
TPLP 21 (6): 818–834, 2021. © The Author(s), 2021. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-

NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which

permits non-commercial re-use, distribution, and reproduction in any medium, provided the same

Creative Commons licence is used to distribute the re-used or adapted article and the original article

is properly cited. The written permission of Cambridge University Press must be obtained prior to

any commercial use.

doi:10.1017/S1471068421000326

818

Refactoring the Whitby Intelligent Tutoring System
for Clean Architecture

PAUL S. BROWN and VANIA DIMITROVA
University of Leeds, Leeds, UK

(e-mail: sc16pb@leeds.ac.uk; v.g.dimitrova@leeds.ac.uk)

GLEN HART
Defence Science and Technology Laboratory [dstl]

ANTHONY G. COHN
University of Leeds

Qingdao University of Science and Technology
Tongji University

Shandong University
(e-mail: a.g.cohn@leeds.ac.uk)

PAULO MOURA
Center for Research in Advanced Computing Systems, INESC-TEC, Portugal

(e-mail: pmoura@logtalk.org)

submitted 10 August 2021; accepted 22 August 2021

Abstract

Whitby is the server-side of an Intelligent Tutoring System application for learning System-
Theoretic Process Analysis (STPA), a methodology used to ensure the safety of anything that
can be represented with a systems model. The underlying logic driving the reasoning behind
Whitby is Situation Calculus, which is a many-sorted logic with situation, action, and object
sorts. The Situation Calculus is applied to Ontology Authoring and Contingent Scaffolding:
the primary activities within Whitby. Thus many fluents and actions are aggregated in Whitby
from these two sub-applications and from Whitby itself, but all are available through a com-
mon situation query interface that does not depend upon any of the fluents or actions. Each
STPA project in Whitby is a single situation term, which is queried for fluents that include
the ontology, and to determine what pedagogical interventions to offer. Initially Whitby was
written in Prolog using a module system. In the interest of a cleaner architecture and imple-
mentation with improved code reuse and extensibility, the initial application was refactored into
Logtalk. This refactoring includes decoupling the Situation Calculus reasoner, Ontology Au-
thoring framework, and Contingent Scaffolding framework into third-party libraries that can be
reused in other applications. This extraction was achieved by inverting dependencies via Logtalk
protocols and categories, which are reusable interfaces and components that provide functionally
cohesive sets of predicate declarations and predicate definitions. In this paper the architectures
of two iterations of Whitby are evaluated with respect to the motivations behind the refactor:
clean architecture enabling code reuse and extensibility.

KEYWORDS: architecture, dependency inversion, Prolog modules, Logtalk

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1017/S1471068421000326
https://orcid.org/0000-0003-4134-9092
mailto:sc16pb@leeds.ac.uk; v.g.dimitrova@leeds.ac.uk
mailto:a.g.cohn@leeds.ac.uk
mailto:pmoura@logtalk.org
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068421000326&domain=pdf
https://doi.org/10.1017/S1471068421000326

Refactoring Whitby for Clean Architecture 819

1 Introduction

System-Theoretic Process Analysis (STPA), is an emerging methodology used by system

safety analysts from an initial conceptualization before the system design, through to

a loss occurring. Trying to determine how a hypothetical system should be designed,

built, and maintained in order to prevent potentially catastrophic losses is a difficult and

cognitively demanding task. To aid with this task an application has been developed

and deployed for a select group in order to test the efficacy of the pedagogical tech-

niques employed within the application. The server-side part of this application is called

“Whitby”.

Within Whitby three primary domains are discussed. Although it is not necessary

to understand these domains to consider the architecture, they are introduced here for

orientation:

• Situation Calculus: a many-sorted second order logic for reasoning about situations

and actions. The definition used is that of Reiter (2001).

• Ontology Authoring: the knowledge engineering process of defining a formal, onto-

logical model of some simplified world for a purpose (Gruber 1995).

• Contingent Scaffolding: a pedagogical technique in which immediate intervention

is offered to a struggling learner at a level of intrusion based upon previous behav-

ior (Wood et al . 1976).

Prolog was chosen as an implementation language from the outset due to using both

Ontology and Situation Calculus as foundations in the design. However, the entire ap-

plication has been re-written twice to overcome the architectural issues that forced un-

satisfactory solutions. The ramifications of these compromises grew with the complexity

of the application. Some of these issues are discussed in Section 3.

In the final rewrite the code base was transitioned to Logtalk and sufficiently decou-

pled as to extract three libraries. This extraction was the main motivation behind the

rewrites: the prior version was functioning but useful parts of it couldn’t be shared.

The application, including these three libraries, contains approximately 10,000 lines of

Logtalk source code plus the Graphical User Interface (GUI) written in ClojureScript.

