊂ B{u2,...,us}\B{u2,...,us}.
(c) If r /∈ u and θr > u1, then Bru ⊂ B{u2,...,us}\B{u2,...,us} or Bru ⊂ B{u2,...,us}∪{r}\B{u2,...,us}∪{r}.
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Proof. To prove (a) assume that r /∈ u and θr < u1. Let

p∞ = lim
m→∞

b(m)pS̃ =
⊕
U∈S̃

p∞U ∈ Bru

be a limit point such that VSpec(b(m)) = u and Z ∈ V(p∞)min. By Remark 4.21 we can assume

that er ∈ [p∞Z ].

According to Lemma 4.10 limm→∞ b
(m)
ii ∈ C exists whenever θi < u1 and, since r /∈ u, this

limit is nonzero for i = r:

b∞rr := lim
m→∞

b(m)
rr ∈ C\{0}.

Define the modified sequence

b̃
(m)
ij =



b∞rr , (i, j) = (u1, u1),

1

b∞rr
· b(m)
rr · b(m)

u1u1 , (i, j) = (r, r),

1

b∞rr
· b(m)
rj · b

(m)
u1,u1 for i = r and j > r with θj > u1,

b
(m)
ij otherwise.

(15)

In short, we fix the diagonal entry b
(m)
u1u1 to be the nonzero constant b∞rr and multiply the entries in

the rth row of those columns which cover u1 by (1/b∞rr)b
(m)
u1u1 . Then the new sequence still sits

in SLn(C) and part (a) of Proposition 4.22 follows from the following three statements:

(i) p̃∞ = limm→∞ b̃
(m)pS̃ exists and therefore the map ρ̃ : p∞ 7→ p̃∞ is well defined;

(ii) p̃∞ ∈ B{u2,...,us}∪{r};
(iii) ρ̃ : p∞ 7→ p̃∞ is injective.

To prove (i) and (ii) we first show that

if θV > u1 then p̃∞V = p∞V . (16)

Note that in this case u1 ∈ {1, 2, . . . , θV } ⊆ V and therefore

p∞V = lim
m→∞

∧v∈V b(m)ev = lim
m→∞

(
ΠθV
i=1b

(m)
ii

θV∧
i=1

ei ∧
∧

θV <v∈V
b(m)ev

)
.

First we study the case when r 6 θV . If v > θV > r, then b(m)ev = b̃(m)ev, and therefore the

second product remains the same by changing b(m) to b̃(m). The product ΠθV
i=1b

(m)
ii of the first

θV diagonal entries in b(m) and b̃(m) are again equal, so the first product does not change either,

giving us p̃∞V = p∞V .
Assume now that r > θV and recall that er ∈ [p∞Z ] ⊂ [p∞V ]. Hence the term er must be

selected in each term of the expansion of the second product, that is, if πr : Cn → Cer denotes
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the projection of a vector to the line spanned by er, then er ⊂ [p∞V ] implies that

p∞V = lim
m→∞

∑
v∈V

(
πr(b(m)ev) ∧

∧
i∈V \v

b(m)ei

)

= lim
m→∞

ΠθV
i=1b

(m)
ii

θV∧
i=1

ei ∧
∑

r6v∈V

(
b(m)
rv er ∧

∧
θV <i∈V \{v}

b(m)ei

)
. (17)

It is easy to see that if r 6 v and θv < u1, then the corresponding term in the direct sum on the
right-hand side has zero contribution. Indeed, by Lemma 4.10

b∞rv = lim
m→∞

b(m)
rv ∈ C for r 6 v, θv < u1. (18)

On the other hand v > r > θV holds and therefore by Lemma 4.16 V \{v} ∈ S̃. Moreover, since
θV > u1 but θv < u1, we must have θV \{v} > u1. Now, we have the following.

– If p∞V \{v} = 0, then by (18) we have b∞rver ∧ p∞V \{v} = 0.

– If p∞V \{v} 6= 0, then by Proposition 4.14 er ∈ [p∞Z ] ⊂ [p∞V \{v}] and therefore by (18) we have

b∞rver ∧ p∞V \{v} = 0 again.

In both cases we get

0 = b∞rver ∧ p∞V \{v} = lim
m→∞

(ΠθV
i=1b

(m)
ii )

θV∧
i=1

ei ∧
(
b∞rver ∧

∧
θV <i∈V \{v}

b(m)ei

)
.

So in (17) only those terms have nonzero contributions where θv > u1 and

p∞V = lim
m→∞

(
ΠθV
i=1b

(m)
ii

θV∧
i=1

ei ∧
∑
θv>u1
r6v∈V

(
b(m)
rv er ∧

∧
θV <i∈V \{v}

b(m)ei

))
.

Replacing b(m) with b̃(m) clearly does not change the right-hand side, so p̃∞V = p∞V is proved for
this case too. We have completed the proof of (16).

Next, if V ∈ S̃ but θV < u1, then e∞v = limm→∞ b
(m)ev ∈ Cn exists for all v ∈ V by

Lemma 4.10 and therefore

p∞V = lim
m→∞

∧v∈V b(m)ev = ∧v∈V e∞v .

Similarly
p̃∞V = lim

m→∞
∧v∈V b̃(m)ev = ∧v∈V ẽ∞v .

where

ẽ∞v = lim
m→∞

b̃(m)ev =


e∞v , v 6= u1, r,

e∞v + b∞rreu1 , v = u1,

πr−1(e∞r ), v = r,

(19)

where πr−1 : Cn → Span(e1, . . . , er−1) is the projection. This is because limm→∞ b
(m)
u1,u1 = 0 by

definition and the last coordinate of b(m)er tends to 0:

lim
m→∞

1

b∞rr
· b(m)
rr · b(m)

u1u1 = 0.

This means that p̃∞V = limm→∞ b̃
(m)pV exists for all V ∈ S̃ and p̃∞ ∈ B{u2,...,us}∪{r}.
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Note that, formally, the equation for ẽ∞v depends on the sequence b(m) and in particular on
b∞rr . However: (i) since θr 6 u1 we have p∞1,...,θr 6= 0 and; (ii) r /∈ u by assumption and therefore
p∞Sr

= p∞1,...,θr,r ∈ C\{0}. Now

b∞rr =
limm→∞ b

(m)
11 . . . b

(m)
θrθr

b
(m)
rr

limm→∞ b
(m)
11 . . . b

(m)
θrθr

is a rational function of p∞, where the numerator is a coordinate of p∞Sr
and therefore finite

by (ii) and the denominator is the coefficient of p∞1,...,θr and therefore nonzero and finite by (i).
This proves the map p∞ 7→ p̃∞ is well defined and continuous.

To prove (iii) (the injectivity of ρ̃ : p∞ 7→ p̃∞) note that by (16)

p∞V = p̃∞V whenever θV > u1

so ρ̃ is the identity (and therefore injective) on these coordinates. It remains to check injectivity
on the other coordinates.

Take two points p∞ 6= (p′)∞ in Bru such that p∞V 6= (p′V )∞ for some V with θV < u1. This
means that e∞v 6= (e′v)

∞ for some v ∈ V satisfying θv < u1. Let v be minimal with this property.
Then

p∞Sv
− (p′Sv

)∞ = (e∞v − (e′v)
∞) ∧

θv∧
i=1

b∞ii ei 6= 0

and using (19) we have the following cases.

– If v 6= u1, r, then p̃∞Sv
− (p̃′Sv

)∞ = p∞Sv
− (p′Sv

)∞ 6= 0.

– If v = u1, then p̃∞Su1
− (p̃′Su1

)∞ = p∞Su1
− (p′Su1

)∞+ (b∞rr − (b′rr)
∞)eu1 ∧

∧θu1
i=1 b

∞
ii ei 6= 0 because

p∞Su1
− (p′Su1

)∞ does not contain eu1 due to the fact that b∞u1,u1 = 0.

– If v = r, then p̃∞Sr
− (p̃′Sr

)∞ = πr−1(e∞r − (e′r)
∞) ∧

∧θr
i=1 b

∞
ii , and if this is 0, then the er

coordinate of e∞r and (e′r)
∞ are not equal, that is, b∞rr − (b′rr)

∞ 6= 0. But then again, as in
the previous case we have

p̃∞Su1
− (p̃′Su1

)∞ = p∞Su1
− (p′Su1

)∞ + (b∞rr − (b′rr)
∞)eu1 ∧

θv∧
i=1

b∞ii ei 6= 0.

In any case, p̃∞ and (p̃′)∞ differ in at least one term, proving injectivity of ρ̃.
Next we prove (b) and (c) of Proposition 4.22 simultaneously. Assume that r ∈ u or θr > u1.

