§ 2. Circumcentre.

The perpendiculars to the sides of a triangle from the mid points of the sides are concurrent.*

The following demonstration \dagger may be compared with the demonstration of $\$ 5$.

Figure 16.
Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the mid points of $B C, C A, A B$, and let $A^{\prime} X^{\prime}, B^{\prime} Y^{\prime}, C^{\prime} Z^{\prime}$ be perpendicular to $B C, C A, A B$.

Join $\quad B^{\prime} \mathbf{C}^{\prime}, \mathrm{C}^{\prime} \mathrm{A}^{\prime}, \mathrm{A}^{\prime} \mathbf{B}^{\prime}$.
Then $\quad \mathrm{B}^{\prime} \mathbf{C}^{\prime}$ is parallel to BC ;
therefore $\quad A^{\prime} X^{\prime}$ is perpendicular to $B^{\prime} C^{\prime}$.
Hence $\quad \mathrm{B}^{\prime} \mathrm{Y}^{\prime}{ }^{\prime \prime} \quad, \quad$, $\mathrm{C}^{\prime} \mathrm{A}^{\prime}$
and $\mathrm{C}^{\prime} \mathrm{Z}^{\prime}, " \quad$ " $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$.
If therefore it be assumed as true that the perpendiculars to the sides of a triangle from the opposite vertices are concurrent,

$$
A^{\prime} X^{\prime}, B^{\prime} Y^{\prime}, C^{\prime} Z^{\prime} \text { are concu ent. }
$$

Another demonstration is obtained at once from the theorem, \ddagger
If thres points be taken on the sides of a triangle such that the sums of the squares of the alternate segments taken cyclically are equal, the perpendiculars to the sides of the triangle at these points are concurrent.

The point of concurrency, which will be denoted by 0 , is the centre of the circle circumscribed about ABC. This circle is often called the circumcircle,s and the centre of it the circumcentre.s

The radius of the circumcircle is usually denoted by R .
(1) The circumcentre of a triangle is the orthocentre of its complementary triangle.

[^0](2) Since the complementary and the fundamental triangles are similar, and since their sides are in the ratio of 1 to 2 , the distance of the circurcentre of a triangle from any side is half of the distance between the orthocentre of the triangle and the vertex opposite that side.*
(3) If O be the circumcentre of a triangle $A B C$, the circle on $O A$ as diameter bisects AB and AC .

Similarly for the circles on $O B$ and $O C$.
(4) If the circle on OA as diameter should cut $B C$ at P and P^{\prime}, then $A P$ is a mean proportional \dagger between $B P$ and $C P$, and $A P^{\prime}$ is a mean proportionul betceen $B P^{\prime}$ and $C P^{\prime}$.

Figure 17.
Produce AP to meet the circumcircle at Q .
The circle on OA as diameter touches the circumcircle at A;
therefore A is the homothetic centre of the two circles;
therefore
$\mathrm{AP}: \mathrm{AQ}=1: 2$;
therefore
$\mathrm{BP} \cdot \mathrm{CP}=\mathrm{AP} \cdot \mathrm{QP}=\mathrm{AP}^{2}$.
(5) By the following construction \ddagger a point P will be found in the base $B C$ of $A B C$ such that the ratio $A P^{2}: B P \cdot C P$ has a given value.

Figure 18.

Join $A O$, and divide it at L so that $A L: L O$ has the given value; then the circle with centre L and radius $L A$ will meet $B C$ in two points P, P^{\prime} satisfying the condition.

Produce AP to meet the circumcircle in Q .
Then

$$
\begin{aligned}
A P: P Q & =A P^{2}: A P \cdot P Q \\
& =A P^{2}: B P \cdot P C \\
& =A L: L O
\end{aligned}
$$

therefore LP is parallel to $O Q$;
therefore $L P=L A$, since $O Q=O A$.

