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GENERALIZED FUNCTIONS
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1. Introduction

Expansions of generalized functions have been investigated by many
authors. Korevaar [11], Widlund [20], Giertz [8], Walter [19] developed
procedures for expanding generalized functions of Korevaar [12], Temple
[17], and Lighthill [13], Expansions of certain Schwartz distributions
[15] into series of orthonormal functions were given by Zemanian [23]
(see also Zemanian [24]) and thereby he extended a number of integral trans-
forms to distributions. The method involved in his work is very much
related to the Hubert space technique and is of somewhat different
character from those used in most of the works on integral transforms
such as [24, chapters 1-8]. Other works that discuss orthogonal series
expansions involving generalized functions are by Bouix [1, chapter 7],
Braga and Schδnberg [2], Gelfand and Shilov [7, vol. 3, chapter 4] and
Warmbrod [21].

In this paper, expansions of generalized functions (distributions)
with respect to some general classes of complete orthonormal systems
are investigated. For this, a testing function space Jf(ΐ) is constructed
over the closed interval / = [α, b] containing the normalized eigen func-
tions {¥n(x)}n=1 of the Sturm-Liouville system. The Sturm-Liouville
transform Fin) of a generalized function / e Jf'ij) is defined by

F(n) = </(*), Ψn(x)} n = 1,2,3, .

It is shown in section 4 that

lim(Σ F(n)Ψn{x), ψ{x)) = </, ψ) , vΨ e D(I)

where the above convergence is interpreted in the weak distributional
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2 J. N. PANDEY AND R. S. PATHAK

sense. In section 5 we have discussed special cases of interest and in

sections 8 and 9 we have utilized our results in solving certain differ-

ential equations with distributional boundary conditions. The notation

and terminology of this work follow those of [18], [22] and [24].

2. A general expansion theorem

The following theorem due to Yosida [22, p. 173] plays a fundamental

role in our present investigation.

THEOREM 1 (Yosida). Let q(x) be a real-valued continuous func-

tion in a finite or infinite closed interval [a, b]. We make no assump-

tion concerning the behaviour of q(x) at the boundary points; as x-*a,

or as x-*b, q(x) may tend to finite limits, may tend to ±oo, may have

no limits. Let f(x) be a real-valued function satisfying the conditions

(i) f"(x) is continuous on (—00,00).

(ii) For some a', b', a < a' < bf < b,

f(x) = 0 on semi-infinite intervals — oo<x<a'9b'<x<oo.

Let {λn,a,b} be the set of all eigenvalues of the boundary value problem

Lxφ = λφ , Lx = q(x) - -—
CtX

φ(a) cos a + φ'(a) sin a = 0

φ(b) cos β + φf(b) sin β = 0

and {φn,a,b} be the corresponding orthonormal system of the eίgenfunc-

tions. Then f(x) can be expanded into the Fourier series

00

(2.2) fix) = Σ / M ^ J I )

(2.3) /„,„.» = (f,φn,a,b) = Γ f(x)φZZi

Without any loss of generality we can assume that the eigenfunctions

of the system (2.1) are real. (2.2) converges absolutely and uniformly

on the interval [α, 6].

Remark. The eigenfunction expansion as given in Theorem 1 is

also valid when f(x) is a complex-valued function belonging to[ϋC—9°ιi°°)
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and having support contained in the open interval (a', bf) where a < of
< b' < b. The proof can be given by using Theorem 1 for the real and
imaginary parts of / separately.

COROLLARY 1. Let fix) e C2[a, b] with support contained in the open
interval (α, b). Then the Fourier series expansion

— Γ f(y)dy + -*— Σ cos
— a) Ja (b — a) n-ii b - a ) h — ( 6 - α ) ί = l ™ V ( 6 -

o/ /(#) converges absolutely and uniformly to f(x) over the interval

[a, b].

Proof, The normalized eigenfunctions of the Sturm-Liouville system

χy = 0 a<x<b
dx2

(2.5)
= 0

- 0

are . 1 , J-^-~ cos (™&—^V w = 1,2,3, . The result now
V6 — α ^ b — a \ (b — a) )

follows in view of Theorem 1.

COROLLARY 2. Let f(x) e C2[0, π] ^iίfe support contained in the open
interval (0, π). Then the Fourier series expansion

1 Cπ 2 °° f*

— f(v)dy + — Σ c o s nx\ f(v)
π Jo π w=i Jo

0/ /(#) converges absolutely and uniformly to fix) over the interval
[O,7Γ].

Proof. This is an immediate consequence of Corollary 1 with a = 0
and 6 = 1. The normalized eigenfunctions of the system

+ ^ = 0 0 < £ < 7Γ

(2.6) dX

2/'(0) = 0

turn out to be
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WQ(x) = * , ψn(χ) = JίΆ.) cosnx, w = 1,2,3, • .