The parts authored in Logtalk cover persistence of user projects, situation calculus rea-

soning, ontology authoring, contingent scaffolding, web server, and generating HTML

including forms based upon the history of a user project.

In this paper, the software engineering principles that guided the application rewriting

are presented, the architectures of the logic programming parts of the last two versions

of Whitby are compared, the motivations behind the transition from Prolog to Logtalk

are discussed, and the lessons learned are summarized.

2 The dependency inversion principle

In refactoring the architecture, the SOLID principles of clean architecture (Martin 2018)

are applied. These principles are the summary of 20 years of debate between developers

attempting to abstract what made their software maintainable and extensible. They

are intended to avoid the situation, observed in even market-leading software, where

progress is slowing while cost per line of code increases, all while increasing development

staff (Martin 2018).

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

820 P. S. Brown et al.

Fig. 1. Dependency Inversion Principle. Left-hand side has high-level policy depending on
low-level details, which is not recommended. Right-hand side has the dependency inverted by

the policy depending on some interface, which the details extend.

Appropriate application of these principles produces code that is easy to read, main-

tain, extend and test. These benefits are primarily to those developing and maintaining

the software, which then has implications to organizations producing and consuming the

software over a period of time. Software with a clean architecture is argued to be easily

extensible with new features, typically using a plugin architecture, and robust to changes

in business rules, technology, and deployment scenarios (Martin 2018). Thus it reduces

application risks and development costs.

The principles of SOLID architecture are:

• Single Responsibility Principle: each part has one and only one reason to change;

it is accountable to one stakeholder

• Open-Closed Principle: code should be open to extension and closed for modifica-

tion; such as in a plugin architecture where new features are created by adding new

code rather than editing existing code

• Liskov Substitution Principle: parts should be interchangeable, which makes it ro-

bust to even significant changes such as to business rules meeting new legal require-

ments, or to swapping components such as the database used or GUI framework

• Interface Segregation Principle: do not depend on things not used, which makes

dependents of some part robust against changes required by other dependents of

that part

• Dependency Inversion Principle: high-level policy should not depend on low-level

details, but details should depend on policies, such that code which is volatile is

not depended upon by code that is stable

The Dependency Inversion Principle, depicted in Figure 1, is the main principle driving

this refactor and the technique used for decoupling. Closely related to this principle is

the code for interface, not for implementation best practice: no concrete module should

be imported into any other. Instead, an abstract definition of what the module should

provide is used. This principle and best practice allows high-level policies to be left

untouched as low-level details are swapped or undergo change, which in turn makes reuse

of the high-level principles as libraries possible. The concept of interface is thus central

to the application of this principle and best practice as further discussed in Section 5.

In Logtalk, interfaces are represented using protocols, but Prolog module systems do not

provide an equivalent feature1.

1 The ISO Prolog standard for modules (ISO/IEC 2000) does specify a module interface language
construct but only allows a single implementation per interface, thus defeating the main purpose of
defining interfaces. Moreover, this standard is ignored by Prolog systems.

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

Refactoring Whitby for Clean Architecture 821

The dependence on an interface, shown in Figure 1, also differentiates the technique

from dependency injection or meta-programming where the context of the low-level de-

tails are passed to the high-level policy. With or without meta-programming, the policy

is dependent on the predicates required being present in the details, however with meta-

programming the interface is implicit, ungoverned, and not self-documenting. By using a

declared interface as a first-class language feature the required predicates become explicit,

the details are governed through a declared promise to define the interface, implementers

of the interface can be enumerated using language reflection predicates, and documenta-

tion can be automatically generated.

These principles are also considered at the component level (Martin 2018). At this level

of abstraction, the key ideas are to enable reuse through sensible component contents

and decoupling through dependency cycle elimination as well as correlating dependency

with stability.

3 Whitby before refactoring: OWLSAI

The first version of Whitby, written in Prolog using the module system and depicted

in Figure 2, was originally called OWLSAI (Web Ontology Language Safety Artificial

Intelligence). This application did implement the features required of it2. There was no

particular issue with it from a user perspective. The issues were entirely at the developer

experience level.

The kb directory in Figure 2 is responsible for the ontology authoring with situa-

tion calculus. The oscar directory, which is responsible for the contingent scaffolding

interventions, is only dependent upon the code within this module. This dependence is

a necessity as oscar needs to know about a user’s ontology in order to offer relevant

interventions.

Several violations of the SOLID principles are hidden at this level of abstraction. Note

that golog and fluents are aggregated in kb manager. This compromise is necessary

because the Golog Situation Calculus reasoner from Reiter (2001) includes a predicate

that calls these fluents, and so golog is dependent upon fluents. It is not uncommon

in Prolog to apply some set of rules, like those in golog, to some facts, like those in

fluents.