[^1]If $A P^{\prime} Q^{\prime}$ be the other position of $A P Q$,
then

$$
\mathrm{AP}: P Q=A P^{\prime}: \mathrm{P}^{\prime} \mathrm{Q}^{\prime} ;
$$

therefore QQ^{\prime} is parallel to BC ;
therefore arc $B Q=\operatorname{arc} C Q^{\prime}$,
and $A P, A P^{\prime}$ are isogonal with respect to $\angle A$.
(6) If from a point O within or without a triangle $A B C$, perpendiculars $O D, O E, O F$ are drawn to the sides $B C, C A, A B$, and circles are circumscribed about the triangles OEF, OFD, ODE ; the area of the triangle formed by joining the centres of these circles is one-fourth of the area * of the triangle ABC

Figure 19.

The centres of these circles are the mid points of OA, OF, OC.
(7) If from a point O within triangle $A B C$ perpendiculais $O D, O E, O F$ be drawn to $B C, C A, A B$, then \dagger

$$
2 R(E F+F D+D E)=O A \cdot B C+O B \cdot C A+O C \cdot A B
$$

Figure 19.

For A, F, O, E lie on the circle whose diameter is OA, and the chord EF subtends the same angle A at the circumference of this circle as $B C$ does at that of the circumcircle of $A B C$;
therefore $\quad \mathrm{EF}: \mathrm{OA}=\mathrm{BC}: 2 \mathrm{R}$;
therefore $\quad थ \mathrm{R} \cdot \mathrm{EF}=\mathrm{OA} \cdot \mathrm{BC}$.
(8) If O be on that arc of the circumcircle on which angle C stands, then, \dagger by Ptolemy's theorem,

$$
\begin{aligned}
\mathrm{OA} \cdot \mathrm{BC}+\mathrm{OP} \cdot \mathrm{CA}-\mathrm{OC} \cdot \mathrm{AB} & =0 ; \\
\mathrm{EF}+\mathrm{FD}-\mathrm{DE}= & =0 ;
\end{aligned}
$$

therefore
therefore $\mathbf{D}, \mathrm{E}, \mathrm{F}$ are collinear, which is another proof of the property of the Wallace line.

[^2]Sect. I.
(9) If O be the circumcentre of $A B C$, and $A O, B O, C O$ be produced to meet the circumcircle in U, V, W, the triangle $U V W$ is congruent to $A B C$.

Figure 20.

$$
\begin{array}{cl}
\text { For } & \angle \mathrm{AUV}=\angle \mathrm{ABO}=\angle \mathrm{BAO} ; \\
& \\
\text { therefore } & \angle \mathrm{AUW}=\angle \mathrm{ACO}=\angle \mathrm{CAO} ; \\
& \angle V U W=\angle \mathrm{BAC} ;
\end{array}
$$

therefore UVW is similar to ABC.
But these two triangles are inscribed in the same circle; therefore they are congruent.
(10) The figures $B C V W, C A W U, A B U V$ are rectangles.
(11) If ABC be a triangle, and BW, CV be perpendicular to BC ; CU, AW perpendicular to CA ; AV, BU perpendicular to AB, the three straight lines $A U, B V, C W$ are concurrent at the circumcentre of $A B C$, and the six points A, B, C, U, V, W are concyclic.*

Figure 20.
(12) Triangles $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}$ circumscribed about $A B C$ in such a manner that their sides are perpendicular to those of $A B C$ are congruent \dagger to each other and similar to $A B C$.

Figure 21.
Let $\quad C_{1} A_{1}, A_{2} B_{2} ; A_{1} B_{1}, B_{2} C_{2} ; B_{1} C_{1}, C_{2} A_{2}$
meet at $\quad \mathrm{U}, \mathrm{V}$,

Then $\mathrm{BB}_{1} \mathrm{VB}_{2}$ is a parallelogram ;

therefore	$\mathrm{B} \mathrm{B}_{1}=\mathrm{B}_{2} V$.
But	$\mathrm{BW}=\mathrm{CV} ;$
therefore	$\mathrm{B}_{1} \mathrm{~W}=\mathrm{C} \mathrm{B}_{2}$.