The problem with this case is that b∞rr := limm→∞ b
(m)
rr ∈ C\{0} does not necessarily hold any

more and the limit can be ∞ or 0. In both cases b̃(m) is ill defined in (15).
Fix a nonzero δ ∈ C and define the sequence

b̃
(m),δ
ij =



δ, (i, j) = (u1, u1),

1

δ
b
(m)
rr · b(m)

u1u1 , (i, j) = (r, r),

1

δ
b
(m)
rj · b

(m)
u1,u1 if i = r, j > r and θj > u1,

b
(m)
ij otherwise.

(20)
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In short, we increase the diagonal entry b
(m)
u1u1 to be constant δ and multiply the entries in the

rth row above the diagonal by (1/δ)b
(m)
u1u1 whenever θj > u1. Then the new sequence still sits in

SLn(C). If r ∈ u, then VSpec(b̃(m),δ) = {u2, . . . , us}. If r /∈ u and θr > u1, then

VSpec(b̃(m),δ) =

{u2, . . . , us} if lim
m→∞

b(m)
rr b(m)

u1u1 6= 0,

{u2, . . . , us} ∪ {r} if lim
m→∞

b(m)
rr b(m)

u1u1 = 0.

In any case, if the limit exists, then p̃∞,δ = limm→∞ b̃
(m),δpS̃ ∈ Bu2,...,us or p̃∞,δ ∈ B{u2,...,us}∪{r}.

The same argument as for part (a) shows the following.

– If V ∈ S̃ with θV > u1, then p̃∞,δV = p∞V .

– If V ∈ S̃ with θV < u1, then limm→∞ b
(m)ev ∈ Cn and limm→∞ b̃

(m),δev ∈ Cn exists for all
v ∈ V by Lemma 4.10 and therefore

p∞V = lim
m→∞

∧v∈V b(m)ev = ∧v∈V lim
m→∞

b(m)ev

and the same holds with b(m) replaced by b̃(m),δ. But for v ∈ V we have

lim
m→∞

b̃(m),δev =

 lim
m→∞

b(m)ev, v 6= u1,

lim
m→∞

b(m)eu1 + δeu1 , v = u1.

Note that the first line holds for v = r too, that is, limm→∞ b̃
(m),δer = limm→∞ b

(m)er. We
assumed that v ∈ V , but if θr > u1, then r /∈ V since θV < u1 by assumption. So the other
condition must hold, that is, r ∈ u, and then b̃∞rr = b∞rr = 0 and therefore limm→∞ b̃

(m),δer =
limm→∞ b

(m)er = πr−1(e∞r ).

In particular, when δ → 0 the point p̃∞,δV tends to p∞V .

In short,

lim
δ→0

p̃∞,δ = p∞ (21)

and therefore

p∞ ∈

{
B{u2,...,us} if r ∈ u,

B{u2,...,us} or B{u2,...,us}∪{r} if θr > u1.

But p∞ ∈ B{u1,...,us} so p∞ /∈ B(u2,...,us) and p∞ /∈ B{u2,...,us}∪{r} and we are done. 2

We are ready to finish the proof of Theorem 1.2 for G = SLn(C). The key observation is that
in Proposition 4.22 the smallest element of the vanishing spectrum {u2, . . . , us} ∪ {r}, which is
either r or u2, is strictly bigger than u1.

To make this idea more formal, we introduce an order among the various u as follows: we
say that u1 > u2 if either u1 is shorter than u2 or has a larger smallest element when u1 and
u2 have the same length. For given u and r choose û(r) so that û(r) is largest among those
vanishing spectra for which Bru admits a continuous injection into Bû(r).

According to Proposition 4.22 either the length of û(r) must be one, or one of (b) and (c)
holds, in which case Bru sits in the boundary of a boundary component and therefore has
codimension at least 2 in B · pS̃ . So Theorem 1.2 is reduced to the special case when u = {u}
has a single element. In order to handle this case we need one more definition.
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Definition 4.23. Let 1 6 i 6 n − 1 be an integer and v ∈ Cn such that v /∈ Span(e1, . . . , ei).
A point p =

⊕
U∈S̃ pU ∈ WS̃ is called (i, v)-fixed if the stabiliser Gp ⊂ SLn(C) of p contains the

one-parameter subgroup

T i,v(λ) : ej 7→

{
ej , j 6= i,

ei + λv, j = i,
for λ ∈ C.

A subset B ⊂Bn · pS̃ is called i-fixed if every point of B is (i, v)-fixed for some v /∈ Span(e1, . . . , ei).

Lemma 4.24. Let B ⊂ Bn · pS̃ be an i-fixed Borel invariant subvariety for some 1 6 i 6 n − 1.
Then

dim SLn(C) · B 6 dim SLn(C) · pS̃ − 2.

Proof. Consider the map

ϕ : SLn(C)× B→WS̃ , ϕ(g, w) 7→ g · w.

Choose w ∈ B and let T i,w(λ) be the corresponding one-parameter subgroup as in Definition 4.23.
Since B ⊂ WS̃ is Borel-invariant, the fibre ϕ−1(g ·w) contains (g(bT i,w(λ))−1, (bT i,w(λ)) ·w) for
b ∈ Bn, λ ∈ C. Since {T i,w(λ) : λ ∈ C} ∩Bn = {1},

dim({bT i,w(λ) : b ∈ Bn, λ ∈ C}) = dim(Bn) + 1

and we get

dim(Im(ϕ)) = dim SLn(C) + dimB − dim(fibre)

6 dim SLn(C) + dimBn · pS̃ − 1− (dim(Bn) + 1)

= dim SLn(C)/US − 2 = dim SLn(C) · pS̃ − 2. 2

Lemma 4.25. Let u = {u} have one element and r > u. Then Bru is u-fixed and therefore by
Lemma 4.24

dim SLn(C)Bru 6 dim SLn(C)pS − 2.

Proof. Let p∞ ∈ Bru and Z ∈ V(p∞)min. By Proposition 4.14 we have:

(i) [p∞Z ] ⊂
⋂
V ∈V(p∞) p

∞
V where V(p∞) = {U ∈ S̃ : p∞U 6= 0, θU > u};

(ii) ω(p∞) = r, and hence there is a vector w = er + wr−1er−1 + · · ·+ w1e1 ∈ [p∞Z ].

By Lemma 4.10

e∞j = lim
m→∞

b(m)ej = µjjej + · · ·+ µ1je1 exists when θj < u

and in particular, since only b
(m)
uu tends to zero among the diagonal entries, we have

µjj 6= 0 when θj < u.

Therefore the linear base change

A : ẽj :=


e∞j , j 6= u, θj < u,

eu, j = u,

w, j = r,

ej otherwise,
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sits in the Borel BSLn . Since {1, . . . , u} ⊂ Z, by (i) and (ii) above we have

Span(e1, . . . , eu, w) = Span(ẽ1, . . . , ẽu, ẽr) ⊆ [p∞Z ] ⊆ [p∞V ] for all V ∈ S̃ with p∞V 6= 0, θV > u.
(22)

If θV < u, then by Lemma 4.10 again p∞V = ∧v∈V e∞v . But limm→∞ b
(m)
uu = 0 and hence

lim
m→∞

b(m)eu ⊆ Span(e1, . . . , eu−1) = Span(ẽ1, . . . , ẽu−1).

Note that since θV < u, we have e∞v = ẽv for all v ∈ V \{u}. Therefore

[p∞V ] ⊂ Span(ẽ1, . . . , ẽu−1, ẽu+1, . . . , ẽn) for all V ∈ S̃ with p∞V 6= 0, θV < u. (23)

From (23) and (22) it follows that the one-parameter subgroup

T̃ u,ẽr(λ) : ẽj 7→

{
ẽj , j 6= u,

ẽu + λẽr, j = u,
for λ ∈ C

stabilises p∞ so T u,A
−1ẽr stabilises p∞ in the old basis, proving that it is u-fixed. 2

5. Borel-regular subgroups of classical groups

In this section, again, we restrict our attention to the k = C case, but all arguments work for
any algebraically closed field k of characteristic zero which is a subfield of C. We will often use
the shorthand notation Spn for Spn(C) and SOn for SOn(C).

Recall from the Introduction that a Borel-regular subgroup of a linear algebraic group is a
subgroup normalised by a Borel subgroup. They have the form US corresponding to closed root
subsets S ⊂ R+ which are also closed under shifting by elements of R+, i.e. S + r ⊂ S for any
r ∈ R+.

5.1 Borel-regular subgroups of SLn

When G = SLn this means that (i, j) ∈ S ⇒ (i, j + 1), (i − 1, j) ∈ S, and hence Borel-regular
subgroups have the form

U0,0,1,2,2,3 =

1 0 • • • •
1 0 • • •

1 0 0 •
1 0 0

1 0

1

, (24)

where the positions of free parameters are encoded by a monotone increasing sequence θ = (θ1 6
· · · 6 θn) satisfying θi < i. This sequence then corresponds to the root subset S = {S1, . . . , Sn}
where Si = {1, . . . , θi, i}. Note that a subgroup of SLn is Borel regular if and only if it is left
and right Borel regular at the same time. Therefore the Popov–Pommerening conjecture for
Borel-regular subgroups of SLn is a special case of Theorem 1.2.