But for golog to reason over the fluents and actions defined for some particular

world under analysis requires that world (details) to be imported into golog (policy).

In this manner, the abstract is dependent upon the concrete, the stable is dependent

upon the flexible, the calculus is dependent upon its own application. It’s a violation

of clean architecture that prevents code reuse: golog cannot be extended to include a

defined world to reason over without modification to its own source code. Concurrent

handling of multiple defined worlds is also precluded. Although there are workarounds

to these problems, some of which are discussed here, they are unsatisfactory as the lack

of necessary language constructs to cleanly express the application architecture results

in the violation of SOLID principles.

2 The only feature requirement that changed between OWLSAI and Whitby was a change from handling
users with logins and many projects, to only handling many projects. Therefore this aspect is not
compared.

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

822 P. S. Brown et al.

Fig. 2. Dependencies in OWLSAI. Each node is a file, within their directories, which
distinguish modules. Arrows denote imports, open diamonds denote consults.

To circumvent the issue of circular dependencies in OWLSAI, the golog and fluents

files were consulted instead. This loaded them both into the kb manager namespace. How-

ever, this causes a conundrum to resolve as there are fluents and actions for the oscar

module that need to be defined in the fluents and kb manager file so that golog is in

the same namespace as them. For example, actions pertaining to ontology authoring, con-

tingent scaffolding, and user interface are defined adjacent to each other in kb manager,

in violation of the Single Responsibility Principle, as seen in this snippet:

:− consu l t (kb (go log)) .

:− consu l t (kb (f l u e n t s)) .

%! ac t i on (Action , GologPossQuery)

% Ontology Authoring

ac t i on (add data (User , Time , Payload) ,

−a s s e r t ed (Payload)) .

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

Refactoring Whitby for Clean Architecture 823

ac t i on (d e l e t e da t a (User , Time , Payload) ,

a s s e r t ed (Payload)) .

% User S c a f f o l d i n g Act ions

ac t i on (d i sm i s s i n t e r v e n t i o n (User , Time , Fact , Leve l) ,

i n t e rvened (, Fact , Level ,)) .

a c t i on (r e q u e s t i n t e r v e n t i o n i n c r e a s e (User , T , ID , Fact ,

Leve l) ,

i n t e rvened (ID , Fact , Level ,)) .

% Agent S c a f f o l d i n g Act ions

ac t i on (i n t e rvene (User , Time , Fact , Level , Payload) ,

−some (n , (d i smi s s ed (Fact , n) & n >= L))) .

% User UI Act ions

ac t i on (nav i g a t e t o s t e p (User , Time , Step) , t rue) .

a c t i on (concep t f o cu s (User , Time , Focus) , t rue) .

a c t i on (g l o s s a ry l ookup (User , Time , term (Term)) , t rue) .

a c t i on (nudge (User , Time , R) , t rue) .

Code belonging to oscar resides in files in kb that is loaded into a different module. It

should reside in files in oscar that are somehow made visible to kb to maintain separation

of responsibilities and to ease code navigation. There are mechanisms to achieve this in

Prolog: via consulting which would warn if a predicate were redefined, or via include/1,

which includes the text of the file within the other.

Another mechanism tried for including actions from different modules into kb manager

was to declare action/2 as a multifile predicate in kb manager. Clauses for the

predicate could then be defined in oscar and any other module by using a prefix:

kb manager:action(...). However, this violates the Dependency Inversion Principle

as high-level policy predicates belonging to general ontology authoring and scaffolding

are then dependent on the low-level detail that is the kb manager, which is the module

responsible for updating and querying user projects extending the ontology. Furthermore,

this prefix referring to a specific, fixed module would prohibit the substitution of that

module, thus violating the Liskov Substitution Principle of SOLID.

To use include/1 directives or multifile predicates would be to take code from oscar

and have it effect the behavior of kb; thus a developer working on either module must

understand how the other one is working. A poorly placed cut, unfortunately named

predicate, or redefinition of an operator in oscar could cause kb manager, upon which

it depends, to no-longer function correctly. It opens up the potential for the consumer

of some code to break what it should only depend upon. A developer debugging kb

looking solely at their code in kb, believing it has no dependencies as the architecture

diagram shows, would have little hope of resolving such an error. For these reasons

module systems are favored over the older consult/1 and include/1 predicates and

why using them is also an unsatisfactory solution. When authoring OWLSAI, the more

robust unsatisfactory solution was chosen, putting oscar code into kb, violating the

Open-Closed principle and preventing code reuse, but easing debugging.