Again $\mathrm{WC}_{1} \mathrm{CC}_{2}$ is a parallelogram;
therefore $\quad \mathrm{WC}_{1}=\mathrm{C}_{2} \mathrm{C}$;
therefore $\quad B_{1} C_{1}=B_{1} C_{2}$.
Similarly $\quad C_{1} A_{1}=C_{2} A_{2}, \quad A_{1} B_{1}=A_{2} B_{2}$.

[^3]Lastly _ BAC $=90^{\circ}-\angle \mathrm{BAA}$

$$
=\angle \mathrm{B}_{1} \mathrm{AA}_{2}=\angle \mathrm{A} .
$$

Similarly
$\angle \mathrm{ABC}=\angle \mathrm{B}_{1}, \angle \mathrm{ACB}=\mathrm{C}_{1}$.
This theorem is a particular case of a more general one.
(13) The three lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are concurrent ${ }^{*}$ at the circumcentre of $A B C$.

Figtre 21.
For $\mathrm{AC}, \mathrm{BV}, \mathrm{CW}$ are concurrent at O , the circumcentre of $A B C$; and O is the mid point of $A U, B V, C W$. Now since ${A A_{1}}_{1} \mathrm{UA}_{2}$ is a parallelogram, therefore $A_{1} A_{2}$ passes through the mid point of $A U$.

Similarly for $\mathrm{B}_{1} \mathrm{~B}_{2}, \mathrm{C}_{1} \mathrm{C}_{2}$.
(14) If a point P be taken inside the triangle $A B C$, and circles bc circumscribed about the triangles I ' $B C, P C A, P A B$, and their centres O_{1}, O_{2}, O_{3} be joined, the angles of triangle $O_{1} O_{2} O_{3}$ are supplementary to the angles $B P C, C P A, A P B$.

Figure 22.
For $\mathrm{O}_{2} \mathrm{O}_{3}, \mathrm{O}_{3} \mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{O}_{2}$ are respectively permendicular PA, PB, PC.
(15) If through A any straight line $M N$ be draun metin! the circumferences $P C A, P A B$ in M, N, then $M C$, $N B$ will intersect on the circumference $\dagger P B C$.

Let MC, NB intersect at L.
Then

$$
\angle \mathrm{M}=180^{\circ}-\angle \mathrm{CPA}
$$

$$
\angle N=180^{\circ}-\angle A P B
$$

therefore

$$
-M+\angle N=360^{\circ}-(-C P A+\angle A P P)
$$

$$
=-\mathrm{BPC}
$$

therefore $\quad-\mathrm{L}=180^{\circ}-\quad \mathrm{BPC}$;
therefore L is on the circumference PBC .

[^4](16) If L be any point on the circumference PBC, and if LC, LB meet the circumferences PCA, PAB again in M, N, then M, A, N are collinear.
(17) Triangle LMN is similar to $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$.

If the point P be fixed, the triangles $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$, LMN are given in species.
(18) The angles which $M N, N L, L M$ make with $A P, B P, C P$ respectively are equal.

For $\quad \angle \mathrm{PAN}=180^{\circ}-\angle \mathrm{PBN}=\angle \mathrm{PBL}$

$$
=180^{\circ}-\angle \mathrm{PCL}=\angle \mathrm{PCM} .
$$

(19) Of all the triangles such as LMN whose sides pass through A; B, C, and whose vertices are situated on the circles O_{1}, O_{2}, O_{i}, that triangle $L^{\prime} V^{\prime} V^{\prime}$ is a maximum vhose sides are perpendicular to $A P, B P, C P$.

Figure 22.
For triangles L'M'N', LMN are simila ", and $\mathrm{PL}^{\prime}, \mathrm{PL}$ are corresponding lines in these triangles.
Now PL^{\prime} is a diameter of the circle O_{1};
therefore PL ' is greater than PL ;
therefore $\mathrm{L}^{\prime} \mathrm{M}^{\prime} \mathrm{N}$ ' is greater than LMN.
(20) If O be the circumcentre of ABC , and about the triangles OBC, OCA, OAB circles be circumscribed whose centres are $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$, the triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ has its angles equal to $180^{\circ}-2 \mathrm{~A}$, $180^{\circ}-2 \mathrm{~B}, 180^{\circ}$ - 2 C .