Unless otherwise stated for the sake of convenience we shall write

Ψn(x) for φn,aιb(x) and λn for λn,atb.

3. The testing function space Λ\I)

Let / denote the open interval (a, b) where a and b are finite such

that — o o < α < & < o o and let x and t be real variables restricted to /.

Then the space Jί{ΐ) consists of all the complex valued infinitely differ-

entiable functions φ(x) defined over / such that

(3.1) U(φ) 4 sup \Jk

xφ(x)\ < oo ,
a<x<b

for all k = 0,1,2, , where the operator Δx is defined by

(3.2) j β = * _ β ( a . ) = _ L ,
dx2

q(x) being assumed to be infinitely differentiable in (α, δ). The topology

on JΓ(I) is defined by the separating collection of seminorm {γk}k=o [24,

pp. 7-10]. A sequence {̂ v}Γ=i is said to converge in Jf(J) to the limit φ

if γk(φv — φ) —> 0 as v -• oo for each k — 0,1,2, . A sequence {φv}~=1 is

said to be a Cauchy sequence in Jί(X) if ffc(^y — φμ) tends to zero as v

and μ both tend to infinity independently of each other. It can be

readily seen that Jf(X) is a locally convex, sequentially complete [24, pp.

176-177] Hausdorff topological vector space. The dual of Jί(I) will be

represented by Jf'il). The space D(I) is a subspace of Jί(J) and the

restriction of / e Ό\ΐ) to JT(J) is in D'(I).

LEMMA 1. Let φ(x) e D(I), I = (α, b) and let {!Γn(α0}».i be the nor-

malized eigenf unction of the system (2.1).

Define SN(t,x) = Σ»=i ̂ nfaO^nOO.

Then

fδ(3.3) SN(t,x)φ(x)dx—> φ(t) in ^Γ(/) as Λf -^ oo .
Jα

Proof. A simple computation shows that
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*t Γ SN(t, x)φ{x)dx = Γ SN(t, x)Δk

xφ{x)dx
J a J a

J α

where 0fc(x) = Δk

xφ(x).

Now

which tends to zero as N —> oo uniformly for all t e [α, &1 by Theorem 1

and the remark following it.

4. The Sturm-Liouville expansion of generalized functions of Jf'(I): / = (a, b)

We will now prove the following inversion theorem for the distri-

butional finite Sturm-Liouville transform which gives rise to an expan-

sion of / e Jff(J.),l — (α, 6) where a and b are finite such that — oo < a

< b < oo.

THEOREM 2. Let f be an arbitrary element of Jί\I) and let Ψn{x)

be the normalized eigenfunctions of the Sturm-Liouville problem (2.1)

which are assumed to be elements of Jf(J.). Define the distributional

finite Sturm-Liouville transform of f by

(4.1) S[f] Δ F(n) 4

for each n = 1,2,3, then for each ψ{t) e D(I),

(4.2) lim (Σ Ψn(t)F(n), φ(t)\ =
N-

Proof. Let us assume that the support of φix) is contained in the

finite interval (c, d) where a < c < d < b. Our theorem will be proved

by justifying the steps in the following manipulations.

(Σ¥n(t)F(n),φ(t))
\n=l /

(4.3) = Γ Σ ΨΛt)F(n)φ(t)dt

(4.4) = Γ Σ </(z), ¥n(x)>¥n(t)φ(t)dt
J a n=l

https://doi.org/10.1017/S0027763000018171 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018171
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(4.5) = Γ (f(x),Σ^n(xWn(t))ψ(t)dt

(4.6) = (f(x), Γ t Ψn(x)Ψn(t)φ(t)dt

(4.7)

(4.8) -> <f(x), φ(x)> as N -> oo .

The step (4.3) is justified by using the fact that the function
Σn=i Vn(t)F(n) is locally integrable over the interval (α, 6), and φ(x)
e D(I). The step (4.5) follows by the linearity of the functional. Equal-

ity of the expressions (4.5) and (4.6) follows by the linearity property
of generalized functions. That the expression (4.7) goes to (4.8) as
N —> oo follows from Lemma 1. This completes the proof of the theorem.

THEOREM 3 (Uniqueness). Let f,g e Jf'(ΐ), I — (a, b) where — oo < a
< b < oo and let us define S[f] = F(n) and S[g] — G(n) for all n — 1,2,
• . // F(n) — G(n) for all n = 1,2,3, , then f = g in the sense of
equnλity over D(I).

The proof is obvious in view of the above inversion theorem.