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

824 P. S. Brown et al.

Ideally a module would be used but the dependency needs to be inverted, such that

fluents depend upon golog. One workaround within the module system would be to

make kb manager dependent upon fluents and golog directly. Then the module can

be included with the fluent or action where it is defined in all queries to Golog3. For

example:

ho lds (Module : Fluent0 , S i t ua t i on) :−
Module : r e s t o r eS i tArg (Fluent0 , S i tuat ion , Fluent) ,

Module : Fluent .

ho lds (Module : Fact , S i t ua t i on) :−
not Module : r e s t o r eS i tArg (Fact , S i tuat ion ,) ,

isAtom (Fact) ,

Module : Fact .

This example also represents the resultant code of one strategy attempted via using

meta-predicates to invert the dependency without using the interface depicted in Figure 1.

With holds/2 defined as a meta-predicate the calling context is passed implicitly, but

restoreSitArg/3 will be defined in the same module as the Fluent, which may be in a

different module from the calling context: in Whitby there are multiple calling contexts,

whereas each fluent is defined once. To make restoreSitArg/3 available to the calling

context would result in name-clashes when more than one module defining fluents is used.

Therefore the dependency module where the definitions reside needed to be passed (or

injected) for context as per this example.

The concern for this example is in the Golog call to Module:Fluent, where Fluent

could be anything, including a meta-predicate, given in the query, which is a qualified

call potentially breaking the encapsulation of the module. Furthermore, it’s no longer

possible to use holds/2 with a variable as the first argument to find fluents that hold

in a ground situation without explicitly enumerating all modules and testing if they

define fluents or not; the lack of protocols/interfaces as first-class entities precludes a

simple and clean enumeration of only those modules that would declare conformance to

a given protocol. The import semantics of Prolog modules also would force the use of

these explicitly qualified calls for the conforming modules to prevent predicate import

clashes. This goes against what is considered best practice with Prolog modules: the

use of implicit imports and implicit module-qualified predicate calls. But that is not the

primary issue: by making a module that defines fluents and actions an explicit argument,

we are forced to anticipate all predicates that, although not accessing fluents and actions

directly, may be indirectly calling a predicate that requires that access (and thus require

the module argument to be passed from upstream).

In Whitby however, which makes use of the required language constructs provided by

Logtalk, SitCalc is loaded as a third-party package. As Logtalk does not use module-like

imports semantics, there are never any loading conflicts when two or more loaded objects

define the same public predicates. Furthermore, Whitby also loads packages defining

ontology authoring terms and contingent scaffolding terms. The only place in Whitby

3 Available at: http://www.cs.toronto.edu/cogrobo/kia/

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

http://www.cs.toronto.edu/cogrobo/kia/
https://doi.org/10.1017/S1471068421000326

Refactoring Whitby for Clean Architecture 825

Fig. 3. Dependencies between components of Whitby. Open arrows denote extension, closed
arrows denote dependence.

where the contents of those packages need be considered is in the use of their fluents in

queries of a situation and in the doing of their provided actions, both of which are done

without the requirement to explicitly define the correct context to reason about them in.

Although dependency inversion is the crucial issue, there are additional violations of

clean architecture that need to be addressed. The dependency cycle between kb manager,

ids, and kb can cause a small edit in one of them to have perpetual ramifications as its

dependency graph is also adapted to the change. Golog is more than a Situation Calculus

reasoner; it is a parser for a Situation Calculus based language; thus kb is depending on

code that it does not use. Furthermore, the four dependencies from the oscar module to

the kb module suggest substitution would require more effort than necessary.

4 Refactored Whitby

The abstract architecture of Whitby is depicted in Figure 3, whereas a detailed view is

in Figure 4. From the abstract view it can be seen how Whitby was designed to decouple

the components of OWLSAI enabling code reuse. It is not possible to layer OWLSAI in

a similar manner due to the compromises made and tight coupling.

SitCalc provides the theoretical foundation, which can be used to tackle a multitude

of problems, it depends on nothing. The next “Highly Reusable Domain Layer” is the

application of SitCalc to two domains; these libraries depend on SitCalc, but nothing

in Whitby. Therefore they can be reused by any application wishing to apply Situation

Calculus to Contingent Scaffolding or Ontology Authoring. The “Application Layer” is

the core of the Whitby application, it is this code that applies the reusable libraries to

the particular task at hand: Contingent Scaffolding an STPA analyst who is unwittingly

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

826 P. S. Brown et al.

Fig. 4. Dependencies in Whitby and extracted libraries. Each node (without a mark) is an
object, within their directories. Protocols are marked with a “P”, categories with a “C”.

Closed arrows denote dependence, open arrows denote implementation or extension, dashed
arrow denotes event monitoring.