It will be found that $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ is similar to XYZ. See $\S 5$.
(21) O is the incentre of the triangle $O_{1} \mathrm{O}_{2} \mathrm{O}_{3}$.

Figure 22.
In the diagram suppose P to be replaced by O , and let V, W be the mid points of BO, CO.

Then the right-angled triangles $\mathrm{OVO}_{1}, \mathrm{OWO}_{1}$ have two sides of the one equal to two sides of the other ;
therefore OO_{1} bisects $\angle \mathrm{O}_{2} \mathrm{O}_{1} \mathrm{O}_{3}$.
Similarly for $\mathrm{OO}_{2}, \mathrm{OO}_{3}$.
(22.) If $O O_{1}, O O_{2}, O O_{3}$ be produced to meet the circles $O B C, O C A$, $O A B$ in $L^{\prime}, M^{\prime}, N^{\prime}$, the triangle $L^{\prime} M^{\prime} N^{\prime}$ will be circumscribed about $A B C$, will be similar and similarly situated to $O_{1} O_{2} O_{3}$, and will have O for its incentre.

Figure 22.

For $\quad \angle \mathrm{OAM}^{\prime}+\angle \mathrm{OAN}^{\prime}=180^{\circ}$;
therefore $M^{\prime}, A, N^{\prime}$ are collinear, and $M^{\prime} N^{\prime}$ is parallel to $\mathrm{O}_{2} \mathrm{O}_{3}$.
Since $O A, O B, O C$ are equal, and perpendicular to $M^{\prime} N^{\prime}, N^{\prime} L^{\prime}$, $\mathbf{L}^{\prime} \mathbf{M}^{\prime}$;
therefore O is the incentre of $L^{\prime} M^{\prime} N^{\prime}$.
Many relations between the triangles $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ and ABC may be derived from the relations between XYZ and ABC , seeing that $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ is similar to XYZ and that the ratio of the radii of their incircles is $\frac{1}{2} \mathrm{R}: \rho$.

[^0]: * Euclid's Elements, IV. 5.
 † C. Adams, Die Lehre von den Transversalen, p. 21 (1843).
 \ddagger F. G. de Oppel, Amalysis Trianyulorum, p. 32 (1746).
 § These terms as well as incircle, excircle, midcircle, incentre, excentre, midcentre were suggested by W. H. H. H[udson]. See Nature, XXVIII. 7, 104 (1883). The terms Cmkreis, Inkreis, Ankreis, Mittenkreis have been more or less in use in Germany since 1866, as may be seen from Schlumilch's Z citschrift.

 The perpendiculars to the sides of a triangle from the mid points of the sides are sometimes called médiatrices in France and Belgium.

[^1]: * Ladies' Diary for 1785.
 + Given without proof in the Ladies' Diary for 1759.
 \ddagger Rev. J. Wolstenholme in the Educational Times, XXIX., 273 (1877). Four solutions are given in Mathematical Questions from the Educational Times, XXVII, 63.66 (1877); the one in the text is the last.

[^2]: * Todhunter's Plunc Triuononutry, Chap. XVI., Ex. 41 (1859).
 + Bott: (7) and (8) are due to Mr E. M. Langles, who applies the first of them to the problem of finding the triangle of minimum perimeter inscribed in a given triangle, and to the determination of the trilinear co-ordinates of the Brocard points. See Sixteenth Gencral Report of the Association for the Improvernent of Geometrical Teaching, pp. 34.5 (1890).

[^3]: * C. F. A. Jacobi, De Triangulorum Rectilineorum Proprielatibus, p. 56 (1825).
 \dagger The first part of the theorem is given by Jacobi, p. $\mathbf{5 6}$.

[^4]: * Jacobi does not state this property, but from the way in which he letter- the figures of theorems (11) and (12) it is probable that he knew it. The property is explicitly stated, along with some others, by Mr Lemoine in his paper read at the Lyons meeting (1873) of the Association Francaise pour l'arancement des Scicurcs.
 \dagger Rochat in Gergonne's Annales, II. 29 (1811). To him also are due (17) and (19).