5. Special cases

In the following lines we list a number of particular values of
q(x), corresponding eigenfunctions Ψn and eigenvalues λn, and the in-
tervals / on which expansion is applicable. Appropriate generalized
functions and their expansions are also given.

1. Expansion in Fourier series

The Sturm Liouville-problem is described by

(5.2) -~ + λy = 0 y(—π) = y(π) and y'(—τ:) = y'(π) .
dx2

For this problem
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/ 1

(5.3) Ψn(x) =

V(2π)
for n = 0

for n — 2k

Vπ
ik = 1,2,3,...)

(5.4)

In the present case the testing function space J^CD, 1 — (—TΓ, π)

consists of complex-valued C™ functions φ(x) defined over / satisfying

the conditions

γk(φ) = sup \D2kφix)\ < oo , A; = 0,1,2, . . . .
-π<X<π

The topology over 3^(1) is generated by the sequence of seminorms

{γk}k=Q [24, p. 8] and the concept of convergence and completeness over

Ĵ CD is defined in the usual way. 3Ff{J) denotes the dual of ^(1).

Now, the Fourier expansion of any / e ϊFf(ΐ) can be stated by

THEOREM 4. Let fe ^\I), I — (—π,π) and F(ri) be the Fourier

transform of f for each n — 0,1,2, , defined by

(5.5) F(n) = <J(x),¥n(x)>

where Ψn{x) are defined by (5.3). Then for each φ(x)eD(I),

(5.6) lim (Σ Ψn(xW(n), <p{x)\ =
N \ Q /

2. Expansion in a series of Jacobi polynomials

I = (~π/2,π/2) and

q(x) = - i tan2 x - \ + \{a + β)

(5.7) — \ sec2 x(β — a — (a + β) sin x)(β — a — (a + β) sin x

+ 2 sin x) , a > - 1 , β > - 1 .

The Sturm-Liouville problem is

(5.8) + (λ - = 0 ,

y(—π/2) and y(π/2) are finite.

In this case
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8 J. N. PANDEY AND R. S. PATHAK

(5.9) Ψn(x) = ( ^ ^ ^ " ^ y V ' C s i π x) , » = 0,1,2, •

where

w(x) = (1 - xΠl + xY ,

h - 2"+ίί+1 Γ(n + a + l)Γ(n + β + 1)

n\ &n + a + β + l)Γ(n + a + β + 1)

and Pι^ β)(x) is the Jacobi polynomial of degree n [5].

(5.10) λn = n{n + a + β + 1) .

The testing function space /(a'P)(I), I = (—π/2, π/2) in the present
case consists of infinitely differentiable complex valued functions φ(x)
defined over / such that

(5.11) n(ψ) = sup \(D2 - g(aθ)*p(aθ| < oo ,
-π/2<x<π/2

for each k = 0,1,2, .

where Q'(α ) is given by (5.7). The topology over f{a>β) is generated
by the collection of seminorms {γk}h=Q [24, p. 8]. Notice that Ψn(x)

/2p^^>(sin a?) 6 f^\l) for α, ̂  > - J and % = 0,1,2, . ..

The dual space of ί/
( α^ ) is denoted by /{<X^Y. The corresponding ex-

pansion formula is described by

THEOREM 5. Let f e f{a>βy(I), I = (~π/2,π/2), a, β > ~i, and let
F(n) be the distributional Jacobi transform of f defined by

where ¥n(x) is given by (5.9). Then, for each φeD(I).

(5.12) lim (f; Wn(x)F(n), φ(x)\ = <J(x), φ(x)} .

3. Expansion in a series of Legendre polynomials over (—π/2, π/2)

(5.13) / = (-τr/2, π/2) , q(x) = ~ i tan2 x - \ .

The corresponding Sturm-Liouville problem is

(5.14) JpL + ίχ + I t a n 2 ^ + ±)y = 0 ,
dx2 \ 4 2/
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where ?/(—7c/2) and y(π/2) are finite. In this case the eigenf unctions

become

(5.15) Ψn(x) = (fyi + i) cos α;)1/2Pw(sin x) , n = 0,1,2, . . .

where Pn(#) is the Legendre polynomial of degree n.

(5.16) Xn = n(n + 1) .

This is a special case of the Jacobi series expansion and is obtained on

setting a = β = 0. Therefore the expansion formula is given by

THEOREM 6. Let / e/ ( M ) / (J) , / == (-π/2,π/2) and let F(ri) be the

distributional Legendre transform of f defined by

(5.17) Fin) = </(#), {{n + J) cos ^)ι/2Pn(sin #)> .