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

Refactoring Whitby for Clean Architecture 827

Fig. 5. Dependencies within Whitby only. Each node is an object, within their directories.
Arrows denote dependence, open arrows denote implementation or extension, dashed arrow

denotes event monitoring. Categories are marked with a “C”.

authoring an extension to an ontology. Finally the “Interface Layer” provides a convenient

means for the user to interact with the application.

Whitby loads SitCalc, OntologyAuthoring, and Scaffolding defined as third-party

libraries. In this application a naming convention around Whitby Abbey was adopted to

aid in organizing the code, thus the modules are:

• OSWIN: Ontology-driven Scaffolding With Interactive Nudges (extends

Scaffolding)

• Hilda: The wise, Hilda handles the ontology authoring (extends

OntologyAuthoring)

• Bede: The historian, records the actions that are done

• Caedmon: The poet, responsible for the user interface

The architecture, shown in Figure 4, initially appears more complex than OWLSAI

in Figure 2 as the third-party libraries that were extracted are also included, together

with the protocols used to achieve dependency inversion. Figure 5 shows only the internal

dependencies: how the application appears to a developer working on it. Such a developer

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

828 P. S. Brown et al.

need not concern themselves with the working of any of the imported libraries; they are

only responsible for what is depicted in Figure 5. For example, Whitby required a fluent

describing what the user is looking at in the GUI; this is particular to the application

of Whitby and so is not defined in OntologyAuthoring. To add this fluent to Whitby

requires creating a new object that conforms to the fluent protocol: new behavior via

extension rather than modification and exposing fluents that the application developer

has no business editing.

Figure 5 is a cleaner architecture, with no dependency cycles. However it is not yet per-

fect. For example, bede should not depend upon id generator. That particular predicate

should be exposed through hilda, which provides an interface enabling easier substitu-

tion of the objects that hilda depends upon. Early in the refactoring to Whitby, each

of the named directories was implemented as its own microservice communicating over

HTTP. Correcting this issue would make it simple to split Whitby back into microservices

for scalability, which isn’t possible to achieve with OWLSAI due to the tight coupling

between components.

5 Dependency inversion using Logtalk protocols

To achieve the desired architecture requires the application of the Dependency Inversion

Principle, which can be accomplished via the Abstract Factory design pattern (Gamma

et al . 1997; Martin 2018) described as:

Provide an interface for creating families of related or dependent objects without specifying
their concrete classes. (Gamma et al . 1997)

In logic programming, we can reinterpret the implicitly imperative idea of creating

families as declaratively defining families. Therefore, with Logtalk it becomes possible to

do Dependency Inversion without dynamically creating objects. The concept of interface,

in turn, is readily available using Logtalk protocols, as described below.

The Dependency Inversion Principle is applied to decouple the application into three

major components. First a SitCalc library is extracted. Then SitCalc is extended, not

modified, to create OntologyAuthoring and Scaffolding libraries. Finally, Whitby is

created by importing these libraries as third-party libraries. The final architecture, with

these libraries included, is shown in Figure 4. We start with a brief overview of Logtalk

followed by a detailed account of how we applied this design principle to each component.

5.1 Logtalk overview

Logtalk as a language reinterprets object-oriented concepts from first principles to pro-

vide logic programming with code encapsulation and code reuse mechanisms that are

key in expressing well understood design principles and patterns (described in depth in

“The Logtalk Handbook” (Moura 2021)). A key feature is the clear distinction between

predicate declarations and predicate definitions4, which can be encapsulated and reused

as follows:

4 This distinction exists in standard Prolog (ISO/IEC 1995) only for predicates declared as dynamic or
multifile. Notably, static predicates exported by a module must be defined by the module.

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

Refactoring Whitby for Clean Architecture 829

• protocols : Group functionally cohesive predicate declarations that can then be im-

plemented by any number of objects and categories. Allows an object or category

to promise conformance to an interface.

• objects : Group predicate declarations and predicate definitions. Objects can be

stand-alone or part of hierarchies. Object enforce encapsulation, preventing calling

predicates that are not within scope. Predicates are called using message sending,

which decouples calling a predicate from the predicate definition that is used to

answer the message.

• categories : Group a functionally cohesive set of predicate declarations and predicate

definitions, providing a fine-grained unit of code reuse that can be imported by any

number of objects, thus providing a composition mechanism as an alternative to

the use of inheritance.

Predicates can be declared public, protected, or private. A predicate declaration does

not require that the predicate is also defined. Being able to declare a predicate, indepen-

dent of any other predicate properties, without necessarily defining it is a fundamental

requirement for the definition of protocols. It also provides clear closed world semantics

where calling a declared predicate that is not defined simply fails instead of generating

an error (orthogonal to the predicate being static or dynamic).