5.2 Borel-regular subgroups of symplectic groups
Let V be a n = 2l-dimensional complex vector space and Q : V × V → C a nondegenerate
skew-symmetric bilinear form on V . The symplectic Lie group is then

Spn(V ) = {A ∈ SLn(C) : Q(Av,Aw) = Q(v, w) for all v, w ∈ V },
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and the corresponding symplectic Lie algebra is

spn(V ) = {A ∈ sln(C) : Q(Av,w) +Q(v,Aw) = 0 for all v, w ∈ V }.

To get a compatible embedding of Spn(C) ⊂ SLn(C) with diagonal maximal torus and which

preserves the standard Borel of upper triangular matrices in SLn, we take a basis e1, . . . , en of V

such that Q is given by the matrix M in the form Q(v, w) = vtMw where M is the antidiagonal

n× n matrix with two antidiagonal l × l blocks:

M =



1

. .
.

1

−1

. .
.

−1


.

For a diagonal matrix D = diag(t1, . . . , tn), the condition to lie in Spn is DMD = M . Since

DMD =


t1tn

t2tn−1

. .
.

−tn−1t2
−tnt1


this happens exactly when t1tn = · · · = tltl+1 = 1. Hence the maximal torus in Spn is

TSpn
=





t1
. . .

tl
t−1
l

. . .

t−1
1


: t1, . . . , tl ∈ C∗


and the rank of Sp2l is l. For 1 6 i 6 l define the character αi : TSpn

→ C∗ by

αi(diag(t1, t2, . . . , t
−1
2 , t−1

1 )) = ti

and the cocharacter λi : C∗ → TSpn
by λi(x) = diag(1, . . . , x, . . . , x−1, . . . , 1) with x at the ith

position. Then X∗(TSpn
) =

⊕l
i=1 Zαi and X∗(TSpn

) =
⊕l

i=1 Zλi with dual pairing 〈αi, λj〉 = δij .

For an n × n matrix A = (aij) let Aat = (aatij ) denote its antidiagonal-transpose, that is

aatij = an−j+1,n−i+1. Computing AtM + MA = 0 shows that the Lie algebra spn consists of

matrices of the form (
A B

C −Aat
)

where B = Bat, C = Cat.
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Remark 5.1. In particular this means that any Lie algebra element A ∈ spn is uniquely
determined by its entries {aij : i+ j 6 n+ 1} sitting above and on the antidiagonal.

The Cartan subalgebra h ⊂ spn is l-dimensional, spanned by the diagonal matrices Eii −
En+1−i,n+1−i whose dual is αi. Here, as before, Eii is the matrix with 1 in the diagonal entry
(i, i) and 0 elsewhere. The roots of Spn are

R = {±αi ± αj}16i,j6l

and the positive roots are
R+ = {αi − αj}i<j ∪ {αi + αj}i6j .

Therefore the Lie algebra of the corresponding Borel subgroup consists of matrices of the form(
A B

0 −Aat
)

where A is upper triangular and B = Bat.
All one-dimensional positive root subspaces gα have the form

gα =




0 x

0 (x or −x)

0

0

 : x ∈ C

 (25)

where

x sits at (i, j) and −x sits at (n+ 1− j, n+ 1− i) if α = αi − αj ,
x sits at (i, n+ 1− j) and x sits at (j, n+ 1− i) if α = αi + αj , i 6= j,

x sits at (i, n+ 1− i) if α = 2αi.

The corresponding root subgroups Uα = exp(gα) have the same form with ones on the diagonal.
Figure 2 shows the positive root spaces and root subgroups for n = 4.

Definition 5.2. For a closed subset S ⊂ R+ let USp
S = 〈Uα : α ∈ S〉 ⊂ Spn be the corresponding

unipotent subgroup generated by the root subgroups in Spn, normalised by the maximal diagonal
torus in Spn. We define the family S = {S1, . . . , Sn} of subsets of {1, . . . , n} in such way that Si
collects all possible nonzero entries in the jth column in USp

S ⊂ Spn ⊂ SLn, that is

Sj = {i : ∃u ∈ USp
S ⊂ Spn ⊂ SLn such that uij 6= 0}.

These subsets can be described using the roots in S as follows:

Sj =

{
{j} ∪ {i : αi − αj ∈ S} for 1 6 j 6 l,

{j} ∪ {i : αi + αn+1−j or αj + αn+1−i or αn+1−j − αn+1−i is in S} for l + 1 6 j 6 2l.

In what follows, we will use the same notation S for a set of positive roots for Spn, for the
corresponding subset family S = {S1, . . . , Sn} and the corresponding set of entries

S = {(i, j) ∈ {1, . . . , n} × {1, . . . , n} : i ∈ Sj}

indexing all possibly nonzero entries of USp
S ⊂ Spn ⊂ SLn.
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Figure 2. Root subspaces and root subgroups of Sp4.

Example 5.3. For Sp4 the closed subset {α1−α2, α1+α2, 2α1} ⊂ R+ defines the regular subgroup

USp
S =




1 a b c

0 1 0 b

0 0 1 −a
0 0 0 1

 : a, b, c ∈ C

 ⊂ Sp4(C)

with the corresponding subset family

S1 = {1}, S2 = {1, 2}, S3 = {1, 3}, S4 = {1, 2, 3, 4}.

Lemma 5.4. (i) If USp
S ⊂ Spn ⊂ SLn is a Borel-regular subgroup, then the subset family

S = {S1, . . . , Sn} defines a Borel regular subgroup USL
S of SLn such that USp

S = USL
S ∩ Spn.

Equivalently, if (i, j) ∈ S, then (i− 1, j), (i, j + 1) ∈ S.

(ii) The set S is symmetric about the antidiagonal: (i, j) ∈ S ⇔ (n+ 1− j, n+ 1− i) ∈ S.

Proof. (i) Follows from the fact that the embedding Spn ⊂ SLn preserves the Borel subgroup of

upper triangular matrices in SLn. Positive root subspaces of SLn correspond to entries above the

diagonal, and every such entry defines a unique positive root subspace of Spn.

(ii) Follows from the symmetry of the Lie algebra spn in sln: all root subspaces are symmetric

about the antidiagonal in sln. 2
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Figure 3. A domain S symmetric about the antidiagonal with crossing point γS = 3 and its
symplectic fundamental domain.

Example 5.5. In Sp4 the subset S = {2α1, 2α2, α1 +α2} ⊂ R+ is closed under addition of positive
roots and therefore defines a Borel-regular subgroup

USp
S =




1 0 a b

0 1 c a

0 0 1 0

0 0 0 1

 : a, b, c ∈ C

 ⊂ Sp4(C).

The corresponding subset family is

S1 = {1}, S2 = {2}, S3 = {1, 2, 3}, S4 = {1, 2, 4}

which defines the Borel-regular subgroup

USL
S =




1 0 a b

0 1 c d

0 0 1 0

0 0 0 1

 : a, b, c, d ∈ C

 ⊂ SL4 .

Lemma 5.4 implies that USL
S = U θ ⊂ SLn corresponds to some monotone increasing sequence

θ = (θ1 6 · · · 6 θn) where Si = {1, . . . , θi, i}. Due to the antidiagonal symmetry there is a unique
integer 1 6 γS 6 l which satisfies that

(γS , n+ 1− γS) ∈ S but (γS + 1, n− γS) /∈ S.

We call γS the crossing point of S because the boundary of the region of free parameters intersect
the antidiagonal at the point (γS , γS), see Figure 3 for an example.

Definition 5.6. Let S = (S1, . . . , Sn) ⊂ {1, . . . , n} × {1, . . . , n} be a domain which is:

(i) symmetric about the antidiagonal, that is (i, j) ∈ S ⇔ (n+ 1− j, n+ 1− i) ∈ S;

(ii) Borel-regular, that is, (i, j) ∈ S ⇒ (i, j + 1), (i− 1, j) ∈ S.

We define the symplectic fundamental domain to be F = {F1, . . . , Fn} such that

Fi =

{
Si, i 6 n− γS ,
{1, 2, . . . , i}, i > n− γS .
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Note that F is no longer symmetric about the antidiagonal but it remains Borel regular and
UF = U θF corresponds to the modified sequence

θF = {θ1, . . . , θn−γS , n− γS , . . . , n− 1}.

See Figure 3 for an example. Recall that we fixed a basis {e1, . . . , en} of Cn to get the embedding
Spn ⊂ SLn of the right form. The corresponding point

pF =
⊕
U∈F
∧i∈Uei ∈ WF =

⊕
U∈F
∧|U |Cn

has the right stabiliser in Spn according to the following.

Theorem 5.7. The stabiliser of pF in Spn is USp
S .