Then for each φ(t) e D(/)

(5.18) lim ( Σ ((n + £) cos #)1/2Pw(sin x)F(n)f
iV-»oo \n=0

The expansions in Chebyshev polynomials [5] and in Gegenbauer

polynomials [5] are obtained merely on setting a = β = — £ and α = /3

= |O — £ in the Jacobi polynomial case respectively.

Now we wish to change the range of definition of the Legendre

transform from (—τr/2,τr/2) to (—1,1). Applying the change of variable

x = sin"1 ty we have

ΊkF + 1 a Π X + ~2 ~ ~ ~W "" ~dt + 4(1 - t2) ~ ι

If / e /(0'0)/(7), / = (-τr/2, τr/2), ̂ (a?) e / ( M ) ( / ) , then we write

where /(ί) = /(sin"1 ί) and ¥(t) = (1- t2yi/2φ(sm-11), Also, from the

definition of / ( M ) (7), we have

γk(φ) = sup
. ώ 2 4

(5.19) = s u p | Γ ί ( d -

= p*m (say).

+ — tan2 x + —

https://doi.org/10.1017/S0027763000018171 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018171


10 J. N. PANDEY AND R. S. PATHAK

It is easily seen that the mapping φ($)γ> (1 ^- tψ/2¥(t) is an isomorphism

from / ( M ) to gPiX), I = (-1,1), where ^(/) stands for the testing func-

tion space which consists of all complex valued and infinitely different

tiable functions ^(ί) satisfying (5.19). The topology over ^(/) is gen-

erated by the sequence of seminorms {/>*}?= 0. The concept of convergence

and completeness in 0(1) is defined in the usual way. Consequently*

f(t) e &'{J). As a result, the inversion formula for the Legendre trans-

formation given by Theorem 6, will be applicable to generalized func-

tions in the space έP'(I). Thus we arrive at

THEOREM 7. Let f e0>'(I),l = (-1,1) and let F(ri) be the distribu-

tional Legendre transform of f defined by

(5.20)

Then for each <p(t) e D(I),

(5.21) lim (Σ(n + i)P.(t)F(«), φit)) = </(ί),φ(φ .

4. Expansion in series of Bessel functions

These expansions can be classified in three different forms depend-

ing upon the interval / and the boundary conditions involved in the

Sturm-Liouville problem.

First form:

(5.22) I = (0,1) q(x) = -ϋ-=A , v > - £ .
x2

The Sturm-Liouville problem can be described by

(5.23) -pL + (t- ^L±)y = 0 , 2/(0) - 0, y(l) = 0 .

Here

(5.24) ¥n(x) = V2βJAξnx)/J9+1(!& , w = 1,2,3,

where Jv(x) is the iΛh order Bessel function of the first kind and ξn

denote all the positive roots of Jv(ξ) = 0, 0 < ξx < ξ2 <

(5.25) »̂ = fl".
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In this case the expansion is called the yth order Fourier-Bessel

series for /. For the present problem we define the testing function

space JPXΓ)9 I = (0,1) to be the collection of all infinitely differentiable

complex valued functions φ(x) satisfying

(5.26) γk(φ) = sup
0<α;<l

d2

dx2
^Jψix)

for each k = 0,1,2, . The topology over ^Xl) is generated by the

separating collection of seminorms {ffc}~=o The concept of convergence

and completeness is defined in the usual way. The corresponding dual

space is denoted by J4?XI).

Using Theorem 2 we now have the following result.

THEOREM 8. Let f e Jf'XI), I = (0,1) where v> — £, and let F(ξn)

be the finite Hankel transform of f for each n = 1,2,3, , defined by

(5.27) F(ξn) = </(*), VxJXξnx)> .

Then for each <p(x) e D(I), we have

(5.28) lim < 2Vx Σ yf
 (fn\ JXξnx), φ(x)\ =f (fn\

Remark. A similar expansion formula has been obtained after an

elaborate analysis by Dube [4]. The result proved by Dube is the best

possible for a = \. Now using the fact that

(5.29) Δk

xΨ{x) =
\ V X /

where

dx2

and

Ω --*- + 1 d -
a?

and using transformation analogous to that used in [24, p. 245] the result

of Dube can be derived from Theorem 8.

https://doi.org/10.1017/S0027763000018171 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018171


12 J. N PANDEY AND R. S. PATHAK

Second form:

(5.30) / = (0,1) q(x) = J ^ I l i , v > - A .
# 2 2

The Sturm-Liouville problem is

(5.31) -p- + (λ - -^-=-i V = 0 ι/(0) = 0 , y\l) + HyQ) = 0 ,
cte2 \ x2 )

where H is any fixed real number. In this case

(5.32) Ψn(x) = l^jχξnx) n = 1,2,3,

where fn denote all the positive roots of

(5.33) £/?>(£) + HΛ(f) = 0

with 0 < ξ! < ξ2 < . . and Jί1}(f) = — J,(f). Also
dξ

(5.34) few = [J?Kξn)r + (1 - ^ 0 [ Λ ( f n ) ] 2 .