Logtalk defines a comprehensive set of reflection predicates for reasoning about the use

of these components in the program. In particular, the conforms to protocol/2, which

is true if the first argument implements or is an extension of something that implements

the protocol named in the second argument, and current object/1, which is true if its

argument is an object in the application current state (categories and protocols have

their own counterparts). These predicates are used in the implementation of the SOLID

principles as illustrated in the next sections.

Logtalk also provides a comprehensive set of portable developer tools, notably for

documenting, diagramming, and testing that were used extensively. These tools reflect

how the language constructs are used in applications, from API documentation to di-

agrams at multiple levels of abstraction that help developers and maintainers navigate

and understand the code base and its architecture.

5.2 A reusable sitCalc library

The SitCalc library includes predicates that need to send messages to fluent and action

objects. Rather than depend on these fluents and actions directly, it depends instead on

objects conforming to action protocol and fluent protocol. This is the Dependency

Inversion Principle of SOLID: to depend only on protocols/interfaces and not on concrete

code (Martin 2018). These protocols declare the predicates that an action and fluent are

expected to define:

:− pro to co l (a c t i o n p r o t o c o l) .

:− pub l i c (do /2) .

:− i n f o (do /2 , [

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

830 P. S. Brown et al.

comment i s ’ True i f doing ac t i on in ‘ ‘ S1 ‘ ‘

r e s u l t s in ‘ ‘ S2 ‘ ‘ . ’ ,

argnames i s [’ S1 ’ , ’ S2 ’]

]) .

:− pub l i c (poss / 1) .

:− i n f o (poss /1 , [

comment i s ’ True i f the ac t i on i s p o s s i b l e in

the s i t u a t i o n . ’ ,

argnames i s [’ S i tuat ion ’]

]) .

:− end pro toco l .

:− pro to co l (f l u e n t p r o t o c o l) .

:− pub l i c (ho lds / 1) .

:− i n f o (ho lds /1 , [

comment i s ’ True i f the f l u e n t ho lds in the

s i t u a t i o n . ’ ,

argnames i s [’ S i tuat ion ’]

]) .

:− end pro toco l .

Thus any object that is an action or fluent can be found or validated, using the Logtalk

built-in reflection predicates5. For some strategies attempted without an interface in

OWLSAI, such as when passing the definition context explicitly (as previously discussed

in Section 3), the enumeration of modules requires a hand-coded alternative to mark the

modules, which is fragile and not self-documenting. These predicates are used to validate

or enumerate:

i s a c t i o n (Action) :−
con f o rms to p ro to co l (Action , a c t i o n p r o t o c o l) ,

c u r r e n t ob j e c t (Action) .

i s f l u e n t (Fluent) :−
con f o rms to p ro to co l (Fluent , f l u e n t p r o t o c o l) ,

c u r r e n t ob j e c t (Fluent) .

5 The conforms to protocol/2 predicate enumerates both objects and categories that implement a
protocol. As we are only interested in objects, we use the current object/1 predicate to filter out any
categories as these are used only to provide common definitions for utility predicates.

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

Refactoring Whitby for Clean Architecture 831

Now within the sitcalc object when it is necessary to call a fluent or action they can

be called, even if the argument is a variable, without depending on the fluents or actions.

Here are two extractions from the code within sitcalc that demonstrate doing so:

ho lds (Fluent , S i t ua t i on) :−
i s f l u e n t (Fluent) ,

Fluent : : ho lds (S i tua t i on) .

poss (Action , S i t ua t i on) :−
i s a c t i o n (Action) ,

Action : : poss (S i tua t i on) .

In addition to this, the extraneous code in Golog is not included in SitCalc such

that unused code is not depended upon. Also there is more than one way to represent a

situation in Situation Calculus: either as a history of actions or as a collection of fluents.

Therefore in the publicly available version6 of the SitCalc library, the common parts of

both representations are combined into a situations category, with both representations

importing it to ease substitution.

The final detail abstracted from Figure 4 is the definition of action and fluent

categories, which import their respective protocols. The action category defines the

do/2 predicate and the fluent category applies tabled resolution to holds/2 if available

in the backend, which greatly improves performance of context-dependent queries over

long situation terms.

5.3 Extending sitCalc with reuseable libraries

The two OntologyAuthoring and Scaffolding libraries both extend SitCalc, but both

are also defined in a way that they can be used as third-party libraries with SitCalc as

a dependency. They extend SitCalc by defining fluents and actions that are pertinent.

OntologyAuthoring includes a fluent to see what triples hold in the initial situation.