Proof. Let StabSpn
(pF ) (respectively StabSLn(pF )) denote the stabiliser of pF in Spn (respectively

SLn). Then

StabSpn
(pF ) = StabSLn(pF ) ∩ Spn.

But, according to Lemma 3.1, StabSLn(pF ) = USL
F and due to the antidiagonal symmetry of Spn,

USL
F ∩ Spn = USp

S , which proves the statement. 2

We define the symplectic Grosshans pair using the corresponding ring family as before:

F̃ = {Fi1 ∪ · · · ∪ Fir : 1 6 i1 < · · · < ir 6 n} ⊂ 2{1,...,n}

and then

pF̃ =
⊕
U∈F̃

∧i∈Uei ∈ WF̃ =
⊕
U∈F̃

∧|U |Cn

has the same stabiliser in Spn as pF .

Corollary 5.8. The stabiliser of pF̃ in Spn is USp
S .

Recall the definition of a fat Borel subgroup from the Introduction: for Sp2l these are the
Borel-regular subgroups which contain {αi + αj : 1 6 i < j 6 l}. In particular, these contain
{2αi : 1 6 i 6 l} and ‘fatness’ is equivalent to saying that the crossing point is γS = l.

Theorem 5.9. Let n = 2l and F = {F1, . . . , Fn} be the symplectic fundamental domain

corresponding to a Borel-regular subgroup USp
S ⊂ Spn with γS = l. Then the pair (WF̃ , pF̃ )

is a Grosshans pair for USp
S . This proves Theorem 1.3 for symplectic groups.

We devote the rest of this section to the proof of Theorem 5.9. Note that γS = l is equivalent
to saying that the top right quarter {(i, j) : 1 6 i 6 l, l+1 6 j 6 n} belongs to F . In other words
F corresponds to a sequence

θF = (θ1 6 · · · 6 θl, l, l + 1, . . . , n− 1). (26)

See Figure 4 for an example.
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Figure 4. The fundamental domain of a fat Borel-regular subgroup of Sp8. Here θS = (0, 0, 1,
2, 4, 4, 5, 6) and θF = (0, 0, 1, 2, 4, 5, 6, 7).

Recall that elements of the Borel BSpn
⊂ Spn have the form

b11 b12 · · · b1n
0 b22

. . . bn−1n

0 0 bnn

 where bii = b−1
n+1−i,n+1−i

and the off-diagonal entries bij are not independent, but we will not use the exact form of these
entries in this argument. The boundary points in BSpn

· pF̃ are limits of the form

p∞ = lim
m→∞

b(m) · pF̃ ,

where (b(m)) is a normalised sequence in the sense of Definition 4.2. We define the vanishing

spectrum and the sets BSp
u exactly the same way as they are defined for SLn in Definitions 4.2

and 4.3, that is, for u ⊂ {1, . . . , n} we let

BSp
u =

{
p∞ ∈BSpn

· pF̃ : ∃ norm. seq. (b(m))⊂ Spn s.t. p∞ = lim
m→∞

b(m) · pF̃ and VSpec(b(m)) = u
}
.

The embedding Spn ⊂ SLn implies that

BSp
u ⊆ BSL

u .

Note that the first proof of Lemma 4.4 applies for the symplectic case and therefore

BSp
∅

= BSpn
· pF̃ .

This means that, again, all boundary points sit in a BSp
u with some nonempty u:

BSpn
· pF̃ \BSpn

· pF̃ ⊂
⋃
u6=∅

BSp
u .

In what follows we adapt the argument developed for left Borel regular subgroups of SLn to
Borel regular subgroups of Spn. We start with two remarks on notations and definitions.

(i) Since θF is monotone increasing, θFZ = θFmax(Z) holds for all Z ⊆ {1, . . . , n}.
(ii) Since θFn = n, every subset u is automatically covered in the sense of Definition 4.6.

We have the following stronger version of Lemma 4.12.
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Lemma 5.10. If u = {u1 < · · · < us} ⊆ {1, . . . , n} is such that u1 > l, then BSp
u = ∅.

Proof. Let (b(m)) be a normalised sequence with vanishing spectrum u. If u1 > l + 1, or

equivalently n+ 1− u1 6 l, then the relation b
(m)
ii = (b

(m)
n+1−i,n+1−i)

−1 implies that

lim
m→∞

b
(m)
ii 6= 0 for 1 6 i < n+ 1− u1 and lim

m→∞
|b(m)
n+1−u1,n+1−u1 | =∞.

However, {1, . . . , n+ 1− u1} ∈ F̃ and

p∞{1,...,n+1−u1} = lim
m→∞

(n+1−u1∏
i=1

b
(m)
ii

)
· ∧n+1−u1

i=1 ei

is not bounded, so this coordinate of p∞ does not exist, a contradiction. 2

Let u = {u1 < · · · < us} ⊂ {1, . . . , n} be a subset with u1 6 l and let

p∞ = lim
m→∞

b(m)pF̃ =
⊕
U∈F̃

p∞U ∈ BSp
u

be a limit point defined by the normalised sequence (b(m)) ⊂ Spn ⊂ SLn such that
VSpec(b(m)) = u. Note that (b(m)) is a normalised sequence in the Borel BSLn of SLn too,
and therefore we can restate Lemma 4.10.

Lemma 5.11. Let u = {u1 < · · · < us} ⊂ {1, . . . , n} be a subset with u1 6 l. Let p∞ =

limm→∞ b
(m)pF̃ ∈ B

Sp
u be a limit point defined by the normalised sequence (b(m)) ⊂ Spn such

that VSpec(b(m)) = u. If θFi < u1 for some 1 6 i 6 n, then limm→∞ b
(m)ei ∈ Cn exists.

We define in accordance with Definition 4.13 the set

V(p∞) = {U ∈ F̃ : p∞U 6= 0, θFU > u1}

and V(p∞)min using the same order. Proposition 4.14 tells something about points in BSL
u and

since BSp
u ⊂ BSL

u these properties hold for points in BSp
u too. In short we have the following analog

of Proposition 4.14.

Proposition 5.12. Let u ⊂ {1, . . . , n} be a subset with u1 6 l, covered by F̃ and p∞ ∈ BSp
u . If

Z ∈ V(p∞)min, then

[p∞Z ] ⊂
⋂

V ∈V(p∞)

[p∞V ]. (27)

Using Definition 4.18 we can talk about the width ω(p∞) of a boundary point p∞ and let

BSp,r
u = {p∞ ∈ BSp

u : ω(p∞) = r}

denote the set of points in BSp
u of width r. Then we have a (not necessary disjoint) finite

decomposition

BSp
u =

⋃
u1<r

BSp,r
u .

Remark 4.20 on unipotent base change remains valid if we choose our base change matrix A
from BSpn

, and such a base change will leave BSp,r
u intact for all u and r. As a corollary we have

the following analog of Remark 4.21.
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Remark 5.13. Let p∞ ∈ BSp,r
u and Z ∈ V(p∞)Sp

min. By definition this means that [p∞Z ] ⊂ Span(e1,
. . . , er) but [p∞Z ] 6⊂ Span(e1, . . . , er−1) so there is a vector

w = er + wr−1er−1 + · · ·+ w1e1 ∈ [p∞Z ].

Define the Lie algebra element

Xw :=



0 w1

. . .
...

wr−1

0
. . .

0 −wr−1 · · · −w1

. . .

0


∈ spn,

where we put w1, . . . , wr−1 into the rth column and −w1, . . . ,−wr−1 into the (n+ 1− r)th row.
Xw sits in the Lie algebra of BSpn

and exp(Xw) is a unipotent element of BSpn
. This defines

the new basis ēi = exp(Xw) · ei. Let pF̃ (ē1, . . . , ēn) denote the base point pF̃ written in the new
basis. Then

p∞ = lim
m→∞

b(m)pF̃ = lim
m→∞

(exp(Xw)b(m) exp(−Xw))pF̃ (ē1, . . . , ēn).

Similarly to Remark 4.20 we note that since exp(Xw) is unipotent, the new sequence

b̃(m) = exp(Xw)b(m) exp(−Xw)

has the same vanishing spectrum u and [p∞Z ] in this new basis has width r again and therefore

BSp,r
u (e1, . . . , en) = BSp,r

u (ē1, . . . , ēn) for all u, r.

In this new basis, however, w = ẽr ∈ [p∞Z ] holds.

The cornerstone of our argument for SL(n) was Proposition 4.22 on the structure of
the subsets Bru. The same proposition remains true for Spn, but we need a careful review
of the proof which was based on proper modifications of the sequence (b(m)): the problem with
the original argument is that the modified sequence sits in SL(n) but not necessarily in Spn.

Proposition 5.14. Let s > 2 and u = {u1 < · · · < us} be a subset with u1 6 l. Then we have
the following.