(5.35) λn = f2 .

The expansion of / is called Dini series for / which is given by the

following theorem.

THEOREM 9. Let feJf'XI) where v > — J, and let F(ξn) be the finite

Hankel transform of the second form of / , where ζn are the positive

roots of (5.33), defined by

(5.36) F(ζn) = </(*), VxJXξnx)> .

Then for each φ{x) e D(I), I = (0,1), we have

(5.37) lim

Third form:

(5.38) / = (α, 6), 0 < α < & < oo, q(x) =

The Sturm-Liouville problem is

https://doi.org/10.1017/S0027763000018171 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018171


EIGENFUNCTION EXPANSION 13

(5.39) .φL + h- *-^L)y = 0 , y{β) = y(b) = 0 .
dx2 \ x2 J

In the present case

(5.40) Ψn(x) =

where YXx) is the vth order Bessel function of the second kind and ξn

are the positive roots of

(5.41) jχξa)Yv(ξb) - Yv(ξa)Jv(ξb) = 0

with 0 < ξ! < ξ2 < f 3 < . . . . Also,

(5.42) fcn = f
χξna)

(5.43) λn = fi .

As in the case of Hankel transform of the first form we can define
the testing function &XI), I = (α, b) to be the collection of infinitely dif-
ferentiable complex valued functions φ(x) satisfying

(5.44) Plc(φ) = sup
a<x<b

< co , k = 0,1,2, •• .

The topology over ^v(/) is generated by the sequence {pk}k=o The con-
cept of convergence and completeness is defined in the usual way. Then
the Sturm-Liouvϋle expansion in the present case is given by

THEOREM 10. Let f e &'XI), where I = (α, 6), b > a > 0, and let F(ξn)
be the finite Hankel transform of the third form of /, where ξn are
the positive roots of (5.41), defined by

(5.45) F(ξn) = </(*), ^x[JXξnx)YXξnb) - YXξnx)jXξna)]} .

Then for each ψ{x) e D(I), we have

^-[jχξnx)YXξnb) - YXξnx)JXξna)],φ(x)
hn
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6. Expansion of generalized functions defined over a compact subset of (α, b)

when at least one of a and b is infinite

We will illustrate this case with a = 0 and b = oo and the other

cases can be similarly dealt with we will also assume that the eigen-

values associated with the corresponding Sturm-Liouville system are

discrete. For the criterion of the discreteness of the eigenvalues of the

Sturm-Liouville system one can see into [14 pp. 239-245] and [18, chap-

ter VII]. The case when eigenfunctions are not discrete will be a

subject of discussion in our next paper.

The following theorem due to Titchmarsh [18 p. 26] is the basis of

the analysis presented in this section. For complete statement we re-

produce the following terminology from [18; pp. 23-35],

Let φ(x) = φ(x, X), θ(x) = θ(x, λ) be the solutions of

(6.0) JpL-[λ- V(χ)]y = 0
dx2

such that

0(0) = sin a , ^'(0) = — cos a

0(0) = COB a , 0'(O) = sin a?

where a is real.

If m(X) is the limit point, on any point on the limit circle, then

for any non-real values λ (6.0) has a solution

ψ(x, λ) = θ(x, X) = θ(x, X) + m(λ)φ{x, λ)

belonging to L2(0, oo). The functions denoted by m(λ) in the upper and

lower half planes are not necessarily analytic continuation of each other

but we assume that they form a single analytic function whose only singu-

larities are poles on the real axis. Let them be λQ9 λί9 λ2, and let the

corresponding residues be γ0, γ19 γ2, . Then ψn = γτj2ψ(x, λn) form a

normal orthogonal set i.e.

I ψl(x)dx = 1 and f ψn(x)ψm(x)dx = 0 if n ^ m .

THEOREM 11 (Titchmarsh, 18 p. 26). Let f(x) be the integral of

an absolutely continuous function and let
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Lx{f(x)} = q(x)f(x) - fix) be L2(0, oo); let

/(0) cos a + /'(0) sin a = 0

lim {ψ(α;, X)f'(x) — ψ'(#, /0/(#)} = 0 for every non-real λ. Then

(6.1) f(x) = Σ fn(χ) Γf(y)ΨΛv)dy
71=0 JO

the series being absolutely and uniformly convergent in any finite in-

terval.