Here, s0 is a marker protocol, allowing easy enumeration of initial situations by using the

reflection predicates, and also dependency inversion via a protocol (fluent is a category

that implements fluent protocol):

:− ob j e c t (i n i t i a l a s s e r t i o n (Sub j ec t , Pr ed i ca t e , Objec t) ,

imports (f l u e n t)) .

ho lds (AnySit) :−
con f o rms to p ro to co l (S0 , s0) ,

c u r r e n t ob j e c t (S0) ,

S0 : : a s s e r t ed (Sub j ec t , Pr ed i ca t e , Objec t) .

:− end ob j ec t .

6 Comprised of the libraries made available at: https://github.com/PaulBrownMagic/Situations,
https://github.com/PaulBrownMagic/Sitcalc, and https://github.com/PaulBrownMagic/STRIPState

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

832 P. S. Brown et al.

Scaffolding includes an action to intervene (here action is a category that imple-

ments action protocol):

:− ob j e c t (i n t e rv ene (I n t e r v en t i on , Query , Lv l , Time) ,

imports (ac t i on)) .

poss (S i t) :−
con f o rms to p ro toco l (In t e rven t i on s , i n t e r v en t i o n s) ,

c u r r e n t ob j e c t (I n t e r v en t i on s) ,

I n t e r v en t i on s : : i n t e r v en t i on (In t e r v en t i on , Query) ,

s i t c a l c : : ho lds (Query , S i t) ,

i n t e r v e n t i o n l e v e l (I n t e r v en t i on , Query , Lv l) : :

ho lds (S i t) ,

\+ l i v e i n t e r v e n t i o n (In t e r v en t i on , Query , Lv l) : :

ho lds (S i t) .

:− end ob j ec t .

Both objects are parametric objects (Moura 2011). The object parameters (e.g.

Subject are logic variables shared with all the object predicates.

Due to the implementation of SitCalc, all these fluents and actions are visi-

ble to sitcalc whilst it does not depend on them. However, these two examples

both depend upon some implementation details: some S0::asserted/3 and some

interventions::intervention/2. These dependency issues are solved in the same man-

ner as for SitCalc: through dependency on a protocol (as illustrated in Figure 4).

Between these two libraries a total of 14 fluent and action terms are introduced that

can be queried via SitCalc. Although these depend on SitCalc, they do not depend on

any application that makes use of them. Whitby is such an application, by importing

these libraries it gains these 14 fluents and actions, needing only to implement both

the s0 protocol and intervention protocol. In contrast to OWLSAI, the contingent

scaffolding is also not dependent on code that includes ontology authoring, meaning it

can be applied to other activities than ontology authoring.

6 Conclusion

Taking a set of rules and applying them to some facts is a typical task in Prolog. However,

the limitations of the module system often result in code that only handles a fixed

set of facts at a time, either imported into the rules module or loaded into the user

special module. But sometimes these rules are useful to many applications, as is the case

with Situation Calculus. When the rules are to be shared as third-party libraries, any

dependency of rules on facts needs to be inverted to decouple the rules from a particular

set of facts. This dependency inversion allows multiple set of facts to be loaded and

used concurrently (providing an alternative solution for implementing the many-worlds

design pattern). Key to this dependency inversion is the concept of interface or protocol,

supported by Logtalk but absent in Prolog module systems.

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

Refactoring Whitby for Clean Architecture 833

This inversion was achieved in Logtalk by taking inspiration from the Abstract Factory

design pattern and considering how it could be achieved with protocols and categories.

The final solution is simpler than the Abstract Factory design pattern as no dynamic

creation of objects is necessary. Instead, dependency upon a protocol and conforming

to it is all that is required. This is an elegant pattern for Logtalk that can be repeated

when creating third-party libraries to reason about definitions in an application without

depending upon them.

The use of protocols in this manner results in a plugin architecture. A third-party

can “plug-in” code to the SitCalc library, or other libraries, to work with it. This is a

very versatile design pattern as it allows an application developer, or even third-parties

and end-users provided with a plugin loading interface, to adapt the behavior of the

application to their needs without editing the core application code. It also leaves the

application immune from changes made elsewhere via the plugin, with the provision they

are not malicious, by the drawing of boundaries in the architecture (Martin 2018).

This use of protocols has focused on their application for dependency inversion due

to the specifics of the Whitby application architecture. It should be noted their use also

resulted in adherence to the Single Responsibility and Open-Closed Principles. Proto-

cols also have significant contribution to adherence to the Liskov Substitution Principle,

making it a simple matter to swap objects that adhere to the same protocol, as well as

the Interface Segregation Principle by providing explicitly defined interfaces as first-class

entities.