(a) If r /∈ u and θFr < u1, then there is a continuous injection ρ : BSp,r
u ↪→ BSp

{u2,...,us}∪{r} and

therefore dimBSp,r
u 6 dimBSp

{u2,...,us}∪{r}.

(b) If r ∈ u, then BSp,r
u ⊂ BSp,r

{u2,...,us}\B
Sp
{u2,...,us}.

(c) If r /∈ u and θFr > u1, then

BSp,r
u ⊂ BSp

{u2,...,us}\B
Sp
{u2,...,us} or BSp,r

u ⊂ BSp
{u2,...,us}∪{r}\B

Sp
{u2,...,us}∪{r}.
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Proof. To prove (a) assume that r /∈ u and θFr < u1. Let

p∞ = lim
m→∞

b(m)pF̃ =
⊕
U∈F̃

p∞U ∈ BSp,r
u

be a limit point such that VSpec(b(m)) = u and Z ∈ V(p∞)Sp
min. According to Remark 5.13 we

can assume that er ∈ [p∞Z ].

By Proposition 5.12, limm→∞ b
(m)
ii ∈ C exists whenever θFi < u1 and since r /∈ u, this limit

is nonzero for i = r:
b∞rr := lim

m→∞
b(m)
rr ∈ C\{0}.

We define the entries b̂
(m)
ij of a modified sequence b̂(m) for i+ j 6 n+ 1 as follows:

b̂
(m)
ij =



b∞rr , (i, j) = (u1, u1),

1

b∞rr
· b(m)
rr · b(m)

u1u1 , (i, j) = (r, r),

1

b∞rr
· b(m)
rj · b

(m)
u1,u1 if i = r, θFj > u1 and i+ j 6 n+ 1,

b
(m)
ij otherwise whenever i+ j 6 n+ 1.

(28)

In short, we fix the diagonal entry b
(m)
u1u1 to be the nonzero constant b∞rr and multiply by

(1/b∞rr)b
(m)
u1u1 the entries on and above the antidiagonal in the rth row sitting in those columns

which cover u1. Recall from (26) that for i > l, θFi > l. Since by assumption θFr < u1 6 l, we must
have r 6 l. Then, according to Remark 5.1, there is a unique extension in Spn of these entries
to the region below the antidiagonal; we denote this matrix by b̂(m) ∈ Spn.

Remark 5.15. For i + j 6 n + 1 the modified entries in (15) are equal to the entries in (28). In
particular, the first l columns of b̃(m) and b̂(m) are the same.

Let p̃∞ = limm→∞ b̃
(m)pF̃ be the limit point defined by the modified sequence (15). We show

that p̃∞ = p̂∞ and hence ρ̃ = ρ̂ on BSp,r
u ⊂ Bru and part (a) follows from Proposition 5.12(a).

Let V ∈ F̃ . Due to Remark 5.15

p̂∞V = p̃∞V holds whenever max(V ) 6 l. (29)

If max(V ) = v > l + 1, then in fact V = {1, . . . , v}, and therefore using the equality b̂
(m)
ii =

(b̂
(m)
n+1−i,n+1−i)

−1 we get

p̂∞V = lim
m→∞

v∏
i=1

b̂
(m)
ii ·

v∧
i=1

ei = lim
m→∞

n−v∏
i=1

b̂
(m)
ii ·

v∧
i=1

ei = p̂∞{1,...,n−v} ∧
v∧

i=n+1−v
ei. (30)

Similarly,

p̃∞V = lim
m→∞

v∏
i=1

b̃
(m)
ii ·

v∧
i=1

ei = lim
m→∞

n−v∏
i=1

b̃
(m)
ii ·

v∧
i=1

ei = p̃∞{1,...,n−v} ∧
v∧

i=n+1−v
ei. (31)

However, by (29) p̃∞{1,...,n−v} = p̂∞{1,...,n−v} and hence p̃∞V = p̂∞V . So p̃∞ = p̂∞ and part (a) is proved.
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To prove (b) and (c) we define for δ 6= 0 the modified sequence

b̂
(m),δ
ij =



δ, (i, j) = (u1, u1),

1

δ
b
(m)
rr · b(m)

u1u1 if (i, j) = (r, r) and r 6 l,

1

δ
b
(m)
rj · b

(m)
u1,u1 if i = r, j > r, θFj > u1 and i+ j 6 n+ 1,

b
(m)
ij otherwise whenever i+ j 6 n+ 1,

(32)

and its unique extension b̂(m),δ ∈ Spn.

Remark 5.16. If r > l + 1, then the second and third line in (28) are irrelevant and b̂(m) differs
from b(m) only in the (u1, u1) and (n+ 1− u1, n+ 1− u1) diagonal entries.

Remark 5.17. For i + j 6 n + 1 the modified entries in (20) are equal to the entries in (32). In
particular, the first l columns of b̃(m),δ and b̂(m),δ are the same.

If r ∈ u, then VSpec(b̂(m),δ) = {u2, . . . , us}. If r /∈ u and θFr > u1, then

VSpec(b̂(m),δ) =

{u2, . . . , us} if lim
m→∞

b(m)
rr b(m)

u1u1 6= 0,

{u2, . . . , us} ∪ {r} if lim
m→∞

b(m)
rr b(m)

u1u1 = 0.

Let p̃∞,δ = limm→∞ b̃
(m),δpF̃ be the limit point defined by the modified sequence (20). The same

argument as above shows again that

p̂∞,δ = p̃∞,δ for all δ > 0

and hence by (21) we have

lim
δ→0

p̂∞,δ = lim
δ→0

p̃∞,δ = p∞.

Therefore

p∞ ∈


BSp
{u2,...,us} if r ∈ u,

BSp
{u2,...,us} or BSp

{u2,...,us}∪{r} if r /∈ u and θFr > u1.

But p∞ ∈ BSp
{u1,...,us} so p∞ /∈ BSp

{u2,...,us} and p∞ /∈ BSp
{u2,...,us}∪{r}, and we are done. 2

Proposition 5.14 reduces the proof of Theorem 5.9 the same way as in the SLn case to the
simple situation when u = {u} has a single element. Before we start studying this special case
we state the following analog of Lemma 4.24.

Lemma 5.18. Let α ∈ R− be a negative root. Let B ⊂ BSpn
· pF̃ be a BSpn

-invariant subvariety.
Assume that for every point w ∈ B there is an element bw ∈ BSp such that w is fixed by the
conjugate bwUαb

−1
w of the root subgroup Uα ⊂ Spn. Then

dim Spn · B 6 dim Spn · pF̃ − 2.
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Proof. We can simply copy the proof of Lemma 4.24. Consider the map

ϕ : Spn×B→WF̃ , ϕ(g, w) 7→ g · w.

Choose w ∈ B and let Tw = bwUαb
−1
w be the corresponding subgroup which fixes w. Since B ⊂WS̃

is Borel-invariant, the fibre ϕ−1(g · w) contains (g(bu)−1, (bu) · w) for b ∈ BSpn
, u ∈ bwUαb−1

w .
Since bwUαb

−1
w ∩BSpn

= {1},

dim({bu : b ∈ BSpn
, u ∈ bwUαb−1

w }) = dim(BSpn
) + 1

and we get

dim(Im(ϕ)) = dim Spn + dimB − dim(fibre) 6 dim Spn + dimBSpn
· pF̃ − 1− (dim(BSpn

) + 1)

= dim Spn /U
Sp
S − 2 = dim Spn · pF̃ − 2. 2

First we study the sets BSp,r
u with r 6 l.

Lemma 5.19. Let u = {u} and r be an integer such that u < r 6 l. Let α = αr −αu so that the
corresponding root subgroup has two nonzero off-diagonal entries as in (25) where x sits in the

(r, u) and −x in the (n+ 1−u, n+ 1− r) entry. Then every point in BSp,r
u is fixed by a conjugate

ÂUαÂ
−1 for some Â ∈ BSpn

.

Proof. Let p∞ = limm→∞ b
(m)pZ̃ ∈ B

Sp,r
u . We define the matrix A ∈ BSLn and the new matrix

{ẽ1, . . . , ẽn} satisfying (23) and (22) just as in the proof of Lemma 4.25. Since u < r 6 l, the
matrix A has nonzero off-diagonal entries only in the first l column and by Remark 5.1, it has a
unique extension Â ∈ Spn whose entries above the antidiagonal are equal to those entries of A.

We claim that p∞ is fixed by ÂUαÂ
−1. Equivalently, p∞ is fixed by Uα when written in the

basis {ẽ1, . . . , ẽn}. Since Uα ⊂ Spn has nonzero off-diagonal entries only at (r, u) and (n+ 1− u,
n+ 1− r) this follows if we prove that p∞ is fixed by both T u,ẽr and Tn+1−r,ẽn+1−u . Recall from
Definition 4.23 the one-parameter subgroup

T i,v(λ) : ẽj 7→

{
ẽj , j 6= i,

ẽi + λv, j = i,
for λ ∈ C.