The testing function space Mil). Let K be an arbitrary compact

subset of the interval (0, oo). The space M(J) consists of infinitely dif-

ferentiable complex valued functions φ(x) satisfying

(6.2) βm>κ(ψ) i sup \Δϊφ{x)\ < oo

for each m = 0,1,2, . The collection of seminorms {βm,κ} generates

the topology over M(I). It turns out that M(I) is a locally convex,

sequentially complete Hausdorff topological vector space, the concept of

convergence and completeness being defined in the usual way.

Now, we state and give an outline of the proof of the main expan-

sion theorem.

THEOREM 12. Let fix) e M'(I) and Ψn(x) be the normalized eίgen-

functions of the Sturm-Liouville problem.

(6.3) Lxφ = λφ

φ(ϋ) cos a + φ'(0) sin a = 0

which are assumed to be elements of Mil). Define the distributional

Sturm-Liouville transform of f by

(6.4) S[f] 4 Fin) Δ {fiχ)9 Ψniχ)y ,

n = 1,2,3, . Then for each ψit) e D(/),

(6.5) lim ( Σ Ψnit)Fin), ψit)) = </(ί), p(t)> .

Proof. Assume that the support of ψix) is contained in the finite
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16 J. N. PANDEY AND R. S. PATHAK

interval [c, d], where 0 < c < d. Then proceeding as in the proof of

Theorem 2 we need to show that

Γ Σ ¥n(xWn(t)φ(t)dt -> φ(x) in M(I)
JC 71 = 1

uniformly for all x as N —> oo. That is, we have to show that

(6.6) Σ Ψnίx) Γ Ψnίt)φk(t)dt - φk(x)
71 = 1 JO

where φk(t) = Δk

tφ(t), for each k = 0,1,2, . Since the function ^(^)

satisfies all the conditions of Theorem 11, the series in (6.6) converges

uniformly and absolutely to φk(x) over [c, d]. This completes the proof

of Theorem 12.

Remark. The case when a = — oo and 6 = oo can similarly be dealt

with.

As a special case of Theorem 12 we obtain an expansion of the

generalized function in a series of Laguerre polynomials [15; pp. 84,87].

(6.7) / - (0, oo) , q(x) = x> + ^ Λ .

The Sturm-Liouville problem is

where y remains bounded as x -* 0 + and x —> oo.

The eigenfunctions are

( 9 /yi t \ 1/2

+ α + 1)/

and

(6.10) ^ = in + 2a + 2 , n = 0,1,2, . . . .

The testing function space ££(J) consists of infinitely diίferentiable

complex valued functions ψ{x) defined over an arbitrary compact subset

K of / = (0, oo) which satisfy

(6.11) βm,ΛΦ)
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for each m = 0,1,2, . . , where Δx = - * - - #2 - ί — l l . The topology
dx2 x2

over J2?(7) is generated by {βm,κ}Z.^- The space j&?(7) possesses properties

similar to that of ^(7). The expansion theorem can be stated as

THEOREM 13. Let f(x) e S£\ϊ) and Ψn(x) be the normalized eigen-

functions of the Sturm-Liouville problem (6.8). Define the distiHbutional

Laguerre transform of f by

(6.12) F(n) ώ>

Then for each φeD(I),

(6.13) K m ( Σ F n

 Z ^ ' t«+H-^L«n(t2),φ(t)) =

7. An operational calculus

The Sturm-Liouville transform is useful in solving a class of bound-

ary value problems.

Let us define an operator J * : Jί\l) y> Jf\ΐ) by the relation

(7.1) <

for all / e ^Γ/(7) and (̂α?) e JίiJ), I = (α, &). It is a simple exercise to

show that for φ(x) e Jf(J.)>

<(4*)VW, pG*)> = </(»), J*p(*» » A = 1,2,3, .

It is a fact that if / is a regular distribution in Jf\ϊ) generated by a

member of D(I) then

Δ*f Ξ J , / .

It readily follows that

where Ψ(λnyx) stands for the usual eigenfunction Ψn(x) corresponding

to the eigenvalue λn.

Or, in otherwords

(7.2) S[V*)kf(x)] = (-λnYS[f(x)] , for each fc = 1,2,3, .
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18 J. N. PANDEY AND R. S. PATHAK

We can use this fact to solve the general operator equation

(7.3) P{Δ*)u = g

where P is a polynomial, the given g and the unknown u are required

to be in Jί\ΐ).

Applying the Sturm-Liouville transform to (7.3) we obtain

(7.4) P(-~λn)U(λn) = G(λn)

where U and G are the Sturm-Liouville transforms of u and g respec-

tively. If P(—λn) Φ 0, for every n, we can divide by P(—λn) and apply

the inverse transform to get

(7.5) u(x) = Σ £{λn\ψn{x) .

