ON MAXIMAL RINGS OF RIGHT QUOTIENTS

Joanne Christensen

(received March 14, 1962)

Utumi has shown [3, Claim 5.1] that for a certain class of rings the associated maximal rings of right quotients are isomorphic to the endomorphism rings of modules over division rings. We shall prove a generalization of this theorem and then show how it is obtained as a corollary. The following proofs do not depend on Utumi's paper; instead, they make extensive use of results proved in [1]. The terminology and notations employed here are the same as in [1].

I wish to thank Dr. B. Banaschewski for his suggestions and helpful criticism.

LEMMA: If J is a left ideal with zero left annihilator in a ring R then a maximal ring of right quotients of R is also a maximal ring of right quotients of J.

Proof. Let Q be a maximal ring of right quotients of R. We must show that $J \leq Q(Q_J)$ and Q is maximal such. Following the remarks in 1.2 of [2], take $0 \neq q$, $q' \in Q$; then since $R \leq Q(Q_R)$ there exists an $r \in R$ and an integer h with $qr + hq \neq 0$ and $q'r + hq' \in R$. We may assume that $qr + hq \in R$. Since J is a left ideal with zero left annihilator in R, there exists a $j \in J$ with $(qr + hq)j = q(rj + hj) \neq 0$ and $(q'r + hq')j = q'(rj + hj) \in J$. Now $rj + hj \in J$, hence we have proved $J \leq Q(Q_J)$. Furthermore, if Q' is a maximal ring of right quotients of J, we may assume $Q \subseteq Q'$; since $J \subseteq R \subseteq Q'$ and $J \leq Q'(Q'_J)$ we have $R \leq Q'(Q'_J)$ and it follows trivially that $R \leq Q'(Q'_R)$. Thus Q = Q' and Q is a maximal ring of right quotients of J.

Canad. Math. Bull. vol. 5, no. 2, May 1962.

147

PROPOSITION: If J is an idempotent left ideal with zero left annihilator in a ring R and Q a maximal ring of right quotients of R then $Q \cong Hom_J(QJ, QJ)$, where QJ, the ideal generated by J in Q, is taken as a right J-module.

Proof. We first prove

$$Q \cong \operatorname{Fr}_{\tau}(J, J) \cong \operatorname{Fr}_{\tau}(J, Q) \cong \operatorname{Fr}_{\tau}(QJ, Q) = \operatorname{Hom}_{\tau}(QJ, Q)$$

The first isomorphism follows from [1, Prop. 6.1] and the second from [1, Prop. 3.4], both in view of the Lemma.

Now, $J \subseteq QJ \subseteq Q$ by $J = J^2$, so $J \leq Q(Q_J)$ implies $J \leq QJ(Q_J)$ which leads to the third isomorphism by [1, Prop. 3.3]. The rational completeness of Q as a right J-module gives the last step. It remains to prove that $\operatorname{Hom}_J(QJ, Q) = \operatorname{Hom}_J(QJ, QJ)$. Take $\varphi \in \operatorname{Hom}_J(QJ, Q)$ and $x \in QJ$; then $x = q_1j_1 + \ldots + q_nj_n$ with $q_i \in Q$, $j_i \in J$ for i = 1, ..., n. Since $J^2 = J$, we can write each j_i as a sum $\Sigmal_{ik} l_{ik}^{I}$ with l_{ik} , $l_{ik}^{I} \in J$. Then $\varphi(x) = \varphi(q_1j_1) + \ldots + \varphi(q_nj_n)$ where for each i, $\varphi(q_ij_i) = \varphi(q_i \Sigma l_{ik} l_{ik}^{I}) = \Sigma \varphi(q_i l_{ik}) l_{ik}^{I} \in QJ$. Hence $\varphi \in \operatorname{Hom}_J(QJ, QJ)$ and we have equality since clearly $\operatorname{Hom}_J(QJ, QJ) \subseteq \operatorname{Hom}_J(QJ, Q)$. Thus $Q \cong \operatorname{Hom}_J(QJ, QJ)$.

COROLLARY: If R is a prime ring with a minimal left or right ideal, then the maximal ring of right quotients of R is isomorphic to the endomorphism ring of a right module over a division ring.

Proof. Let J_o be a minimal left (right) ideal, then $J_o = \operatorname{Re} (\operatorname{resp.} = \operatorname{eR})$ for some $e = e^2 \epsilon R$. In either case, let $J = \operatorname{Re}$. Then $(\operatorname{Re})^2 = \operatorname{Re}$ and Re has zero left annihilator in R since R is a prime ring. Hence, if Q is a maximal ring of right quotients of R, then by the Proposition, $Q \cong \operatorname{Hom}_{Re}(Qe, Qe)$ since QRe = Qe. We claim

148

 $\begin{array}{l} \operatorname{Hom}_{\operatorname{Re}}(\operatorname{Qe},\ \operatorname{Qe})=\operatorname{Hom}_{\operatorname{eRe}}(\operatorname{Qe},\ \operatorname{Qe}). \quad \operatorname{Clearly}\\ \operatorname{Hom}_{\operatorname{Re}}(\operatorname{Qe},\ \operatorname{Qe})\subseteq\operatorname{Hom}_{\operatorname{eRe}}(\operatorname{Qe},\ \operatorname{Qe}) \quad \text{and for any}\\ \varphi \in \operatorname{Hom}_{\operatorname{eRe}}(\operatorname{Qe},\ \operatorname{Qe}) \quad \text{and any } q = qe \in \operatorname{Qe}, \quad \varphi(qre) = \varphi(qere) = \\ \varphi(q)ere = \varphi(q)re, \quad \text{showing that } \varphi \in \operatorname{Hom}_{\operatorname{Re}}(\operatorname{Qe},\ \operatorname{Qe}). \quad \operatorname{Since}\\ \text{either Re is a minimal left ideal or eR is a minimal right}\\ \operatorname{ideal}, \ \operatorname{eRe} \quad \text{is a division ring, and our proof is complete.} \end{array}$

Remark: We can show Re = Qe as a consequence of $\text{Re} \leq \text{Qe}(\text{Q}_{\text{Re}})$ and the fact that eRe is a division ring. Therefore also $\text{Q} \cong \text{Hom}_{e\text{Re}}$ (Re, Re).

REFERENCES

- G. D. Findlay and J. Lambek, <u>A generalized ring of quotients I, II</u>, Can. Math. Bull., 1 (1958), 77-85, 155-167.
- J. Lambek, On the structure of semi-prime rings and their rings of quotients, Can. Math. Bull., 13 (1961), 392-417.
- Y. Utumi, <u>On quotient rings</u>, Osaka Math. J., 8 (1956), 1-18.

Hamilton College McMaster University

149