First, p∞ is fixed by both T u,ẽr due to (22) and (23).
To see that p∞ is fixed by Tn+1−r,ẽn+1−u note that n+ 1− r and n+ 1− u are both bigger

than l and therefore Tn+1−r,ẽn+1−u fixes p∞V automatically when max(V ) 6 l.
When max(V ) = v > l + 1, then in fact V = {1, . . . , v} and therefore using the equality

b
(m)
ii = (b

(m)
n+1−i,n+1−i)

−1 and Remark 5.15 we get

p∞{1,...,v} = lim
m→∞

v∏
i=1

b
(m)
ii · ∧

v
i=1ei = lim

m→∞

n−v∏
i=1

b
(m)
ii · ∧

v
i=1ei. (33)

Now we prove that

lim
m→∞

t∏
i=1

b
(m)
ii = 0 whenever u 6 t < r. (34)
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By Lemma 5.11 limm→∞ b
(m)
ii ∈ C exists when θFi < u and since θFu < u we have

lim
m→∞

t∏
i=1

b
(m)
ii = 0 if u 6 t and θFt < u.

Now let t < r such that θFt > u and take V = {1, . . . , t} ⊂ F̃ . If p∞V 6= 0, then by definition
V ∈ V(p∞)Sp and therefore by Proposition 5.12

[p∞Z ] ⊂ [p∞V ] = [e1 ∧ · · · ∧ ev],

which is a contradiction because [p∞Z ] has width r > t. Therefore p∞V = 0, that is,

lim
m→∞

t∏
i=1

b
(m)
ii = 0 if t < r and θFt > u.

Putting these together we get (34). Then

p∞{1,...,v} = 0 for n− r < v 6 n− u. (35)

This means that

if p∞{1,...,v} 6= 0 then either: n+1−r /∈ {1, . . . , v} or: n+1−r and n+1−u are both in {1, . . . , v}.
(36)

In both cases p∞{1,...,v} is fixed by Tn+1−r,ẽn+1−u . 2

Finally we study the sets BSp,r
u with r > l.

Lemma 5.20. Let u = {u} and r be an integer such that u 6 l < r. Let

α =

{
αu+1 − αu, u 6 l − 1,

−2αl, u = l.

The corresponding negative root subgroup Uαu+1−αu has nonzero off-diagonal entries as in (25)
where x sits at (u + 1, u) and −x sits at (n + 1 − u, n − u), whereas U−2αl

has x at (l + 1, l).

Then every point in BSp,r
u is fixed by a conjugate ÂUαÂ

−1 for some Â ∈ BSpn
.

Proof. Let p∞ ∈ BSp,r
u and Z ∈ V(p∞)Sp

min. By Proposition 5.12, we have the following:

(i) [p∞Z ] ⊂
⋂
V ∈V(p∞)Sp p

∞
V , where V(p∞)Sp = {U ∈ F̃ : p∞U 6= 0, θU > u};

(ii) ω(p∞) = r, and in particular if max(V ) < r, then p∞V ( Span(e1, . . . , er) and therefore [p∞Z ]
cannot sit in [p∞V ]. Therefore by (i)

if θFV > u and max(V ) < r, then p∞V = 0. (37)

By Lemma 5.11

e∞j = lim
m→∞

b(m)ej = µjjej + · · ·+ µ1je1 exists when θFj < u

and in particular, since only b
(m)
uu tends to zero among the diagonal entries, we have

µjj 6= 0 when u 6= j 6 l, θFj < u.
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Thus we can define the new basis elements {ẽ1, . . . , ẽl} as follows:

A : ẽj :=


e∞j , u 6= j 6 l, θFj < u,

eu, j = u,

ej otherwise whenever j 6 l.

According to Remark 5.1, this can be extended to a linear base change Â ∈ Spn to get a new
basis {ẽ1, . . . , ẽn}.

If θFV < u, then by Lemma 5.11 again p∞V = ∧v∈V e∞v . Since limm→∞ b
(m)
uu = 0, this means

that
e∞u ⊆ Span(e1, . . . , eu−1) = Span(ẽ1, . . . , ẽu−1). (38)

If p∞V 6= 0 and θFV < u, then max(V ) 6 l (this is because θFv = v − 1 > l > u for v > l) and
therefore by (38)

[p∞V ] ⊂ Span(ẽv : v ∈ V ) ⊂ Span(ẽ1, . . . , ẽu−1, ẽu+1, . . . , ẽl).

Together with (37) (and taking account of the assumption that r > l) this means that

if p∞V 6= 0 and max(V ) 6 l, then [p∞V ] ⊂ Span(ẽ1, . . . , ẽu−1, ẽu+1, . . . , ẽl). (39)

If V ∈ F̃ such that max(V ) = v > l+1, then V = {1, . . . , v} and therefore [p∞V ] = Span(ẽ1, . . . , ẽv).
According to (35) we have p∞{1,...,v} = 0 for n − r < v 6 n − u. Since u 6 l < r, this means in
particular that

p∞V = p∞{1,...,v} = 0 for l + 1 6 v = max(V ) 6 n− u. (40)

For v > n − u, however, ẽu, ẽu+1, ẽn−u, ẽn−u+1 are all in p∞{1,...,v} = Span(ẽ1, . . . , ẽv). Together

with (39) and (40) this implies that

if p∞V 6= 0, then

{
[p∞V ] ⊂ Span(ẽ1, . . . , ẽu−1, ẽu+1, . . . , ẽl) if max(V ) 6 l,

Span(ẽu, ẽu+1, ẽn−u, ẽn−u+1) ⊂ p∞V if max(V ) > l.

Thus Uαu+1−αu (for u < l) and U2αl
(for u = l) stabilises p∞ written in the new basis, so

ÂUαu+1−αuÂ
−1 stabilises p∞ in the old basis. 2

We have finished the proof of Theorem 5.9 and hence Theorem 1.3 is proved.

5.3 Borel-regular subgroups of orthogonal groups
Let V be an n-dimensional complex vector space and Q : V ×V → C a nondegenerate, symmetric
bilinear form on V . The orthogonal Lie group is then

SOn(V ) = {A ∈ SLn(C) : Q(Av,Aw) = Q(v, w) for all v, w ∈ V },

and the corresponding symplectic Lie algebra is

son(V ) = {A ∈ sln(C) : Q(Av,w) +Q(v,Aw) = 0 for all v, w ∈ V }.

To get a compatible embedding of SOn(C) ⊂ SLn(C) with diagonal maximal torus, we take a
basis {e1, . . . , en} of V such that Q is given by the matrix M in the form Q(v, w) = vtMw, and
we choose M to be the antidiagonal matrix (with n = 2l or n = 2l + 1)

M =

 1

. .
.

1

 .
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For n = 2l, SOn has the same maximal torus as Spn and for n = 2l+1 the maximal torus consist
of diagonal matrices diag(t1, . . . , tl, 1, t

−1
l , . . . , t1). The Lie algebra son consists of matrices of the

form (
A B

C −Aat
)

for n = 2l and

A v B

w 0 −vtJ

C −wtJ −Aat

 for n = 2l + 1,

where B = −Bat, C = −Cat and v, w are arrays of length l and J is the l× l matrix with ones
on the antidiagonal and zero elsewhere. In particular, the antidiagonal entries are all zero in son.

Remark 5.21. In particular this means again that any Lie algebra element A ∈ son is uniquely
determined by its entries {aij : i+ j < n+ 1} sitting above the antidiagonal.

The characters and cocharacters are the same as in Spn and the Cartan subalgebra h ⊂ son
is l-dimensional spanned by the diagonal matrices Eii − El+i,l+i for 1 6 i 6 l whose dual is αi.
The roots are

{±αi ± αj}i<j for n = 2l and {±αi ± αj}i<j ∪ {±αi} for n = 2l + 1.

The positive roots are

n = 2l : R+ = {αi − αj}16i<j6l ∪ {αi + αj}16i<j6l,
n = 2l + 1 : R+ = {αi − αj}16i<j6l ∪ {αi + αj}16i<j6l ∪ {αi}.

The root vectors corresponding to the positive roots have two nonzero entries symmetric about
the antidiagonal as in Spn but here

x sits at (i, j) and (−x) sits at (n+ 1− j, n+ 1− i) if α = αi − αj ,
x sits at (i, j + l) and (−x) sits at (l + 1− j, n+ 1− i) if α = αi + αj , i 6= j,

x sits at (i, l + 1) and (−x) sits at (l + 1, n+ 1− i) if α = αi.

For a closed subset S ⊂ R+ let USO
S = 〈Uα : α ∈ S〉 ⊂ SOn be the corresponding unipotent

subgroup generated by the root subgroups in SOn, normalised by the maximal diagonal torus in
SOn. We define the family S = {S1, . . . , Sn} of subsets in the same way as for Spn, that is, Si
collects the possible nonzero entries in the jth column in USp

S ⊂ SOn ⊂ SLn:

Sj = {i : ∃u ∈ USO
S ⊂ SOn ⊂ SLn such that uij 6= 0}.