The refactor from OWLSAI to Whitby decoupled code from OWLSAI that can be

reused, which are published as third-party libraries to satisfy the motivation behind

the refactoring. This has simplified Whitby, where there is less functionality now to

maintain, and has enabled other applications and libraries to use Situation Calculus

reasoning while also keeping a clean architecture. The workarounds that we attempted

to compensate for the lack of required features in the Prolog module systems accumulated

and increased the complexity of the application. Those workarounds are not supported

by development tools (especially documenting and diagramming tools) and raised new

issues, thus creating additional burden on developers while not solving the reusable goals

that prompted the refactoring.

By using the language constructs provided by Logtalk to apply SOLID principles in

the refactoring, the Whitby application documentation and diagrams trivially reflect the

actual architecture of the application, further simplifying development and maintenance.

But hand-coded workarounds that try to compensate for missing language features (in

this case: the module system in the original version of the application) required additional

effort to document as they are not visible to developer tools as first-class constructs.

These workarounds must also be repeated in every application with the impact of their

limitations carefully taken into account.

This refactoring has benefited the Whitby application, the Situation Calculus reasoning

is open to extension without modification, which was used to add application specific

fluents and actions as the need arose. Additionally, the separation of responsibilities has

made it easier to navigate and edit the code base. But the primary benefit is to other

applications that wish to make use of the extracted libraries. Whitby demonstrates how

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

834 P. S. Brown et al.

they can be reused. Bedsit7 is one example of such reuse: it is an exploratory framework

for rapidly prototyping applications using SitCalc and includes both TicTacToe and

ToDo example applications with a variety of UIs. The first author has also reused SitCalc

and OntologyAuthoring to quickly prototype a proprietary ontology browser and editor.

As part of the AI4EU8 initiative, a third-party has been provided with Whitby to adapt

to a new project in the domain of robotics planning. Due to Whitby’s adherence to the

Single Responsibility and Liskov Substitution Principles, which was not possible with

OWLSAI, the third-party should need only to make changes at the periphery of the code

base: telling kb to load a different OWL file, optionally substituting any reasoning rules

specific to their domain, substituting intervention bank for an object with appropriate

interventions, and substituting the Editor GUI to be appropriate for that domain. There

is still room for improvement, however. For example, they also need to change a list in

action bank, which contains the classes used as tabs in the GUI.

Whitby is currently deployed to test the efficacy of the pedagogical techniques imple-

mented. Should the application prove useful, any remaining architectural issues will be

addressed, although the lesson learned regarding using dependency inversion to decouple

the abstract rules from concrete facts is consistently applied in all other current software

development efforts.

Acknowledgements

The authors gratefully acknowledge the financial support provided: an EPSRC CASE

studentship partially funded by the Defence Science and Technology Laboratory. The

fourth author is partially funded by the EU AI4EU project (825619) and is a Fellow of

the Alan Turing Institute.

References

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1997. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, Massachusetts.

Gruber, T. R. 1995. Toward principles for the design of ontologies used for knowledge sharing?
International Journal of Human-Computer Studies 43, 5–6, 907–928.

ISO/IEC. 1995. International Standard ISO/IEC 13211-1 Information Technology — Program-
ming Languages — Prolog — Part I: General core. ISO/IEC.

ISO/IEC. 2000. International Standard ISO/IEC 13211-2 Information Technology — Program-
ming Languages — Prolog — Part II: Modules. ISO/IEC.

Martin, R. C. 2018. Clean Architecture: A Craftman’s Guide to Software Structure and Design.
Prentice Hall, Hudson, New Jersey.

Moura, P. 2011. Programming patterns for Logtalk parametric objects. In Applications of
Declarative Programming and Knowledge Management, S. Abreu and D. Seipel, Eds. Lecture
Notes in Artificial Intelligence, Vol. 6547. Springer-Verlag, Berlin Heidelberg, 52–69.

Moura, P. 2021. The Logtalk Handbook (Release 3.46.0 ed.).

Reiter, R. 2001. Knowledge in Action. The MIT Press, Cambridge, Massachusetts.

Wood, D., Bruner, J. S. and Ross, G. 1976. The role of tutoring in problem solving. Journal
of Child Psychology and Psychiatry 17, 2, 89–100.

7 https://github.com/PaulBrownMagic/BedSit
8 https://www.ai4eu.eu/ Established to build the first European Artificial Intelligence On-Demand
Platform and Ecosystem with the support of the European Commission under the H2020 programme.

https://doi.org/10.1017/S1471068421000326 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000326

	Introduction
	The dependency inversion principle
	Whitby before refactoring: OWLSAI
	Refactored Whitby
	Dependency inversion using Logtalk protocols
	Logtalk overview
	A reusable sitCalc library
	Extending sitCalc with reuseable libraries

	Conclusion
	References