If P{—λn) — 0 for some λn, say, lUk (k = 1, ,m), then the solution

exists in Jίr if and only if G(λn) = 0, for k = 1, , m. In this case

a solution to (7.3) is

(7.6) u{x) - p Σ ) J F O f g y , M + Σ < Λ > ) >

where the αfc are arbitrary constants [24, p. 265].

In a given boundary value problem it is easy to verify that (7.5)

and (7.6) satisfy the given differential equation and the prescribed

boundary conditions as is shown in the following sections 8 and 9.

8. Dirichlet problem for the interior of a unit sphere (Application of the

Legendre transformation)

Find the conventional function u(r,x) satisfying the differential

equation

(8.1) —Γ(l - X2)^L] + r—(ru) = 0 (0 < r < 1, - 1 < x < 1)
dx L dx J dr2

such that

( i ) u(r, x) -* fix) in ^(7), I = (-1,1), as r -> 1 - ,

(ii) uir,x) remains bounded as r—>0 +

and
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(iii) (1 - x2)u(r, x), (1 - x2)—(r, x) -> 0 as x -> ± 1 .
dx

Now, we proceed to solve our main problem. Applying Legendre trans-
formation to (8.1) and denoting the Legendre transformation of u(r, x)
by ΰ(r, n) we have

d2

—n(n + ΐ)ΰ + r—(ru) — 0 .
dr2

The solution of this Euler equation is

(8.2) ΰ(r,n) = A(n)rn + B(n)r-n-1 .

Since u{r, x) remains finite in a neighbourhood of the zero we set B(n)
= 0. So that

(8.3) ΰ(r,n) = A(n)rn .

Also, as r —• 1 —, u(r, x) —> f(x)9 therefore we formally write

A(n) = F(n) = (f{x),Pn(x)y .

So that

ΰ(r,ri) = rn

Now, applying the inversion formula (5.22) for the Legendre trans-
formation we get

(8.4) u{r, x) = lim Σ(n + i)Pn(x)r\f(t)9 Pn(ί)>
iV 0

in Dm/= (-1,1).
To verify that this is indeed the solution of our problem we pro-

ceed as follows: By the boundedness property of generalized functions
there exist a positive constant C and a nonnegative integer q such that

Cmax sup |F*(d - *2)1/2/
Ofc -KK1

(8.5) < Cmax sup \nk(n + 1)*(1 - tψΨn(t)\
O^k^ - l<ί<l

< Cnq(n

Therefore,
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20 J. N. PANDEY AND R. S. PATHAK

Σ(n + $Pn(.x)r'</(t),Pn(ty>
(8.6)

< C Σ rnMn + l)]«(w + J) .

Since the series on the right converges for 0 < r < rQ < 1, it follows
that the series on the left-hand side is uniformly convergent. The same
result can be shown to be still true if we differentiate the left-hand
side with respect to x (also with respect to r) any number of times and
use the formula

(8.7) \P«\x)\<n™

for each k = 1,2,3, and \x\ < 1. Therefore, we can apply the oper-

ator — I (1 — ίc2)— + rl—)r to the series (8.4) term by term and
dx L dxi \dr2/

see that u(r, x) satisfies in the conventional sense the differential equa-
tion (8.1).

Next, by virtue of the uniform convergence of the series (8.4) we
can take the limit r - » 0 + in (8.4) and see that it converges to £</(*)>
Po(*)> This verifies (ii).

Finally we verify the first boundary condition. Let Q(x) be a poly-
nomial of degree q + 2 having no zeros on the positive real axis and

let Δx denote the operator —\(x 2 — 1)—I. Then, for any ψeD{I) with
dx L dx J

i t s s u p p o r t c o n t a i n e d i n [c,d] w h e r e — l < c < d < l , w e h a v e

<u(r, x), φixϊ) = li

= Γ Σ (n + &rnF{n)Pn(x)φ(x)dx .
J c n=0

As the series remains uniformly convergent after applications of Δx to
it any number of times for r < 1, we can write

,x),φ(x)> = j imjj (n + i ) _ ^ | M _ f * Q(Δx)[Pn(x)]φ(x)dx

-^Pn(x)Q(Δx)φ(x)dx= l i m Σ
Q[n(n + 1)]

(integrating by parts)
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Therefore,

\<u{r, x),Ψ(x)>\ < lim £

using the fact that |Pn(ίc)| < 1 for — 1 < x < 1. Now, we see that the

series on the right-hand side is uniformly convergent for 0 < r < 1.