Example 5.22. If n= 4 and S = {α1−α2, α1+α2}, then the corresponding subgroup US ⊂ SO4(C)
is the maximal unipotent radical of the full upper Borel subgroup of SO4(C), that is,

US =




1 a b −ab
0 1 0 −b
0 0 1 −a
0 0 0 1

 : a, b ∈ C

 .

Then the nonzero entries of US define the sets

S1 = {1}, S2 = {1, 2}, S3 = {1, 3}, S4 = {1, 2, 3, 4}.

If USO
S ⊂ SOn is Borel-regular, then the regular subgroup USL

S is Borel regular in SLn,
symmetric about the antidiagonal. Therefore we can define the crossing point γS of S like in the
symplectic case.
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Figure 5. A fat Borel-regular subgroup for n = 8 and its fundamental domain. Note that (4, 5)
is missing from the free parameter domain.

Figure 6. A fat Borel-regular subgroup for n = 7 and its fundamental domain.

Remark 5.23. Note that in SOn with n = 2l the entry (l, l + 1) is always zero and therefore
(l, l + 1) /∈ S. This implies that γS 6 l − 1.

We define the orthogonal fundamental domain F corresponding to a Borel-regular subset S
symmetric about the antidiagonal the same way as in Definition 5.6. The corresponding point
pF and therefore pF̃ has stabiliser US in SOn.

Definition 5.24. We define the snipped top right quarter of SLn as the domain

Q =

{
{(i, j) : 1 6 i 6 l, l + 1 6 j 6 n}\{(l, l + 1)} for n = 2l,

{(i, j) : 1 6 i 6 l + 1, l + 1 6 j 6 n}\{(l + 1, l + 1)} for n = 2l + 1.

We call a Borel regular subgroup USO
S ⊂ SOn fat Borel regular if {αi + αj : 1 6 i < j 6 l} ⊂ S

for n = 2l and {αi+αj , αi : 1 6 i < j 6 l} ⊂ S for n = 2l+1. Equivalently, the snipped top right
quarter Q is part of the free parameter domain of the corresponding USL

S ⊂ SLn. For examples
of fat Borel regular subgroups, see Figures 5 and 6.

Theorem 5.25. Let n = 2l or n = 2l + 1 and F = {F1, . . . , Fn} be the orthogonal fundamental
domain corresponding to a fat Borel-regular subgroup US ⊂ SOn. Then the pair (WF̃ , pF̃ ) is a
Grosshans pair for UF . This proves Theorem 1.3 for orthogonal groups.

Proof. First we assume n = 2l. The key observation is the following stronger version of
Lemma 5.10.
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Lemma 5.26. Let n = 2l. If u = {u1 < · · · < us} is such that u1 > l, then BSO
u = ∅.

Proof. The u1 > l case is the same as in Lemma 5.10. Assume u1 = l. Then

lim
m→∞

b
(m)
l+1l+1 = lim

m→∞
(b

(m)
ll )−1 =∞ and lim

m→∞
b
(m)
ii ∈ C\{0} for 1 6 i < l.

Since S is fat, Fl+1 = {1, . . . , l − 1, l + 1} and the coefficient of e1 ∧ · · · ∧ el−1 ∧ el+1 in p∞Fl+1
is

p∞Sl+1
[e1 ∧ · · · ∧ el−1 ∧ el+1] = lim

m→∞
b
(m)
l+1l+1 ·

l−1∏
i=1

b
(m)
ii =∞,

a contradiction. 2

The proof of Theorem 5.9 applies with two minor changes for the proof of Theorem 5.25.
The only difference we have to keep in mind is that for SO2l, F

SO
l+1 = {1, . . . , l− 1, l+ 1} whereas

in Sp2l it was F Sp
l+1 = {1, . . . , l+1}. This means that F SO = F Sp∪F SO

l+1, and this extra set results
in minor changes in the proof of Lemmas 5.19 and 5.20 as follows.

– In the proof of Lemma 5.19 the first part proving that T u,er fixes p∞ remains the same. To
prove that Tn+1−r,en+1−u fixes p∞ we only need to worry about those p∞V where max(V ) >
l + 1. In order to prove (36) we distinguish two cases.

(a) If r 6 l−1, then n+1−r > l+2. However, for max(V ) = v > l+2 we have V = {1,
. . . , v} so (33) holds and therefore (34) implies that p∞{1,...,v} = 0 for n+ 1− r 6 v 6 n− u
again.

(b) If r = l, then either p∞{1,...,l−1,l+1} = 0 and the extra subset F SO
l+1 added to F Sp does

not affect the proof, or p∞{1,...,l−1,l+1} 6= 0, but then

er ∈ [p∞Z ] ⊂ [p∞Fl+1
] = [p∞1,...,l−1,l+2],

and the only way this can happen is that [p∞1,...,l−1,l+2] = Span(e1, . . . , el). But then el+1 =
en+1−r is not contained in the only problematic set [p{1,...,l−1,l+1}]

∞ and the proof of the
symplectic case works here again.

– The second case in Lemma 5.20 does not make sense in the orthogonal case: −2αl is not
a root for SO2l. But Lemma 5.26 tells us that u = l cannot happen and in fact u 6 l − 1
ensures that the extra set {1, . . . , l − 1, l + 1} which we added to F Sp2l does not affect the
proof. Indeed, this is clear when u 6 l − 2 because in this case n− u > l + 2, and hence to
prove that Tn−u,en+1−u fixes p∞ it is enough to have the following weaker version of (40):

p∞{1,...,v} = 0 for l + 2 6 v 6 n− u.

But subsets with max(V ) > l + 2 are the same in F Sp and F SO and so this follows exactly
the same way as (40).
If u = l − 1 and r > l + 2, then p∞{1,...,l−1,l+1} = 0 and F SO

l+1 does not make any difference.
Finally, if u = l − 1 is the only element of the vanishing spectrum and r = l + 1, then

limm→∞ b
(m)
ll 6= 0 and therefore limm→∞ |b(m)

l+1l+1| = limm→∞ |(b(m)
ll )|−1 < ∞. But then the

coefficient of e1 ∧ · · · ∧ el−1 ∧ el+1 in p∞{1,...,l−1,l+1} is

lim
m→∞

(b
(m)
11 · · · b

(m)
l−1l−1) · lim

m→∞
b
(m)
l+1l+1 = 0
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because the first limit is 0 (the l− 1th term tends to 0, the rest to some nonzero constant)
and the second limit is finite. Therefore

er ∈ [p∞Z ] ⊂ [p∞{1,...,l−1,l+1}] ⊂ [Span(e1, . . . , er−1)],

a contradiction.

Now assume n= 2l+1. Since the diagonal entry b
(m)
l+1,l+1 is constant 1 in SOn, u cannot contain

l + 1 and Lemma 5.10 holds without change. We furthermore add the following observation.

Lemma 5.27. BSO,l+1
u = ∅ for arbitrary u = {u1 < · · · < us}.

Proof. Assume p∞ = limm→∞ b
(m)pF̃ ∈ B

SO,l+1
u . By definition there is a Z ∈ F̃ with θFZ > u1

such that p∞Z 6= 0 and the following are true.

(i) [p∞Z ] ⊂
⋂
V ∈F̃ ,p∞V 6=0
θV >u1

[p∞V ].

(ii) ω([p∞Z ]) = l + 1. For this to happen max(Z) = z > l + 1 must hold, and therefore Z = {1,
. . . , z}. But if ω([p∞Z ]) = l + 1, then [p∞Z ] = [p∞{1,...,z}] = [e1 ∧ · · · ∧ ez] is a subspace of

Span(e1, . . . , el+1) by definition, which means that z = l + 1 and Z = {1, . . . , l + 1}. Then

0 6= p∞Z = lim
m→∞

(l+1∏
i=1

b
(m)
ii

)
· ∧l+1

i=1ei.

But b(m) ∈ SO2l+1 and therefore the diagonal entry b
(m)
l+1l+1 = 1 for all m. Hence

p∞{1,...,l} = lim
m→∞

( l∏
i=1

b
(m)
ii

)
· ∧li=1ei 6= 0,

which means that {1, . . . , l} is a minimal subset for p∞ contradicting the minimality of Z
with respect to � (see Definition 4.18) because max({1, . . . , l}) = l < max(Z) = l + 1. 2

In particular, this means that either r 6 l or r > l+ 2 and the proof of Theorem 5.9 applies
again without change, including Lemmas 5.19 and 5.20. 2

6. A partial result for general regular subgroups of SLn

This section gives partial affirmative answer to the Popov–Pommerening conjecture for general
regular subgroups of SLn corresponding to arbitrary closed family S ⊂ R+. We prove
Theorem 1.4. Let G be a connected, simply connected, simple linear algebraic group over the
algebraically closed subfield k of C, and US ⊂ G a unipotent subgroup normalised by a maximal
torus T of G corresponding to the closed subset S ⊂ R+, where US is not necessarily block
regular.

