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ON EDGE-COLORABILITY OF CARTESIAN 
PRODUCTS OF GRAPHS* 

BY 

E. S. MAHAMOODIAN 

In an article P. E. Himelwright and J. E. Williamson [3] proved a theorem 
on 1-factorability of Cartesian product of two graphs. With a very short proof 
we prove a more general theorem which immediately implies their theorem as 
a corollary. We will follow the notations and definitions of [1], [2] and [3]. 

THEOREM. If XI(G) = A(G), then Xi(GxH) = A(G) + A(H). 

Proof. GxH, which is isomorphic with HxG, contains |V(H)| disjoint 
"horizontal" copies G1? G 2 , . . . , G\v(m\ of G, and |V(G)| disjoint "vertical" 
copies Hu H2,..., H|V(G) | of H. A horizontal copy Gt and a vertical copy H, 
have only one vertex (14, Vj) in common. 

By a theorem of Vizing (see [4] p. 245) we have 

A ( G x H ) < * i ( G x H ) < A ( G x H ) + l. 

But, A(G xH) = A(G) + A(H). Therefore it is enough to show that Xi(GxH)< 
A(G) + A(H). 

To see this, color the edges of each horizontal copy properly and identically 
with colors { 1 , 2 , . . . , A(G) = Xi(G)} and each vertical copy properly and iden
tically with colors {A(G) + 1 , A(G) + 2 , . . . , A(G) + Xi(H)}. If Xi(H) = A(H) then 
we are done. If Xi(H) = A(H) + 1, then take any edge e = [(14, vk), (wy, vk)] in 
any horizontal copy Gk, which is colored in color number 1. Each end ventex 
of e in the copies Ht or H, is joined to at most A(H) vertical edges. Therefore 
there is at least one color missing at both ends. We color the edge e the missing 
color. In this manner, color 1 is removed, and we have colored G x H i n just 
A(G) + A(H) colors {2, 3 , . . . , A(G) + A(H) + 1}. 

Behzad and Mahmoodian [2] discussed the topological invariants of G x H 
in terms of those of G and H. It is shown (page 159), that if both Xi(G) and 
Xi(H) assume the right side of the Vizing inequalities (i.e., ^1(G) = A(G) + 
1, Xi(H) = A(H) +1), then Xi(G x H) can assume either side of the inequalities 
with the proper G and H. The above theorem shows that if at least one of 

*The contents of this note are taken from the author's Ph.D. Thesis, Department of 
Mathematics, University of Pennsylvania Philadelphia, Pa. 19174, U.S.A. Supervised by Professor 
Albert Nijenhuis. 
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Xi(G) or Xi(H) assumes the left side of the Vizing inequalities then so does 
Xi (GxH) . 

Now the following corollary is the theorem of Himelwright and Williamson: 

COROLLARY. If G is a 1-factorable graph and H is a regular graph, then 
GxH is a \-factor able graph. 

Proof. The 1-factorability of G implies Xi((3) = A(G). Then by the above 
theorem Xi (GxH) = A ( G x H ) , and since GxH is regular, it is 1-factorable. 
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