Hence, we can take the limit r—>1— in (8.8) and conclude that

lim <u(r, x), φ{x)y = Σ <(w + i )WP.(«) , φ(Φ = </, p> .
r — 1 - w=0

In view of the inequalities (8.5) and (8.7) the series ΣΓ=o (n + i)P'n(%)rn

(f(t),Pn(t)} converges uniformly in (—1,1) for a fixed r satisfying

0 < r < 1.

Therefore, — = f](n+ —)P'n(x)rXf(t),Pn(t)} and is bounded uni-
dx w=o \ 2 /

formly for all x in (—1,1) and a fixed r in (0,1). This verifies (iii).

9. Temperature in a long cylinder (Application of the finite Hankel trans-

form of the first form)

The problem can be stated as below:

Find the conventional function u(r, t) on the domain

{(r, t): 0 < r < 1, t > 0}

satisfying the heat equation

(9.1)
St Vdr2 r dr

where K is a positive constant, and the distributional boundary condi-

tions :

(i) As t -+0 + ,u(r, t) converges in D'(I),I = (0,1) to a certain gener-

alized function fir) 6 tf'JJ).

(ii) As r —• 1 — 0, u(r91) converges uniformly to zero for each fixed t > 0.

Using the change of variables

(9.2) v(r, t) = Vr u(r, t) , g(r) = Vr/(r)

the equation assumes the form
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22 J. N. PANDEY AND R. S. PATHAK

(9.3) to- = κΆ + ±-ΛΛ
dt \dr2 4 r2 /

to which our zero order finite Hankel transform can be applied. De-
noting the zero order finite Hankel transform of v(r,t) with respect to
r by V(ξi91), where ξt are the positive roots of J0(ξ) = 0, an application
of the transform converts (9.3) into

?L = -JLv
dt K

So that

In view of the boundary condition (i) and (9.3)

A(gt) = <g(x),^xJ0(x$i)>

Notice that g(r) e jf'0(I) because fir) e tf'JJ). Hence,

V(ξift) = e-W'ζgW.ϊ/xMxξi)) .

Formally taking inverse transform (5.29) we have

(9.4) u(χ, t) = lim 2Vr Σ e

in DXI).

We now verify that (9.4) is truly a solution. By the boundedness
property of generalized functions there exist a positive constant C and
a nonnegative integer s such that

(9.5) = C max sup
0

= Cmax sup \xhξ\kJQ(xξi)\
0<,k<,s 0 < Λ ? < 1

< C'ξf .

for some appropriate constant C. Therefore, in view of the results
[10, pp. 147 and 153]

(9.6) ξt ~ jr(t - i) i.-+ oo
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and

(9.7) |Λ(f*)Γ < βVΐ i = 1,2,3, . . . , R > 0

we have

(9.8) g

N

(9.9) < C'K Σ \e~^/K)tiξlsI < C" % e-
π2ίH/κi2s+1 .

Clearly the series on the right is always convergent for t > 0. Hence

the series (9.4) converges uniformly and absolutely for all t > 0 and

0 < r < 1. Since Λ0*?*) and J^rξi) are uniformly bounded for 0 < r < 1

and i — 1,2,3, , the same conclusion remains true when the oper-

ators -—, and — respectively are applied to (9.4). In fact ap-
dr2 r dr dt

plication of the operator K(— + — ) — — to (9.4) yields result zero.

\dr2
 AT2/ dt

In this way we verify that (9.4) satisfies the differential equation (9.3).

Since the series (9.4) is uniformly convergent for t > 0 we can take

the limit r—>1— within the summation sign in (9.4). As J0(ξt) — 0,

obviously r —»1— implies v(r, t) uniformly for all t > 0.

Finally, we consider the case t—»0+. In fact for any φ(r) e D(I),

1 = (c, d), we have

lim (2r Σ ^~γ-—A(ξi)J0(rξι), φ(r)

(9.10) = l i m 2 Σ i — _ \ A ( £ J \ \ rJ0(rξi)ψ(r)dr

< lim 2 Σ Ce-^Ήξf I f rJ,{rξάpίr)άr
JV-oo i = 0 I J c

for a positive constant C and a non-negative integer s [see 24, p. 19].

Now, integrating by parts the last integral and using the facts that

Jx{x)dx = J0(x) , xJ0(x)dx = ^ ( a O ,

^ ( c ) = ^ ( ώ ) = 0 for all k = 0,1,2, . . ,

we can see that
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\<v(r,t),φ(t)\ < 2

where Pj(—J is a certain polynomial in 1/r. Thus

( 9 Λ 1 )

<C't\ (by (9.6))
i = 0 V1

where C" is a certain constant. Since the series on the right of (9.11)
is convergent independently of t, we can take the limit £-»0+ in (9.10)
and arrive at

lim <v(r, t), φ(r)y = lim

verifying thereby the second boundary condition.
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