Definition 6.1. We call G(T · pS̃) ⊂ G · pS̃ ⊂ WS̃ the toric closure of G · pS̃ . Points and
components of G(T · pS̃)\G · pS̃ are called toric boundary points and components.

We are ready to prove Theorem 1.4 on toric boundary components. Unfortunately we cannot
prove the same for nontoric boundary components, that is, components of G · pS̃\G(T · pS̃).
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Proof of Theorem 1.4. Let T ⊂ SLn be the diagonal torus. Points of T · pS̃ are limits of the form

p∞ = lim
m→∞


b
(m)
11 0 · · · 0

0 b
(m)
22

...
. . . 0

0 0 b
(m)
nn

 · pS̃ =
⊕
V ∈S̃

p∞V ,

where p∞V = limm→∞ ∧i∈V b(m)
ii ei. According to Lemma 4.4 if p∞ is a boundary point, that is,

p∞ ∈ T · pS̃\T · pS̃ , then there is a smallest index 1 6 s 6 n such that

lim
m→∞

b(m)
ss = 0.

Define

t = min{j : ∃V ∈ S̃ such that s ∈ V, j = max(V ) and p∞V 6= 0}.

Note that t is well defined because V = {1, . . . , n} ∈ S̃ and limm→∞Πn
i=1b

(m)
ii = 1, so the defining

set above is nonempty. Furthermore t > s holds by the minimality of s. We call (s, t) the type

of p∞.

Remark 6.2. If the vanishing spectrum of (b(m)) is u = {u1 < · · · < us}, then s = u1 and s is

uniquely determined by p∞ according to Remark 4.11. Moreover, t plays the role of the width

of p∞ and it is again determined by p∞.

Let Z ∈ S̃ be one of the minimising subsets in the definition of t, that is,

s ∈ Z, t = max(Z) and p∞Z = lim
m→∞

Πi∈Zb
(m)
ii ∧i∈Z ei 6= 0.

We prove that p∞ is (s, et)-fixed (see Definition 4.23). Assume there is a V ∈ S̃ such that

p∞V = lim
m→∞

(∏
i∈V

b
(m)
ii

)
· ∧i∈V ei 6= 0, s ∈ V but t /∈ V. (41)

Now V ∪ Z, V ∩ Z ∈ S̃ and

lim
m→∞

∏
i∈V ∪Z

b
(m)
ii = lim

m→∞

Πi∈V b
(m)
ii Πi∈Zb

(m)
ii

Πi∈V ∩Zb
(m)
ii

.

The limit of the numerator is finite and nonzero from the definition of V and Z. But s ∈ V ∩ Z
and t /∈ V so max(V ∩ Z) < t and therefore by the definition of t the limit of the denominator

is 0. This is a contradiction as the left-hand side is the coefficient of ∧i∈V ∪Zei in p∞V ∪Z . So there

is no V ∈ S̃ satisfying (41), which means that p∞ is fixed by T s,et(λ) ∈ SLn(C) and therefore

p∞ is (s, et)-fixed. For 1 6 s < t 6 n let

Bs,t = {p∞ ∈ T · pS̃\T · pS̃ : the type of p∞ is (s, t)}.
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According to Remark 6.2 we have

Bs,t =
⋃

u={s<u2<··· }

(T · pS̃ ∩ B
t
u) (42)

and therefore by Remark 4.19 Bs,t is quasi-affine again.
Then

SLn · T · pS̃\T · pS̃ =
⋃

16s<t6n

SLn · Bs,t.

We adapt the proof of Lemma 4.24 to show that

dim(SLn · Bs,t) 6 dim(SLn · pS̃)− 2,

which implies Theorem 1.4. Let us start with the observation that Bs,t is T -invariant and also
US-invariant for any 1 6 s < t 6 n. This latter follows from the fact that US is normalised by T
and fixes pS̃ and therefore US fixes each point in T · pS̃ and, then, each point in Bs,t. Consider
the map

ϕ : SLn(C)× Bs,t →WS̃ , ϕ(g, w) 7→ g · w.

Let w ∈ Bs,t. Since Bs,t ⊂ WS̃ is US o T -invariant, the fibre ϕ−1(g · w) contains

(g(hT s,et(λ))−1, (hT s,et(λ)) · w)

for h ∈ US o T, λ ∈ C. Since {T s,et(λ) : λ ∈ C} ∩ US o T = {1},

dim({hT s,et(λ) : h ∈ US o T, λ ∈ C}) = dim(US) + n+ 1

and we get

dim(Im(ϕ)) = dim(SLn) + dim(Bs,t)− dim(fibre)

6 dim(SLn) + dim(T · pS̃)− 1− (dim(US) + n+ 1)

= dim SLn(C)/US − 2 = dim SLn(C) · pS̃ − 2. 2

7. A remark on configuration varieties and Bott–Samelson varieties

Configuration varieties are a powerful tool in representation theory and geometry of the reductive
group G. If B ⊂ G is a Borel subgroup, then these varieties are certain subvarieties in the product
of flag varieties (G/B)l. In [Mag98] Magyar describes them as closures of B-orbits in (G/B)l,
which is relevant to our construction, and therefore we give a short summary in the special case
when G = SLn(C), keeping [Mag98] as the leading reference.

Let Bn ⊂ SLn(C) denote the Borel of upper triangular matrices. Define a subset family to
be a collection D = {C1, . . . , Cm} of subsets Ck ⊂ [n] = {1, . . . , n}. The order is irrelevant in the
family, and we do not allow repetitions. Let Cn have the standard basis {e1, . . . , en} and for any
subset C ⊂ [n] define the subspace

QC = SpanC{ej : j ∈ C} ∈ Gr(|C|, n).

This point is fixed by the diagonal torus T ⊂ SLn(C), and so we can associate a T -fixed point
to the subset family in the product of Grassmannians:

zD = (QC1 , . . . ,QCm) ∈ Gr(D) = Gr(|C1|, n)× · · · ×Gr(|Cm|, n).
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The configuration variety of D is the closure of the SLn(C)-orbit of zD,

AD = SLn(C) · zD ⊂ Gr(D),

and the flagged configuration variety is the closure of the Borel orbit,

ABD = Bn · zD ⊂ Gr(D).

There is an important class of subset families associated to subsets of the Weyl group W of the
reductive group. In the case of SLn(C), to a list of permutations w = (w1, . . . , wl), wk ∈W , and
a list of indices j = (j1, . . . , jl), 1 6 jk 6 n, we associate a subset family:

D = Dw,j = {w1[j1], . . . , wl[jl]},

where w[j] = {w(1), w(2), . . . , w(j)}. Now suppose the list of indices i = (i1, i2, . . . , il) encodes
a reduced decomposition w = si1si2 . . . sil of a permutation into a minimal number of simple
transpositions. Let w = (si1 , si1si2 , . . . , w) and define the reduced chamber family Di := Dw,i.
The full chamber family is

D+
i = {[1], [2], . . . , [n]} ∪Di.

A subfamily D ⊂ D+
i is called a chamber subfamily. Leclerc and Zelevinsky in [LZ98] gave a

characterisation of these as follows. For two sets S1, S2 ⊂ [n] we say S1 is elementwise less than
S2, S1 <

e S2, if s1 < s2 for all s1 ∈ S1, s2 ∈ S2. Now, a pair of subsets C1, C2 ⊂ [n] is strongly
separated if (C1\C2) <e (C2\C1) or (C2\C1) <e (C1\C2) holds. A family of subsets is called
strongly separated if each pair of subsets in it is strongly separated. Leclerc and Zelevinsky
proved that a subset family D is a chamber subfamily, D ⊂ Di for some i if and only if it is
strongly separated.

If D = Di is a chamber family, then the corresponding flagged configuration variety ABD is
called Bott–Samelson variety.

Very little is known about general configuration varieties. They can be badly singular;
however, certain of them are well understood because they can be desexualised by Bott–Samelson
varieties, which are always smooth.

The link to our construction is straightforward; if S = {S1, . . . , Sn} denotes the subset family
formed from the columns of the star pattern S corresponding the regular subgroup US ⊂ SLn(C),
then there is a natural map

πS : (SLn(C) · pS̃) → AS where A · pS̃ 7→ A · zS for A ∈ SLn(C).

This map does not extend to the closure. In short, our space SLn(C) · pS̃ is a weighted affine
configuration space where the weights are different tensor powers of ẽn. Unfortunately, the
subset family S = {S1, . . . , Sn} is not necessarily strongly separated and therefore not a chamber
subfamily in general. This leaves the question of desingularization of SLn(C) · pS̃ open.
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